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Introduction

● To recover the lost information and represent the wide range of illuminance in 
an image, High Dynamic Range (HDR) images need to be generated.
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HDR image encoding

● Commonly, the images that we see on our phones and computers, are 8-bit 
(per channel) encoded RGB images. 
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HDR image encoding

● The problem with this encoding that it is not capable of containing the 
large dynamic range of natural scenes. It only allows a range of 0–255 
(only integers) for accommodating the intensity range, which is not 
sufficient.

● To solve this problem, HDR images are encoded using 32-bit floating point 
numbers, for each channel. This allows us to capture the wide uncapped 
range of HDR images. 

● There are various formats for writing HDR images, the most common 
being .hdr and .exr.
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Displaying HDR images

● Most off the shelf display devices are incapable of delivering the wide 
uncapped range of HDR images. 

● They expect the input source to be in the three-channel 24-bit (3x8) RGB 
format. 

● Due to this reason, the wide dynamic range needs to be toned down to be 
able to accommodate it in the 0–255 range of RGB format.



Tone-mapping

● Tone mapping addresses the problem of strong contrast reduction from 
the scene radiance to the displayable range while preserving the image 
details and color appearance important to appreciate the original scene 
content.
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APPROACHES
● Non-learning based
● Learning based
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Non learning based approach

● Conventionally, HDR images are developed by merging images captured at 
different exposures.
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Non learning based approach

● These images are merged using traditional image processing algorithms 
and are saved as a single HDR image, in a way that the best portions of 
each image make it to the final image.
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Learning based approach

● Learning based approaches harness the capabilities of deep neural 
network architectures as function approximators to learn LDR to HDR 
representations.

● Such networks can do better due to -
○ improved learning based flow mechanisms
○ hallucinating HDR content in saturated regions when LDR input is 

limited  
○ optimised, quick, low-memory alternative



Learning based approach

● Learning based approaches can be broken down into two types -



Learning based approach

● Learning based approaches can be broken down into two types -

● Single LDR input



Approaches - learning based

● Learning based approaches can be broken down into two types -

● Single LDR input
● Multiple LDR inputs
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Learning based - multiple LDR inputs

● Multiple exposure input
● More dynamic range is provided to the network
● Explicit mechanism required for motion compensation
● Better results
● But input is a constraint



Single LDR input 
approaches



Learning based - single LDR input

● More challenging scenario
● Limited dynamic range information input
● More important for real life situations
● Heavily relies on ability of deep CNNs to hallucinate content in saturated 

image regions.
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Caveats

● Not end-to-end trainable
OR/AND

● Only overexposed regions are recovered
OR/AND

● High network parameter count
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Feedback networks

● Feedback systems are adopted to influence the input based on the 
generated output.

● Initial low level features are guided by the high level features using a 
hidden state of a Recurrent Neural Network over n iterations.
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Model architecture



Feedback block



Dilated Dense Block (DDB)



Loss function

Ground-truth
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Loss function

● Loss calculated directly on HDR images is misrepresented due to the 
dominance of high intensity values of images with a wide dynamic range. 

● Therefore, we tonemap the generated and the ground truth HDR images to 
compress the wide intensity range before calculating the loss.

● We use the μ-law for tonemapping.
● L1 loss and Perceptual loss (λ = 0.1)
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Datasets

The performance of the network was evaluated over two datasets-

● Curated dataset
○ 256 x 256 size
○ Training set - 11,262 LDR-HDR image pairs
○ Testing set - 500 image pairs (512 x 512)



Evaluation metrics

● PSNR score (db) - Peak Signal-to-Noise Ratio
● SSIM score - Structural Similarity Index
● HDR-VDP2 Q-score



Feedback mechanism analysis



Results
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HDR Video generation

● LDR video -> HDR video
○ Single exposure LDR to HDR
○ Multiple exposure LDR sequences to HDR

● Temporal coherency is crucial because of vulnerability of neural networks 
to produce highly varied outputs for minutely different inputs.

● RNNs, LSTMs to propagate temporal information across sequences.
● Adversarial training using temporal discriminators.
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Conclusion

● HDR content is important.
● Deep learning helps - outperforms traditional approaches, again.
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