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Where is time spent in Machine Learning?

* Time Spent with Machines
Number crunching / Finding the best hyper parameters

Business , Analytic

“Prototyping and experimenting with machine learning
were mentioned by more than half of respondents.”

Data
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* Time Spent by Data Scientists

Feature Engineering
understanding

“..over 75% suggested understanding and
analyzing the data is a common activity.”
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https://courses.cognitiveclass.ai/

(Based on Kaggle survey 2019 - https://www.kaggle.com/kaggle-survey-2019)



https://www.kaggle.com/kaggle-survey-2019
https://courses.cognitiveclass.ai/

Reduce time spent with machines

 Hardware design (e.g. IBM Power System AC922)

Summit and Sierra remain in the top two spots.
500 IBM-built supercomputers employing Power9 CPUs and
fhetist NVIDIA Tesla V100 GPUs.

e ML library utilize advances in hardware and algorithms (e.g. Snap ML)

e Scale out “Distributed training” implementation for massive datasets (Supports MPI
and Spark)

e Specialized solvers designed for “GPU acceleration”
e Optimized algorithms for “Sparse data structures”

Ref - https://www.top500.org/lists/2019/11/, https://www.zurich.ibm.com/snapml/



https://www.top500.org/lists/2019/11/
https://www.zurich.ibm.com/snapml/

Reduce time spent by Data Scientists
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Building Blocks in Python ecosystem -
* NumPy (Fundamental package for scientific computing)
e Pandas (Fast and flexible data analysis library)

Handle Big Data in Pythonland. And DASK was born!
* Dask Array (scales Numpy)
e Dask DataFrame (scales Pandas)

Learn more - https://dask.org/



https://dask.org/

Goal

Use Dask distributed processing for data exploration and feature engineering
feed || into

State-of-the-art distributed machine learning library SnapML (paidsk package)
for training

“JupyterLab and its offshoots are the most common, with 83% of data
scientists using it on a regular basis.” (https://www.kaggle.com/kaggle-survey-2019 )



https://www.kaggle.com/kaggle-survey-2019
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Dask setup

* A distributed dask cluster can be set up in multiple ways and offers
more features

e Dask Scheduler

* Dask Worker

* Dask Dashboard

e Dask Custom Configuration

Learn more - https://docs.dask.org/en/latest/setup.html



https://docs.dask.org/en/latest/setup.html
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Dask Client 101

Initialize a client by pointing to address of the dask scheduler
client = Client('9.3.89.44:8786")

Runs all dask collections (dataframe, array etc.) in the distributed cluster
client.who has(X da train)

E”('arra -191b9b48149b501ba630b8426a65fdee’', 1, 0)":
"tcp://9.3.89.44:40229",),

"('array-191b9pb48149b501ba630b8426a65fd6e’', 2, 0)":
('tcp:/7/9.3.89.27:36945",),}

Submit a function to the scheduler
future = client.submit(get unique labs, data)

Wait until computation completes, gather result to local process.
future.result ()

Learn more - https://distributed.dask.org/en/latest/client.html
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https://distributed.dask.org/en/latest/client.html

Substitute for MPI_Allreduce(.. MPI_SUM ..)

Get total label count for each class in the entire dataset

uint32 t num_pos = data->get num_pos();
uint32 t num_neg = data->get num_neg(),;
MPI Allreduce(MPI IN PLACE, &num_pos, 1, MPI_UNSIGNED, MPI SUM, MPI COMM WORLD) ;
MPI Allreduce(MPI IN PLACE, &num_neg, 1, MPI_UNSIGNED, MPI SUM, MPI COMM WORLD) ;

num_pos da.sum(da.array(y) > 0 ).compute()

num_neg total _ex - num_pos




Substitute for MPI_Allreduce(.. MPI LOR ..)

Have the workers converged for their partitions

MPI Allreduce(MPI IN PLACE, stop partition, num_partitions, MPI INT, MPI LOR,
MPI COMM _WORLD) ;

stop = true;
for (uint32_t i = 0; i < num_partitions; i++) {

stop &= stop_partition[i];

stop=1

for i in range(len(stop_partition)):
stop=stop & stop partition [i]
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ow did the Dashboard feel about SnapML?
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Progress -- total: 2, in-memory: 1, processing: 1, waiting: 0, erred: 0




The path ahead

* Performance consideration

e Overhead of switching from C++ library to Python for MPI substitute
reduction operations

» Use dask-cuda for GPU solvers (Improve deployment and management of
Dask workers on CUDA-enabled systems)

e Rechunk ahead of time or not?

e Observations

* With bigger datasets, needed to restart the distributed network
(client.restart()) after each job. Memory leaks?

» Sparse Arrays in Dask are sparse.COO format. Needs convertion to
scipy.sparse.csr_matrix/csc_matrix for fast arithmetic operations
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Extras...



Considerations to feed Dask Array to SnapML

e Use one chunk of dask array per node (use X.rechunk())

 Compute the globally required data using dask array primitives —

total num _examples = X.shape[0]
num_positive labels = da.sum(y > 0 ).compute()

e Extract numpy array from data (use X.compute()), and send it to C++
library



Submitting work to Dask Cluster

* Want the processing to start immediately, but don’t wait for the result

futures=[] client.map() ?
for i in range(len(data)):
futures.append(client.submit(get unique_labs, data[i], workers=worker[i]))

* Wait for the results only when required

local_unique_labs_dict_list=[]

client.gather () ?
for i in range(len(futures)): ‘(,/”'
local _unique_labs dict list.append(futures[i].result())

Learn more - https://docs.dask.org/en/latest/futures.html
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https://docs.dask.org/en/latest/futures.html

Substitute for MPI_Allreduce(.. MPI_MAX ..)

Validate if any data partition for binary classification has different labelling method
e.g. {-1, 1} and {0, 1}

MPI_Allreduce(MPI_IN_PLACE, &is zero, 1, MPI_UNSIGNED, MPI_MAX, MPI_COMM_WORLD);
MPI_Allreduce(MPI_IN PLACE, &is one, 1, MPI_UNSIGNED, MPI_MAX, MPI_COMM_WORLD);
MPI_Allreduce(MPI_IN_PLACE, &is minus _one, 1, MPI_UNSIGNED, MPI_MAX, MPI_COMM_WORLD);

for x in unique_labs:
if x ==
is_zero=True
if x ==
is_one=True
if == -1:
is_minus_one=True
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MPI Send / MPI Recv

Loop through and send to each remote node..
MPI Send(&local _num _ulabs, 1, MPI INT, node, ..);
MPI Send(buf, count, MPI FLOAT, node, ..);

Loop through and receive from each remote node..

MPI Recv(&remote num ulabs, 1, MPI INT, ..);
remote _unique_labs.resize(remote _num _unique_labs, 0);

MPI Recv(&remote unique_ labs[0], remote num _unique_ labs, MPI_ FLOAT, ..);

for i in range(len(data)):
worker futures.append(client.submit(get unique_ labs, data[i], workers=worker[i])

local _unique labs dict list=[]
for i in range(len(worker_ futures)):
local _unique_labs dict list.append( worker futures[i].result() )

unique_labs dict = dict(functools.reduce(operator.add,
map(collections.Counter, local unique_ labs dict list)))
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