
SymEngine: Leveraging The Power Of A Computer Algebra System (CAS) To Another - 
Shikhar Jaiswal 

About the speaker 
Shikhar is currently a second year undergraduate at IIT Patna, majoring in Computer Science 
and Engineering. He is a contributor to SymPy, SymEngine as well as SymEngine.py. He has 
successfully completed a Google Summer of Code 2017 project for SymEngine titled 
'Improving SymEngine's Python Wrappers and SymPy-SymEngine Integration', under SymPy,
with Sumith Kulal (4th Year CSE Undergraduate at IIT Bombay) as one of the mentors.

Abstract 
SymPy is a widely used symbolic manipulation library in Python. While it turns out to be very 
useful for many applications, one of the long-term problems with SymPy has been that the 
speed might be insufficient while handling very large expressions. Another problem is that due
to being written in Python, it can be cumbersome to use from other languages like Julia, 
Ruby, JavaScript or C++, because it requires, say, a Python to Julia bridge, which might not 
always be robust and which inflicts additional overheads.

Methods
For these reasons, we implemented SymEngine, an Open-Source C++ symbolic manipulation
library, with the goal of being the fastest library for symbolic manipulation, and allowing the 
use to other languages like Python (the most mature wrapper), Ruby, Julia, Haskell and C.

Results
We will show benchmarks comparing other popular Computer Algebra Systems (both open-
source and commercial).

We will talk about why we chose C++ and what rules to follow so that the code cannot have 
an undefined behavior in Debug mode (thus providing similar ease of development as one is 
used to from Python), while being blazingly fast in Release mode.

The talk will focus heavily on SymEngine's use in SymPy, Sage and PyDy software (all three 
being Python based software). Detailed examples will be presented on various mathematical 
functionalities implemented, through SymPy and SymEngine created objects, as well as the 
details of our use of Cython language (not to be confused with CPython) in wrapping C++ 
data structures and creating Python and Cython classes as per the requirements. Some 
amount of time will also be devoted to the issues faced, and the solutions implemented while 
wrapping off the library in Python. We will also present a road-map portraying the present as 
well as previous strategies on porting SymPy on top of SymEngine.

Conclusion
SymEngine should fix the slowness of SymPy, while providing a familiar interface, and at the 
same allowing many languages to use it, thus creating a common platform/tool that many 
projects (like SymPy, Sage, PyDy ...) can use as their main symbolic engine and all contribute
back to it.


