		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Base Plate
Group/Team Name	Osdag	Subtitle	Welded Base Plate
Designer	Engineer#1	Job Number	1.3.1.1
Date	04 /02 /2021	Client	Prof. S R Satish Kumar, IIT Madras

1 Input Parameters

Main Module			N	Ioment Connection	
Module			Ва	se Plate Connection	
Co	onnectivity		W	elded Column Base	
Enc	l Condition			Pinned	
Axial Co	ompression (kN)			1100.0	
Axial Ter	nsion/Uplift (kN)			0.0	
Shea	r Force (kN)				
- Along	major axis (z-z)			0.0	
- Along	minor axis (y-y)			0.0	
Bending	Moment (kNm)				
- Majo	$r axis (M_{z-z})$			0.0	
- Mino	r axis (M_{y-y})			0.0	
	Column Section	- Mechanica	Properties		
	Column S	ection		HB 450	
	Mater	ial	F	2 250 (Fe 410 W)A	
V	Ultimate Strengt	h, F_u (MPa)	410.0		
_T	Yield Strength.	F_y (MPa)		250.0	
	Mass, $m \text{ (kg/m)}$	87.22	$I_z \text{ (cm}^4)$	39200.0	
(B-t)/4 α	Area, $A \text{ (cm}^2)$	111.0	$I_y(\text{cm}^4)$	2980.0	
z— - t z D	None	None	r_z (cm)	18.7	
R1	D (mm)	450.0	r_y (cm)	5.18	
R2	B (mm)	250.0	$Z_z \text{ (cm}^3)$	1740.0	
	T (mm)	13.7	$Z_y \text{ (cm}^3)$	238.0	
Ý	t (mm)	9.8	Z_{pz} (cm ³)	1950.0	
В	Flange Slope	94	$Z_{py} \ (\mathrm{cm}^3)$	394.0	
	$R_1 \text{ (mm)}$ 15.0				
$R_2 \text{ (mm)}$ 7.5					
	Base Plate	- Design Pre	ference		
	Material		E 250 (Fe 410 W)A		
Ultimate S	trength, F_u (MPa)			410	
Yield Strength, F_y (MPa)				250	

		Created with OSCI OSCI OSCI OSCI OSCI OSCI OSCI OSCI	
Company Name	IIT Bombay	Project Title	Base Plate
Group/Team Name	Osdag	Subtitle	Welded Base Plate
Designer	Engineer#1	Job Number	1.3.1.1
Date	04 /02 /2021	Client	Prof. S R Satish Kumar, IIT Madras

Motorial				
Material E 250 (Fe 410 W)A				
Anchor Bolt Outside Column Flange - Input and Design Preference				
Diameter (mm)	['M20', 'M24', 'M30']			
Property Class	['8.8', '9.8']			
Anchor Bolt Type	End Plate Type			
Anchor Bolt Galvanized?	Yes			
Designation	M20X348.5 IS5624 GALV			
Hole Type	Over-sized			
Total Length (mm)	348.5			
Material Grade, F_u (MPa)	900.0			
Anchor Bolt Inside Column Flange - Input and Design	Prefereself.anchor_grade_list_outnce			
Diameter (mm)	N/A			
Property Class	N/A			
Anchor Bolt Type	N/A			
Anchor Bolt Galvanized?	N/A			
Designation	N/A			
Hole Type	N/A			
Total Length (mm)	N/A			
Material Grade, F_u (MPa)	N/A			
Friction Coefficient (between concrete and anchor bolt)	0.3			
Weld - Design Prefere	ence			
Type of Weld Fabrication	Shop Weld			
Material Grade Overwrite, F_u (MPa)	510.0			
Detailing - Design Preference				
Edge Preparation Method	b - Rolled, machine-flame cut, sawn and planed			
Are the Members Exposed to Corrosive Influences?	Yes			
Design - Design Prefer	ence			
Design Method	Limit State Design			
Base Plate Analysis	Effective Area Method			

		Created with Osdag®	
Company Name	IIT Bombay	Project Title	Base Plate
Group/Team Name	Osdag	Subtitle	Welded Base Plate
Designer	Engineer#1	Job Number	1.3.1.1
Date	04 /02 /2021	Client	Prof. S R Satish Kumar, IIT Madras

2 Design Checks

Design Status Pass

2.1 Design Parameters

Check	Required	Provided	Remarks
		$\sigma_{\rm br} = 0.45 f_{ck}$	
		$=0.45\times25$	
Bearing Strength of Concrete		= 11.25	OK
(N/mm^2)			
		[Ref. IS 456:2000, Cl.34.4]	
Grout Thickness (mm)		$t_g = 50$	OK
Epsilon - stiffener plate		$\epsilon_{\text{st}} = \sqrt{\frac{250}{f_{y_{\text{st}}}}}$ $= \sqrt{\frac{250}{250}}$ $= 1.0$	OK
		[Ref. IS 800:2007, Table2]	

2.2 Load Consideration

Check	Required	Provided	Remarks
		$P_u = \max(P_x, 0.3P_d), \text{ but, } \le P_d$	
		$= \max(1100.0, \ 0.3 \times 2522.73)$	
		$= \max(1100.0, 756.82)$	
		≤ 2522.73	
Axial Compression (kN)	$P_x = 1100.0$	= 1100.0	Pass
		[Ref. IS 800:2007, Cl.10.7]	
		Note: $P_{\rm d}$ is the design axial capacity of the column	
Shear Force - along major (z-z) axis (kN)	$V_d = 326.06$	$V_1 = 0.0$	
Shear Force - along minor (y-y) axis (kN)	$V_d = 326.06$	$V_2 = 0.0$	

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Base Plate
Group/Team Name	Osdag	Subtitle	Welded Base Plate
Designer	Engineer#1	Job Number	1.3.1.1
Date	04 /02 /2021	Client	Prof. S R Satish Kumar, IIT Madras

Check	Required	Provided		Remarks
		I.R. axial	$=P_{\rm x}/P_{\rm d}$	
			= 1100.0/2522.73	
			= 0.44	
		I.R. moment	$=M_{ m z}/M_{d m z}$	
Interaction Ratio	I.R. < 1.0		= 0.0/0.0	Pass
			= 0.0	
		I.R. sum	n = I.R. axial + I.R. moment	
			=0.44+0.0	
			= 0.44	

2.3 Plate Washer and Nut Details - Anchor Bolt Outside Column Flange

Check	Required	Provided	Remarks
		Square $-45X45$	
Plate Washer Size (mm)			Pass
		[Ref. IS 6649:1985, Table 2]	
		$t_w = 8.5$	
Plate Washer Thickness (mm)			Pass
		[Ref. IS 6649:1985, Table 2]	
		$d_h = 22$	
Plate Washer Hole Diameter			Pass
(mm)		[Ref. IS 6649:1985, Table 2]	
		$t_n = 18.0$	
Nut (hexagon) Thickness			Pass
(mm)		[Ref. IS 1364-3:2002, Table 1]	
End Plate Size (mm)		Square - 90 X 90	Pass
End Plate Thickness (mm)		14	Pass

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Base Plate
Group/Team Name	Osdag	Subtitle	Welded Base Plate
Designer	Engineer#1	Job Number	1.3.1.1
Date	04 /02 /2021	Client	Prof. S R Satish Kumar, IIT Madras

2.4 Anchor Bolt Summary - Outside Column Flange

Check	Required	Provided	Remarks
Diameter (mm)		20	Pass
Number of Bolts		$n_{ m out}=4$	Pass
Property Class		9.8	Pass

2.5 Anchor Bolt Summary - Inside Column Flange

Check	Required	Provided	Remarks
Diameter (mm)	0	N/A	N/A
Number of Bolts	0	$n_{\rm in} = 0$	N/A
Property Class	N/A	N/A	N/A

${\bf 2.6}\quad {\bf Detailing\ Checks\ \textbf{-}\ Outside\ Column\ Flange}$

Check	Required	Provided	Remarks
Min. End Distance (mm)	$e_{\min} = 1.5d_0$ = 1.5 × 24.0 = 36.0 [Ref. IS 800:2007, Cl.10.2.4.2]	55	Pass
Max. End Distance (mm)	$e_{\text{max}} = 40 + 4t$ Where, $t = \min(14, 14)$ $= 40 + (4 \times 14)$ $e_{\text{max}} = 96.0$ [Ref. IS 800:2007, Cl.10.2.4.3]	55	Pass
Min. Edge Distance (mm)	$e'_{\min} = 1.5d_0$ = 1.5 × 24.0 = 36.0 [Ref. IS 800:2007, Cl.10.2.4.2]	55	Pass

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Base Plate
Group/Team Name	Osdag	Subtitle	Welded Base Plate
Designer	Engineer#1	Job Number	1.3.1.1
Date	04 /02 /2021	Client	Prof. S R Satish Kumar, IIT Madras

Check	Required	Provided	Remarks
Max. Edge Distance (mm)	$e'_{\text{max}} = 40 + 4t$ Where, $t = \min(14, 14)$ $= 40 + (4 \times 14)$ $e'_{\text{max}} = 96.0$ [Ref. IS 800:2007, Cl.10.2.4.3]	55	Pass
Min. Pitch Distance (mm)	N/A	0.0	N/A
Max. Pitch Distance (mm)	N/A	0.0	N/A

2.7 Base Plate Dimension (L X W)

Check	Required	Provided	Remarks
Length (mm)		670.0	Pass
Width (mm)	$W = (0.85B) + 2 (e' + e')$ $= (0.85 \times 250.0) + 2 \times (55 + 55)$ $= 432.5$ [Ref. based on detailing requirement]	470.0	Pass

2.8 Base Plate Analysis

Check	Required	Provided	Remarks
Min. Area Required (mm^2)	$A_{\text{req}_{\min}} = \frac{P_u}{\sigma_{\text{br}}}$ $= \frac{1100.0 \times 10^3}{11.25}$ $= 97.78 \times 10^3$	$A_{\text{provided}} = L \times W$ $= 670.0 \times 470.0$ $= 314.9 \times 10^{3}$	Pass

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Base Plate
Group/Team Name	Osdag	Subtitle	Welded Base Plate
Designer	Engineer#1	Job Number	1.3.1.1
Date	04 /02 /2021	Client	Prof. S R Satish Kumar, IIT Madras

Check	Required	Provided	Remarks
Effective Bearing Area (mm ²)	$A_{\text{breff}} = (D + 2c)(B + 2c) - \left[\left(D - 2(T + c) \right) \left(B - t \right) \right]$ $= (450.0 + 2c)(250.0 + 2c) - \left[\left(450.0 - 2 \times (13.7 + c) \right) \left(250.0 - 9.8 \right) \right]$ Note: c is the projection beyond the face of the column. [Reference: Design of Steel Structures, by N.Subramanian, (2019 edition)]		OK
Projection (mm)	$A_{\text{breff}} = A_{\text{req}_{\min}}$ $= 97.78 \times 10^{3}$ Therefore, $(450.0 + 2c)(250.0 + 2c) - \left[\left(450.0 - 2(13.7 + c) \right) \left(250.0 - 9.8 \right) \right]$ $= 97.78 \times 10^{3}$ $c = 10.85$ projection = max(c, e) $= \max(10.85, 55)$ $= 55$ [Reference: Design of Steel Structures, by N.Subramanian, (2019 edition)]	55	Pass
Actual Bearing Stress (N/mm ²)	11.25	$\sigma_{\text{bractual}} = \frac{P_u}{A_{\text{provided}}}$ $= \frac{1100.0 \times 10^3}{314.9 \times 10^3}$ $= 3.49$	Pass

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Base Plate
Group/Team Name	Osdag	Subtitle	Welded Base Plate
Designer	Engineer#1	Job Number	1.3.1.1
Date	04 /02 /2021	Client	Prof. S R Satish Kumar, IIT Madras

Check	Required	Provided	Remarks
Thickness of Base Plate (mm)	$(T,\ t) < t_p \le 120$ $(13.7,\ 9.8) < t_p \le 120$	to the equation $t_p = c \left[\frac{2.5 \sigma_{\text{bractual}} \gamma_{m0}}{f_{y_{\text{plate}}}} \right]^{0.5}$ $= 55 \times \left[\frac{2.5 \times 3.49 \times 1.1}{250} \right]^{0.5}$ $= 10.78$ $= 14$	Pass
		[Ref. IS 800:2007, Cl.7.4.3.1]	

2.9 Anchor Bolt Design - Outside Column Flange

Check	Required	Provided	Remarks
Shear Capacity (kN)		$V_{\rm dsb} = \frac{f_{ub}n_n A_{nb}}{\sqrt{3}\gamma_{mb}}$ $= \frac{900.0 \times 1 \times 245}{1000 \times \sqrt{3} \times 1.25}$ $= 101.84$ [Ref. IS 800:2007, Cl.10.3.3]	OK
Kb		$k_b = \min\left(\frac{e}{3d_0}, \frac{f_{ub}}{f_u}, 1.0\right)$ $= \min\left(\frac{55}{3 \times 24.0}, \frac{900.0}{410.0}, 1.0\right)$ $= \min(0.76, 2.2, 1.0)$ $= 0.76$ [Ref. IS 800:2007, Cl.10.3.4]	OK

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Base Plate
Group/Team Name	Osdag	Subtitle	Welded Base Plate
Designer	Engineer#1	Job Number	1.3.1.1
Date	04 /02 /2021	Client	Prof. S R Satish Kumar, IIT Madras

Check	Required	Provided	Remarks
Bearing Capacity (kN)		$\begin{split} V_{\mathrm{dpb}} &= \frac{2.5 k_b dt f_u}{\gamma_{mb}} \\ &= \frac{2.5 \times 0.76 \times 20 \times 14 \times 410}{1000 \times 1.25} \\ &= 174.5 \\ &= 0.7 \times 174.5 \\ &= 122.15 \end{split}$ Note: The bearing capacity is reduced since the hole type is Over-sized or Short-slotted.	ОК
		[Ref. IS 800:2007, Cl.10.3.4]	
Bolt Capacity (kN)		$V_{\text{db}} = \min (V_{\text{dsb}}, V_{\text{dpb}})$ = min (101.84, 122.15) = 101.84	ОК
		[Ref. IS 800:2007, Cl.10.3.2]	
Tension Demand - per anchor bolt (kN)	$T_{\rm b} = \frac{P_t}{n_{\rm out}/2}$ $= \frac{0}{4/2}$ $= \frac{0}{2}$ $= 0.0$	$T_{db} = 0.90 f_{ub} A_n / \gamma_{mb}$ $< f_{yb} A_{sb} (\gamma_{mb} / \gamma_{m0})$ $= \min \left(0.90 \times 900.0 \times 245 / 1.25, \right.$ $720.0 \times 314 \times (1.25/1.1) \right)$ $= \min(158.76, 256.91)$ $= 158.76$	
Anchor Length - above concrete footing (mm)		[Ref. IS 800:2007, Cl.10.3.5] $l_1 = t_g + t_p + t_w + t_n + 20$ $= 50 + 14 + 8.5 + 18.0 + 20$ $= 110.5$	Pass
Anchor Length - below concrete footing (mm)		$l_2 = 238.0$ [Reference: IS 5624:1993, Table 1.]	Pass

		Created with Osdag®	
Company Name	IIT Bombay	Project Title	Base Plate
Group/Team Name	Osdag	Subtitle	Welded Base Plate
Designer	Engineer#1	Job Number	1.3.1.1
Date	04 /02 /2021	Client	Prof. S R Satish Kumar, IIT Madras

Check	Required	Provided	Remarks
	$200 \le l_a \le 800$	$l_a = l_1 + l_2$	
Anchor Length - total (mm)		= 110.5 + 238.0	Pass
	[Reference: IS 5624:1993, Table 1]	= 348.5	

2.10 – Stiffener Design - Across Column Web

Check	Required	Provided	Remarks
Length of Stiffener (mm)		$L_{\rm staw} = 110.0$	Pass
Height of Stiffener (mm)		$H_{\text{staw}} = L_{\text{staw}} + 50$ = 110.0 + 50 = 160.0	Pass
Thickness of Stiffener (mm)	$t_{\text{st}aw} = \left(\frac{L_{\text{st}aw}}{13.6 \times \epsilon_{\text{st}}}\right) \ge t$ $= \max\left(\left(\frac{110.0}{13.6 \times 1.0}\right), 9.8\right)$ $= \max(8.09, 9.8)$ [Ref. IS 800:2007, Table 2.]	10	Pass
Weld Size (mm)	3	6	Pass

2.11 Weld Design - Column to Base Plate Connection

Check	Required	Provided	Remarks
Weld Strength (N/mm ²)	$f_{u_w} = \min(f_w, f_u)$ = $\min(510.0, 410.0)$ [Ref. IS 800:2007, Cl.10.5.7.1.1]	$f_{u_w} = 410.0$	Pass
Total Weld Length - at flange (mm)	[200. 20 000.2001, 0.12001.11]	870	Pass
Total Weld Length - at web (mm)		745	Pass
Weld Size (mm)	5	8	Pass

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Base Plate
Group/Team Name	Osdag	Subtitle	Welded Base Plate
Designer	Engineer#1	Job Number	1.3.1.1
Date	04 /02 /2021	Client	Prof. S R Satish Kumar, IIT Madras

Figure 1: Typical Base Plate Details

3 2D Drawings (Typical)

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Base Plate
Group/Team Name	Osdag	Subtitle	Welded Base Plate
Designer	Engineer#1	Job Number	1.3.1.1
Date	04 /02 /2021	Client	Prof. S R Satish Kumar, IIT Madras

Figure 2: Typical Base Plate Detailing

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Base Plate
Group/Team Name	Osdag	Subtitle	Welded Base Plate
Designer	Engineer#1	Job Number	1.3.1.1
Date	04 /02 /2021	Client	Prof. S R Satish Kumar, IIT Madras

Figure 3: Typical Weld Details

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Base Plate
Group/Team Name	Osdag	Subtitle	Welded Base Plate
Designer	Engineer#1	Job Number	1.3.1.1
Date	04 /02 /2021	Client	Prof. S R Satish Kumar, IIT Madras

 $l_1 = \text{length above footing}$

 $l_2 = \text{ length below footing}$

 $1 = t_{\rm n}$, nut thickness

 $2 = t_{\rm w}$, washer thickness

 $3=t_{\rm p}, {\rm plate~thickness}$ $4=t_{\rm g}, {\rm grout~thickness}$

5 = end plate thickness

Figure 4: Typical Anchor Bolt Details

		Created with Osdag®	
Company Name	IIT Bombay	Project Title	Base Plate
Group/Team Name	Osdag	Subtitle	Welded Base Plate
Designer	Engineer#1	Job Number	1.3.1.1
Date	04 /02 /2021	Client	Prof. S R Satish Kumar, IIT Madras

4 3D Views

5 Design Log

mm [Reference: Clause 7.4.1.1, IS 800: 2007]
2021-02-04 15:17:38 - Osdag - WARNING - : [Analysis Error] The computed value of c should at least be equal to the end/edge distance
2021-02-04 15:17:38 - Osdag - INFO - : [Analysis Error] Setting the value of c equal to end/edge distance
2021-02-04 15:17:38 - Osdag - INFO - [Anchor Bolt Length] The recommended range for the length of the anchor bolt of thread size 20

2021-02-04 15:17:38 - Osdag - WARNING - : [Analysis Error] The value of the projection (c) as per the Effective Area Method is 15

mm is as follows:

2021-02-04 15:17:38 - Osdag - INFO - [Anchor Bolt Length] Minimum length = 200 mm, Maximum length = 800 mm. 2021-02-04 15:17:38 - Osdag - INFO - [Anchor Bolt Length] The provided length of the anchor bolt is 348.5 mm

 $2021-02-04\ 15:17:38\ -\ Osdag\ -\ INFO\ -\ [Anchor\ Bolt]\ Designer/Erector\ should\ provide\ adequate\ anchorage\ depending\ on\ the\ availability$

of standard lengths and sizes, satisfying the recommended range

2021-02-04 15:17:38 - Osdag - INFO - [Anchor Bolt Length] Reference: IS 5624:1993, Table 1

2021-02-04 15:17:38 - Osdag - INFO - : Overall base plate connection design is ${\rm SAFE}$