s

Multithreading
The Unknown Truth of Python (2.7)

=

- Ritu Chawla Mehra
Xoriant Solutions, Mumbai
30-11-2017

What will you learn in this session

GIL
Global GIL MYSTERY
Interpreter Lock

Concurrency &
Multithreading

The Case Study
Where to use & where not to use Multithreading

Multithreading Multiprocessing Multiprocessing
Examples Example CPU Bound Task

M I i| |i l * Process of executing multiple threads concurrently.
* Shares same piece of code, data & resources (memory).

Concurrency & Multithreading

~

Concurrency:
* Two or more tasks start and complete in overlapping time
period.

* Manage access to shared state(code) from different tasks.

Multithreading:

e Maintain their own stack.

Global Interpreter Lock: Mystery behind it

7
GIL:

* Mutex lock which prevents multiple threads from executing Python code at once.
* Effectively it allows only one thread to execute at a given point of time.

The Purpose :
* To support multithreaded Python programs as “The Python Interpreter” is not fully thread-safe.

(How does it work:

* The GIL must be held by the current thread before it can safely access Python objects.

* Python's standard library releases the GIL whenever there is any blocking i/o operation (network
i/o, reading, writing) , so that other threads can execute in the mean time .

* When it’s not an I/O operation, say some CPU bound task of computations, it won’t get released
and other threads keep on waiting.)

Global Interpreter Lock: Mystery

BUT

MYSTERY

It itself degrades the application
performance when the threads
performed CPU bound task.

GIL was implemented to support
multithreading in python applications

The Big Question

hould we use
Multithreading ?

2

Vs
R

The Right Response

YES/NO

‘
A

r’
N

Case Study

When to “use/not-use”
multithreading and “Why”

Multithreading - 1/O Task

Main Process run Acquire
Thread-1
Started .
| J 10 Release Signal
ready/run Acquire
—— Thread-2
| /0 Release Signal
ready/run Acquire
——————— Thread-3
| S o Release Signal
ready/run Acquire
vl Thread-4
| Release Signal

/0

N

These tasks don’t occupy CPU when
they are performing operations.
Examples : Network requests,
Downloading , Copying, Moving
(data/files/etc).

GIL release signals are handled by
thread library and operating system

Main Process
Started

run

Thread-1

Multithreading — CPU Bound Task

Threading Condition
Variable Wait Queue

(FIFO)
Acquire
G Thread
100 (¢ 100 |
ticks |M ticks |H
E E Thread
C C
K K
Thread
|
‘ Thread
GIL Release Signal
Thread
I_ Thread

Pops a thread from queue

]

Spends the majority of its time using
the CPU doing calculations

CPU-bound threads that never perform
|/O are handled as a special case.
Examples : Calculations (addition,
subtraction ...), Algorithms.

The ticks dictate allowed CPU time-slice
available to a thread.

I Multithreading
] Examples l

def access url data(curr url): I/O TaSk - MUItithreading

print ("Start: {}".format (threading.current thread() .name))
res = requests.get (curr url)
print ("End : {}".format (threading.current_ thread () .name))

§ pyvthon I_ﬂ_Enund_Hu'tiThreadng.py

def worker thread gueue():
while True:
current_url = g url.get ()
access_url data(current url)
g url.task done ()

g url = Queune.ueune ()
for i in range (thread count): EtiP$IT1TE
N nd Time
ob] thread = threading.Thread(target=worker thread gueue) T;TE taken

obj thread.daemon = True; obj thread.start/()

Btart time = time.time () Tt
- 1 eal

url list = ["https://www.pvthon.org","https://www.pvthon.org”, Threas
"hittps:)/ wwWww.pyvthon.org”, "https : //www.pvthon.org™]

for current url in url list:
g url.put (current url) 3
q_url.join{) d : Thread-1

: Thread-4
print "\ntnread_cnunt: " , thread count
print "Start Time (sec): ", start_time
print "End Time (sec): ", time.time ()
m, 2 = divmod (time.time () - start_time, 60)

print "Time taken to execute: ", =

def calculate sum(num) : CPU Bound TaSk = MUItithreading

sum_total = 0

init = 2

while init <= num:
sum_total += init
init += 1

def process gueue () : }opyt hon CPU_Bound_MultiThreads ng. gy
while True: thread_count: 1
number = num gueue.get () Start Time (=sec
calculate s=sum(number) Eﬂd TiTE

num gueune.task done ()

num_queue = Queue.{ueue ()

for i in range(thread count):
ob] thread = threading.Thread(target=process_dgueues)
obj thread.daemon = True; obj thread.starti()

start time = time.time () St&FtIT1TE
for int num in range (10000} : End Time e

nam:queae.pat[int_nam] Time taken to

num_queue.join()

print "thread count: ", thread count
print "Start Time (sec): ", start_time
print "End Time (zec): ", Cime.time ()
m,s = divmod (time.time () - =start time, 60)

print "Time taken to execute: ", =

CPU Bound Task - Multiprocessing

def calculate sum(num) :
Sum total = 0
init = 2
while init <= num!
sum total += inic

init += 1 § python CPU Eh:ul.n'||:|_|'~1|.4'1:1'F'r"|:|-:e::1nr| py
pool_count:
for rand num in range (10000): Start Time

Er.u:I Time
Time taken to

num list.append (rand num)

if name == ' main_ "':
start_time = time.time () § python CPU_Bound_MuTtiProcessing. py
p = multiprocessing.Pool (pool count) pool_count: 5
p.map (calculate sum, num list) 5tmﬁ,T”E (s

En EI T1 me

print "pool count: ", pool count
print "Start Time (sec): ", start time
print "End Time (2ec): ", time.time ()

m, 8 = divmod (time.time () - start time, &0)
print "Time taken to execute: ", =

Multiprocessing — CPU Bound Task

Multiprocessing uses multiple cores (cpu) to execute same process on each core

concurrently.
Have there own memory.

Processes execute on independent CPU’s and maintains there own GIL, hence even
the CPU bound task does not have any effect on performance.

The Common Mistake & How to avoid ?

* Need performance improvement?
e Solution : Implement Multithreading

* Analyze — The problem statement

* Solution — Check ,If multithreading is the answer
to it (there can be other reasons for performance
latency)

* Implement

iyahnnua

dankem. sk edei

s €O
§ =
CnaCVI60taalgla|lava Inak [n mmﬂ" 8|UIBS (- [
_ il = Iaouualam 'l ‘E .
S = <= il
§ 5SS £ v g’
i SO i e ""3’9 '9"7 mochchakieran £
dzw HIB : T
| —
=

-
==
—
NP
= —

,; mm madluha

gkt =00 DL i

el lanemmu 3“[]3[0 = [d d ,E[en gae

= Mepci
iy E el ™3 G gl g Sy £ MEP
N3

- /1}\ O]L mmomBIC‘
o]
>
-,

sago

—

uhliﬁh”“ m

tenku =

