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Introduction

Common digital cameras can not capture the wide range of light intensity
levels in a natural scene.
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Courtesy: OpenHDR (viewer.openhdr.org)



Introduction

To recover the lost information and represent the wide range of illuminance in
an image, High Dynamic Range (HDR) images need to be generated.
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HDR IMAGE
ENCODING



HDR image encoding

e Commonly, the images that we see on our phones and computers, are 8-bit
(per channel) encoded RGB images.
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HDR image encoding

Each pixel’s value is stored using 24-bit representations, 8-bit for each
channel (R, G, B). Each channel of a pixel has a range of 0-255 intensity
values.
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HDR image encoding

o The problem with this encoding that it is not capable of containing the
large dynamic range of natural scenes. It only allows a range of 0—255
(only integers) for accommodating the intensity range, which is not
sufficient.
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HDR image encoding

o The problem with this encoding that it is not capable of containing the
large dynamic range of natural scenes. It only allows a range of 0—255
(only integers) for accommodating the intensity range, which is not
sufficient.

e To solve this problem, HDR images are encoded using 32-bit floating point
numbers, for each channel. This allows us to capture the wide uncapped
range of HDR images.

o There are various formats for writing HDR images, the most common
being .hdr and .exr.



DISPLAYING
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Displaying HDR images

o Most off the shelf display devices are incapable of delivering the wide
uncapped range of HDR images.

e They expect the input source to be in the three-channel 24-bit (3x8) RGB
format.

e Due to this reason, the wide dynamic range needs to be toned down to be
able to accommodate it in the 0—-255 range of RGB format.



Tone-mapping

o Tone mapping addresses the problem of strong contrast reduction from
the scene radiance to the displayable range while preserving the image
details and color appearance important to appreciate the original scene
content.
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APPROACHES

e Non-learning based
e Learning based



Non learning based approach




Non learning based approach

o Conventionally, HDR images are developed by merging images captured at
different exposures.



Non learning based approach

e These images are merged using a software algorithm and are saved as a single HDR
image, in a way that the best portions of each image make it to the final image.
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Non learning based approach

e These images are merged using traditional image processing algorithms
and are saved as a single HDR image, in a way that the best portions of
each image make it to the final image.
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Learning based approach

e Learning based approaches harness the capabilities of deep neural
network architectures as function approximators to learn LDR to HDR
representations.
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Learning based approach

e Learning based approaches harness the capabilities of deep neural
network architectures as function approximators to learn LDR to HDR
representations.

e Such networks can do better due to -

o improved learning based flow mechanisms

o hallucinating HDR content in saturated regions when LDR input is
limited

o optimised, quick, low-memory alternative
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e Learning based approaches can be broken down into two types -
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e Learning based approaches can be broken down into two types -

e Single LDR input
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Approaches - learning based

e Learning based approaches can be broken down into two types -

e Single LDR input
e Multiple LDR inputs
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Learning based - multiple LDR inputs

o Multiple exposure input
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o Multiple exposure input

e More dynamic range is provided to the network
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Learning based - multiple LDR inputs

Multiple exposure input

More dynamic range is provided to the network
Explicit mechanism required for motion compensation
Better results

But input is a constraint




Single LDR input
approaches



Learning based - single LDR input

e More challenging scenario

e Limited dynamic range information input

o More important for real life situations

o Heavily relies on ability of deep CNNs to hallucinate content in saturated
image regions.
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HDRCNN

G. Eilertsen, J. Kronander, G. Denes, R. K. Mantiuk, and J. Unger, “Hdr image reconstruction from a
single exposure using deep cnns,” ACM Transactions on Graphics (TOQ), vol. 36, no. 6, p. 178, 2017
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HDRCNN

G. Eilertsen, J. Kronander, G. Denes, R. K. Mantiuk, and J. Unger, “Hdr image reconstruction from a
single exposure using deep cnns,” ACM Transactions on Graphics (TOQ), vol. 36, no. 6, p. 178, 2017




Deep reverse tone mapping

Y. Endo, Y. Kanamori, and J. Mitani, “Deep reverse tone mapping.," ACM Trans. Graph., vol. 36, no. 6,
pp. 177-1, 2017.
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ExpandNet

D. Marnerides, T. Bashford-Rogers, J. Hatchett, and K. Debattista, “Expandnet: A deep
convolutional neural network for high dynamic range expansion from low dynamic range
content,” in Computer Graphics Forum, vol. 37, pp. 37-49, Wiley Online Library, 2018.
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Caveats

e Not end-to-end trainable
OR/AND

e Only overexposed regions are recovered
OR/AND

e High network parameter count



Our approach



Feedback networks

o Feedback systems are adopted to influence the input based on the
generated output.
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Feedback networks

o Feedback systems are adopted to influence the input based on the
generated output.

o Initial low level features are guided by the high level features using a
hidden state of a Recurrent Neural Network over n iterations.
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Feedback networks
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Feedback networks
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Ground-truth

HDR
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Loss function

o Loss calculated directly on HDR images is misrepresented due to the
dominance of high intensity values of images with a wide dynamic range.
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Loss function

o Loss calculated directly on HDR images is misrepresented due to the
dominance of high intensity values of images with a wide dynamic range.

o Therefore, we tonemap the generated and the ground truth HDR images to
compress the wide intensity range before calculating the loss.

o We use the p-law for tonemapping.

e L1 loss and Perceptual loss (A =0.1)
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Experiments
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The performance of the network was evaluated over two datasets-

o CityScene dataset
o 128 x 64 size
o Training set - 39,460 LDR-HDR image pairs
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Datasets

The performance of the network was evaluated over two datasets-

e Curated dataset
o 256 x 256 size
o Training set- 11,262 LDR-HDR image pairs
o Testing set - 500 image pairs (512 x 512)




Evaluation metrics

e PSNR score (db) - Peak Signal-to-Noise Ratio
e SSIM score - Structural Similarity Index
e HDR-VDP2 Q-score



Feedback mechanism analysis
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Results



Qualitative evaluation
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Quantitative evaluation

Methods City Scene Dataset Curated HDR Dataset
PSNR | SSIM | Q-score | PSNR | SSIM | Q-score
AKY [14] 15.35 0.44 35.40 9.58 0.20 33.47
KOV [15] 16.77 0.59 35.31 12.99 0.41 29.87
HDRCNN 13.21 0.38 54.34 12.13 0.34 55.32

[1]

DRTMO [3] - - - 11.4 0.28 58.85
DRHT [4] - 0.93 61.51 - - -
FHDR/W 25.39 0.89 63.21 16.94 0.74 65.27

FHDR 32.54 0.95 67.18 20.3 0.79 70.97
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HDR Video generation

e LDRvideo->HDR video
o Single exposure LDR to HDR
o Multiple exposure LDR sequences to HDR

e Temporal coherency is crucial because of vulnerability of neural networks
to produce highly varied outputs for minutely different inputs.

e RNNs, LSTMs to propagate temporal information across sequences.
e Adversarial training using temporal discriminators.
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Conclusion

e HDR content is important.
o Deep learning helps - outperforms traditional approaches, again.
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