
IMPLEMENTATION OF PREVENTION OF XPATH
INJECTION ATTACK USING PYBRAIN MACHINE
LEARNING LIBRARY

Lecture Hall Complex, IIT Bombay – 30th November
2017Scipy India 2017

GAJENDRA DESHPANDE

Asst. Professor, Department of Computer Science and Engineering,

KLS Gogte Institute of Technology, Udyambag, Belagavi, Karnataka

Every time [some software engineer] says, “Nobody will go to the trouble of doing that”, there’s some kid in Finland who will go to
the trouble.

-Alex Mayfield

Contents

⬜ Introduction

⬜ Problem Definition and Proposed Solution

⬜ Introduction to Xpath Injection

⬜ CAPEC on XPath Injection

⬜ Related Work

⬜ Research Gap Identified

⬜ System Design

⬜ Algorithm

⬜ System Environment

⬜ PyBrain Machine Learning Library

⬜ Snapshots

⬜ Conclusion

⬜ References

Introduction
⬜ Cyber Space is a national asset

⬜ XML is a heart of many mainstream technologies, Web Services,
Service Oriented Architecture(SOA), Cloud Computing etc.

⬜ Web Services vulnerabilities can be present in Operating System,
Network, Database, Web Server, Application Server, Application code,
XML parsers and XML appliances

⬜ New technologies – New Challenges ➔ (Old challenges + New
Challenges)

Problem Definition and Proposed
Solution

Problem Definition

⬜ To secure web resources from XPath injection attack using modular
recurrent neural networks.

Proposed Solution

⬜ The proposed solution uses modular recurrent neural network
architecture to identify and classify atypical behavior in user input.
Once the atypical user input is identified, the attacker is redirected to
sham resources to protect the critical data.

■ Count based validation technique

Introduction to XPath Injection
⬜ An attacker can craft special user-controllable input consisting of XPath expressions to

inject the XML database and bypass authentication or glean information that he
normally would not be able to.

<?xml version="1.0" encoding="ISO-8859-1"?>
<users>

 <user>
<username>gandalf</username>
<password>!c3</password>
 <account>admin</account>

</user>
</users>

string(//user[username/text()='gandalf' and password/text()='!c3']/account/text())

string(//user[username/text()='' or '1' = '1' and password/text()='' or '1' = '1']/account/text())

CAPEC on XPath Injection
Factor Description

Attack Prerequisites XPath Queries and unsanitized user controllable input

Typical Likelihood of Exploit High

Attacker Skills Low

Indicators Too many exceptions generated by the application as a

result of malformed XPath queries

Resource Required None

Attack Motivation Consequences Confidentiality- gain privileges and read application data

Injection Vector User-controllable input used as part of dynamic XPath

queries

Payload XPath expressions intended to defeat checks run by XPath

queries

Activation Zone XML Database

CIA Impact High, High, Medium

Architectural Paradigms Client-Server, Service Oriented Architecture (SOA)

Frameworks, Platforms,

Languages

All

Related Work
Authors Title, Year, Publication Methods Used

[1]

Thiago

Mattos

Rosa

et.al.

Mitigating XML Injection

Attack through

Strategy-based

Detection System, 2011,

IEEE Security and

Privacy[2011 Impact

Factor:0.898]

This paper applies ontology to build a strategy based knowledge (XID)

to protect web services from XML injection attack and to mitigate

from zero-day attack problem.

In strategy based design new attack input will be automatically

added to the ontology database. As the number of attacks in the

ontology database increase, the technique will result in increased

response time.

[2] Nuno

Antunes

et.al.

Effective Detection of

SQL/XPath Injection

Vulnerabilities in Web

Services, 2009, IEEE

International

Conference [Research

Track Acceptance Rate:

17%]

The approach is based on XPath and SQL commands learning and

posterior detection of vulnerabilities by comparing the structure of

the commands issued in the presence of attacks to the ones

previously learned.

In this approach results were not promising since the workload

generation took few seconds of time, but learning phase took a few

minutes of time per operation. The overall time taken by the detection

process is approximately 15 minutes per operation.

Related Work

Authors Title, Year, Publication Methods Used

[3] Nuno

Laranjeiro

et.al.

A Learning-Based

Approach to Secure Web

Services from SQL/

XPath Injection Attacks,

2010, IEEE Pacific Rim

International Symposium

The approach is to learn valid request patterns (learning

phase) and then detect and abort potentially harmful

requests (protection phase).

The authors achieved 76% accuracy in detecting the

SQL/XPath injection attacks.

[4] V.

Shanmug

haneethi

et.al.

PXpathV: Preventing

XPath Injection

Vulnerabilities in Web

Applications, 2011,

IJWSC

In this paper XPath Expression Scanner is integrated with

XPath Expression Analyzer to validate XPath Expressions.

The response time was not promising compared to earlier

approaches.

Related Work
Authors Title, Year, Publication Methods Used

[6] Mike

Shields,

Matthew

Casey

A theoretical framework for

multiple neural network

systems, 2008

A theoretical framework for multiple neural network systems where a

general instance of multiple networks is strictly examined.

The authors claim that using an arbitrary number of redundant

networks to perform complex tasks often results in improved

performance

[7] Hanh

H.

Nguyen,

Christine

W. Chan

Multiple neural networks for

a long term time series

forecast, 2004, Springer,

Neural Computing &

Applications 13: 90–98

The concept of multiple artificial neural networks was used for long

term time series prediction where prediction is done by multiple neural

networks at different time lengths.

The authors showed that the multiple neural network system performed

better compared to single artificial neural network for long term

forecast

[8] Anand

R. et. al,

Efficient classification for

multiclass problems using

modular neural networks,

1995, IEEE Transactions on

Neural Networks, Volume 6,

Issue 1

The modular neural network was used to reduce k - class problems to a

set of k two-class problems, where each problem was dealt with

separately trained network to achieve better performance compared to

non-modular networks .

Research Gap Identified
Neural network approach to identify and classify atypical behavior in input

The study showed different approaches to handle XPath injection attacks. It also
showed

methods applied and their disadvantages. We can conclude from the study that
neural

networks are not applied to detect Xpath injection attacks and existing results are not

promising.

The study showed, how modularity in case of neural networks helps to achieve
improved

performance. Modular neural networks have not been applied to cyber security
particularly

to the detection of SQL/XPath injection attacks.

System Design

Fig. 1: Three tier architecture of the proposed
system

Some valid
inputs:
Email-id
Mobile number
Alphanumeric
wordSome malicious
inputs:
‘1 or 1=1
user’ or ‘a’=‘a
%00Some invalid inputs:
Very large input string
String with special characters
String formed from different character set

Algorithm

Algorithm

System Environment

Note: Same environment is used for Development and Testing of the System. The system may also
be deployed on machines with lower configurations and on different platforms.

Software Environment

Technology Server Side Client Side

Neural Networks PyBRAIN [14] -

Web Services BottlePy Micro Web Framework [15] -

Web Server WSGIRefServer of BottlePy and

Apache

-

Web Browser Firefox, Konquerer Firefox, Konquerer

Scripting Language,

Graphs

Python, numpy, matplotlib [16] -

Operating Systems Fedora Linux 14 Fedora Linux 14

Hardware Environment

System Intel i3 processor, 3GB RAM Intel i3 processor, 3GB RAM

Table 5: Tools and technologies used for experimentation

PyBRAIN Machine Learning
Library

⬜ PyBrain is a modular Machine Learning Library for Python.

⬜ PyBrain is short for Python-Based Reinforcement
Learning, Artificial Intelligence and Neural Network Library

⬜ To download and Install PyBrain

$ git clone git://github.com/pybrain/pybrain.git

$ python setup.py install

For more detailed installation instructions visit

http://wiki.github.com/pybrain/pybrain/installation

For Information on PyBrain visit http://www.pybrain.org

http://wiki.github.com/pybrain/pybrain/installation
http://www.pybrain.org/

Bottle- Python Web Framework
⬜ Bottle is a fast, simple and lightweight WSGI micro web-framework

for Python.

⬜ It is distributed as a single file module and has no dependencies other than
the Python Standard Library.

⬜ It includes built in Routing, Templates, Utilities and Server

⬜ Bottle does not depend on any external libraries. You can just
download bottle.py into your project directory and start coding:

$ wget https://bottlepy.org/bottle.py

⬜ For more information on Bottle Framework visit http://www.bottle.org

http://www.bottle.org/

Results (True Positives)
Table 6: Comparison of true positives

Fig. 2: Comparison of true
positives

Results (False Positives)
Table 7: Comparison of false positives

Fig. 3: Comparison of false
positives

Results (True Negatives)
Table 8: Comparison of true negatives

Fig. 4: Comparison of true
negatives

Results (False Negatives)
Table 9: Comparison of false
negatives

Fig. 5: Comparison of false negatives

Results (Response Time)

Number of

samples

Modular Neural

Network

Single Neural

Network

10 10.23 15.31

20 20.27 30.20

30 30.98 45.74

40 40.74 61.32

50 51.31 75.61

60 62.05 90.78

70 70.54 106.34

80 81.47 120.45

90 92.27 136.17

100 101.75 150.87

Table 10: Comparison of response
time

Fig. 6: Comparison of response
time

Summary of Results

Average detection

rate including an

outlier

Average detection

rate excluding an

outlier

MNN % SNN % MNN % SNN %

True Positives 84.2 46.5 93.55 51.66

False

Negatives

15.8 53.5 6.45 48.33

True

Negatives

83.8 47.9 93.11 53.22

False

Positives

16.2 52.1 6.88 46.77

Table 11: Average detection rate including and excluding an outlier

Snapshots

Snapshots (initial output)

Snapshots (valid input scenario)

Snapshots (malicious input
scenario)

Snapshots (fake login scenario)

Conclusion
⬜ Our solution offers improved security over existing methods by misleading

the attackers to false resources and custom error pages

⬜ Our results also show that the system accepts legitimate input although
the user input may contain some special characters and rejects only truly
malicious inputs.

⬜ Our solution combines modular neural networks and count based
validation approach to filter the malicious input

⬜ Our solution has resulted in increased average detection rate of true
positives and true negatives and decreased average detection rate of
false positives and false negatives

⬜ The security systems have to be successful every time. But attacker has to
be successful only once.

References[1] Thiago Mattos Rosa, Altair Olivo Santin, Andreia Malucelli, “Mitigating XML Injection Attack through
Strategy based Detection System”, IEEE Security and Privacy, 2011

[2] Nuno Antunes, Nuno Laranjeiro, Marco Vieira, Henrique Madeira, “Effective Detection of SQL/XPath
Injection Vulnerabilities in Web Services”, IEEE International Conference on Services Computing,
2009

[3]Nuno Laranjeiro, Marco Vieira, Henrique Madeira, “A Learning Based Approach to Secure Web
Services from SQL/XPath InjectionAttacks”, Pacific Rim International Symposium on Dependable
Computing, 2010

[4] V. Shanmughaneethi, R. Ravichandran, S. Swamynathan, “PXpathV: Preventing XPath Injection
Vulnerabilities in Web Applications”, International Journal on Web Service Computing, Vol.2, No.3,
September 2011

[5] CAPEC-83: XPath Injection, http://capec.mitre.org/data/definitions/83.html [Accessed on:
02/12/2012]

[6] Mike W. Shields, Matthew C. Casey, “A theoretical framework for multiple neural network systems”,
2008

[7] Hanh H. NguyenÆ Christine W. Chan, “Multiple neural networks for a long term time series
forecast”, Springer, Neural Comput & Applic (2004) 13: 90–98

[8] Anand, R., Mehrotra, K., Mohan C.K., Ranka S., "Efficient classification for multiclass problems
using modular neural networks", IEEE Transactions on Neural Networks, Volume 6, Issue 1, 1995

http://capec.mitre.org/data/definitions/83.html

References
[9] S. Hochreiter and J. Schmidhuber. “Long short-term memory. Neural Computation”, 9 (8):

1735–1780, 1997.

[10] Derek D. Monner, James A. Reggia, “A generalized LSTM-like training algorithm for second-order
recurrent neural networks”

[11] Anders Jacobsson, Christian Gustavsson, “Prediction of the Number of Residue Contacts in
Proteins Using LSTM Neural Networks”, Technical report, IDE0301, January 2003

[12] P.A. Mastorocostas, “Resilient back propagation learning algorithm for recurrent fuzzy neural
networks”, ELECTRONICS LETTERS, Vol. 40 No. 1, 2004

[13] Martin Riedmiller, Rprop – Description and Implementation Details, Technical report, 1994

[14] Tom Schaul, Justin Bayer, Daan Wierstra, Sun Yi, Martin Felder, Frank Sehnke, Thomas Rückstieß,
Jürgen Schmidhuber. “PyBrain”, Journal of Machine Learning Research, 2010

[15] Bottle: Python Web Framework, http://bottlepy.org/docs/dev/ [Accessed on: 05/04/2013]

[16] matplotlib, http://matplotlib.org/contents.html, [Accessed on: 06/07/2013]

http://bottlepy.org/docs/dev/
http://matplotlib.org/contents.html

Widescreen Test Pattern (16:9)

Aspect Ratio
Test

(Should appear
circular)

16x9

4x3

