Practice exercises: functions

FOSSEE Team (FOSSEE - IITB)

The FOSSEE Group

Department of Aerospace Engineering
IIT Bombay

Mumbai, India

Basic Python

1/27

Note: Python 2.x and 3.x

If you are using Python 2.x
@ Use raw_input instead of input
@ Use the following for print

from __ future__ import print_function

Exercise: function without arguments

@ Define a function called prompt

@ The function should ask the user to enter their
name (no prompt)

@ The function should not take any arguments

© The function should not return anything

@ The function should print Hello <name>

For example if the user enters Sam, print: Hello Sam

def prompt () :
name = input ()
print (' Hello’ , name)

Exercise: function with one argument

@ Define a function called prompt

@ The function should take a single string argument

© Do not ask the user for input, i.e. do not use
input

@ The function should not return anything

@ The function should print Hello <name>

For example if the function is passed ' Sam’ , print:
Hello Sam

def prompt (name) :
print (' Hello’ , name)

Exercise: function with return

@ Define a function called prompt

@ The function should take a single string argument
@ The function should return a string with ' Hello’
© Do not use input

@ Do not print anything

For example if the function is passed ’ Sam’ , return:
"Hello Sam’

def prompt (name) :
return 'Hello ' + name

Exercise: function with two args

@ Define a function called add
@ The function should take two arguments

© The function should return the sum of the two
arguments

© Do not use input
@ Do not print anything

def add(a, b):
return a + b

Exercise: function returning boolean

@ Define a function called is_even
@ The function should take a single integer argument

© The function should return True if the number is
even and False otherwise

© Do not use input
@ Do not print anything

Naive Solution

def is_even(x):
if x%2 ==
return True
else:
return False

Elegant Solution

def is_ even (x):
return x%2 == 0

Exercise: function returning two values

@ Define a function called even_square
@ The function should take a single argument

@ The function should return if the number is even
and the square of the number

© Do not use input
@ Do not print anything

For example:

In []: even_square (2)
Out[]: (True, 4)
In []: even_square (3)
Out[]: (False, 9)

def even_square (x) :
return x%2 == 0, x*x

Exercise: default arguments

@ Define a function called greet
@ The function should take one positional argument,
name
@ The function should take one optional argument,
message
Q If message is not given, it should default to
"Hello’
@ It should return the string with the greeting
For example:
In []: greet(’'Sam’)
Out[]: "Hello Sam’
In []: greet('Sam’, "Hi')
Out[]: "Hi Sam’

def greet (name, message='Hello'):
return message + ' ' + name

Exercise: functions and lists

@ Define a function called to_lower
@ The function should take a single list of strings

@ The function should return the list of strings but alll
in lowercase

© Do not use input
@ Do not print anything
For example:

In []: to_lower(['I’', "am’, 'Batman’])
Out[]: ['1i’, "am’, ’"batman’]

def to_lower (data) :
result = []
for x in data:

result.append (x.lower ())
return result

Exercise: list of Fibonacci

@ Define a function called £ib taking one argument
n

@ Where, n>0 is an integer but defaults to 8

@ Return the first n terms of the Fibonacci sequence

For example:

In []: f£ib(4)

Out[]: [0, 1, 1, 2]

In []: £ib()

Out[]: [0, 1, 1, 2, 3, 5, 8, 13]

def fib (n=8):
a, b=0, 1
result = [0]
for i in range(n-1):
result.append (b)
a, b = b, a+b
return result

Exercise: returning a function

@ Define a function called power2 () which takes
no argument

@ It should return a function which takes a single
argument x but returns 2%

For example:
In []: £ = power2()
In []: £(2)
Out[]: 4

In []: power2() (4)
Out[]: 16

def power2():

def f(x):
return 2**x

return £

Another solution

def power (n=2):
def f (x):
return nxxx
return £

@ This is called a closure.
@ Note that £ “stores” the value of n

Another solution

def power (n=2):
def f (x):
return nxxx
return £

@ This is called a closure.
@ Note that £ “stores” the value of n

In []: p2 = power (2)
In []: p3 = power(3)
In []: p2(2)

Out[]: 4

In []: p3(2)

Out[]: 9

Exercise: function as an argument

@ Define a function called apply (£, data)
@ Where £ is a function taking a single value
@ Where data is a list
© It should return a list where the function is applied
to each element of data
For example:

In []: def double(x):

e e et return 2*x

In []: apply(double, [1, 2, 3])
Out[]: [2, 4, 6]

def apply(f, data):
result = []
for x in data:
result.append (£ (x))
return result

That’s all folks!

FOSSEE Team (FOSSEE - IITB) Basic Python 27127

