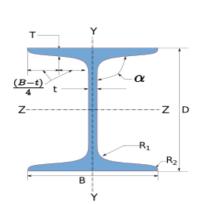

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.3.2
Date	04 /02 /2021	Client	Mr. Yogesh D Pisal, Mumbai

1 Input Parameters


Main Module	Moment Connection
Module	Beam-to-Column End Plate Connection
Connectivity	Column Web-Beam Web
End Plate Type	Extended Both Ways - Reversible Moment
Bending Moment (kNm)	85.0
Shear Force (kN)	120.0
Axial Force (kN)	18.0

Column Section - Mechanical Properties

Column Section -	Mechanical	Properties	
Column Sec	tion	PBP 4	00 X 212.5
Materia	l	E 250 (Fe 410 W)A
Ultimate Strength	, Fu (MPa)		410
Yield Strength, I	Fy (MPa)		240
Mass, $m \text{ (kg/m)}$	212.5	$I_z \text{ (cm}^4)$	63800.0
Area, $A \text{ (cm}^2)$	270.0	$I_y(\mathrm{cm}^4)$	25600.0
D (mm)	368.0	r_z (cm)	15.4
B (mm)	400.0	r_y (cm)	9.7
t (mm)	24.0	$Z_z \text{ (cm}^3)$	3460.0
T (mm)	24	$Z_y \text{ (cm}^3)$	1280.0
Flange Slope	90	$Z_{pz} \ (\mathrm{cm}^3)$	3940.0
$R_1 \text{ (mm)}$	15.0	$Z_{py} (\mathrm{cm}^3)$	1960.0
$R_2 \text{ (mm)}$	0.0		

Beam Section - Mechanical Properties

Beam Sect	ion	M	B 500
Materia	l	E 250 (1	Fe 410 W)A
Ultimate Strength, F_u (MPa)			410
Yield Strength,	F_y (MPa)		250
Mass, m (kg/m)	86.88	$I_z \text{ (cm}^4)$	45200.0
Area, $A \text{ (cm}^2)$	110.0	$I_y(\text{cm}^4)$	1360.0
D (mm)	500.0	r_z (cm)	20.2
B (mm)	180.0	r_y (cm)	3.51
t (mm)	10.2	$Z_z \text{ (cm}^3)$	1800.0
T (mm)	17.2	$Z_y \text{ (cm}^3)$	152.0
Flange Slope	98	$Z_{pz} (\mathrm{cm}^3)$	2070.0

		Created with Osdag®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.3.2
Date	04 /02 /2021	Client	Mr. Yogesh D Pisal, Mumbai

R_1 (mm	n) 1	7.0	Z_{py} (cm ³)	259.0
R_2 (mm	1) 8	3.5		
Plate De	etails - Input	and Desi	gn Preference	
Thickness (mm)				[20]
Material				E 300 (Fe 440)
Ultimate Strength, Fu (MF	Pa)			440
Yield Strength, Fy (MPa	n)			290
Bolt De	etails - Input	and Desig	gn Preference	
Diameter (mm)				[20]
Property Class				[8.8]
Type				Friction Grip Bolt
Bolt Tension				Pre-tensioned
Hole Type				Standard
Slip Factor, (μ_f)				0.5
Weld De	etails - Input	and Desig	gn Preference	
Type of Weld Fabrication	n			Shop Weld
Material Grade Overwrite, F_u	(MPa)			500.0
Beam Flange to End Plat	te			Groove Weld
Beam Web to End Plate	е			Fillet Weld
Stiffener				Fillet Weld
Continuity Plate				Fillet Weld
I	Detailing - De	sign Pref	erence	
Edge Preparation Method	d		Rolled, mach	ine-flame cut, sawn and planed
Gap Between Members (m	nm)			0.0
Are the Members Exposed to Corrosi	ve Influences?			False

		Created with Osdag®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.3.2
Date	04 /02 /2021	Client	Mr. Yogesh D Pisal, Mumbai

2 Design Checks

Design Status Pass

2.1 $\,$ Beam to Column - Compatibility Check

Check	Required	Provided	Remarks
		$B_{available} = D_c - (2T_c) - (2R_{1c}) - 10$	
	$B_{\text{req}} = B_b + 25$	$= 368.0 - (2 \times 24) - (2 \times 15.0) - 10$	
Beam Section Compatibility	= 180.0 + 25	= 280.0	Compatible
	= 205.0		

2.2 Member Capacity - Supported Section

Check	Required	Provided	Remarks
Shear Capacity (kN)		$V_{d_y} = \frac{A_v f_y}{\sqrt{3}\gamma_{m0}}$ $= \frac{0.6 \times 465.6 \times 10.2 \times 250}{\sqrt{3} \times 1.1 \times 1000}$ $= 373.9$ [Ref. IS 800:2007, Cl.10.4.3]	Restricted to low shear
Plastic Moment Capacity (kNm)		$M_{d_{\mathbf{Z}}} = \frac{\beta_b Z_{p_z} f y}{\gamma_{m0}}$ $= \frac{1.0 \times 2070000.0 \times 250}{1.1 \times 10^6}$ $= 470.45$ [Ref. IS 800:2007, Cl.8.2.1.2]	V < 0.6 Vdy

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.3.2
Date	04 /02 /2021	Client	Mr. Yogesh D Pisal, Mumbai

2.3 Member Capacity - Supporting Section

Check	Required	Provided	Remarks
Plastic Moment Capacity (kNm)		$M_{d_{\mathbf{Z}}} = \frac{\beta_b Z_{p_z} f y}{\gamma_{m0}}$ $= \frac{0.88 \times 3940000.0 \times 240}{1.1 \times 10^6}$ $= 754.91$ Note: The capacity of the section is not based on the beam-colum or column design. The actual capacity might vary. [Ref. IS 800:2007, Cl.8.2.1.2]	Semi- compact
Plastic Moment Capacity (kNm)		$\begin{split} M_{dy} &= \frac{\beta_b Z_{py} fy}{\gamma_{m0}} \\ &= \frac{0.65 \times 1960000.0 \times 240}{1.1 \times 10^6} \\ &= 279.27 \end{split}$ Note: The capacity of the section is not based on the beam-colum or column design. The actual capacity might vary. $[\text{Ref. IS } 800:2007, \text{Cl.8.2.1.2}]$	Semi- compact

2.4 Load Consideration

Check	Required	Provided	Remarks
Axial Force (kN)		$P_x = 18.0$	ок

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.3.2
Date	04 /02 /2021	Client	Mr. Yogesh D Pisal, Mumbai

Check	Required	Provided	Remarks
Shear Force (kN)	$V_y=120.0$	$V_{y \min} = \min(0.15V_{dy}, 40.0)$ $= \min(0.15 \times 373.9, 40.0)$ $= \min(56.08, 40.0)$ $= 40.0$ $V_u = \max(V_y, V_{y \min})$ but, $\leq V_{dy}$ $= \max(120.0, 40.0)$ but, ≤ 373.9 $= 120.0$	Pass
		[Ref. IS 800:2007, Cl.10.7] $M_{z\min} = 0.5M_{dz}$ $= 0.5 \times 470.45$ $= 235.22$ $M_u = \max(M_z, M_{z\min})$	
Bending Moment (major axis) (kNm)	M = 85.0	but, $\leq M_{dy}$ of the column section $= \max(85.0, 235.22)$ ≤ 279.27 $= 235.22$ [Ref. IS 800:2007, Cl.8.2.1.2]	Pass
Effective Bending Moment (major axis) (kNm)		$M_{ue} = M_u + P_x \times \left(\frac{D}{2} - \frac{T}{2}\right) \times 10^{-3}$ $= 235.22 + 18.0 \times \left(\frac{500.0}{2} - \frac{17.2}{2}\right) \times 10^{-3}$ $= 239.57$	ОК

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.3.2
Date	04 /02 /2021	Client	Mr. Yogesh D Pisal, Mumbai

2.5 Bolt Optimization

Check	Required	Provided	Remarks
Diameter (mm)	Bolt Diameter Optimization	d=20	Pass
Property Class	Bolt Property Class Optimization	8.8	Pass
Hole Diameter (mm)		$d_0 = 22.0$	OK
No. of Bolt Columns		$n_c = 2$	Pass
No. of Bolt Rows		$n_r = 6$	Pass
Total No. of Bolts		$n = n_r X n_c = 12$	Pass

2.6 Detailing

Check	Required	Provided	Remarks
	$p_{\min} = 2.5d$		
	$= 2.5 \times 20.0$		
Min. Pitch Distance (mm)	= 50.0	70	Pass
	[Ref. IS 800:2007, Cl.10.2.2]		
	$p_{\text{max}} = \min(32t, 300)$		
	$= \min(32 \times 20.0, 300)$		
	$= \min(640.0, 300)$		
Max. Pitch Distance (mm)	= 300	70	Pass
Wax. 1 Heri Distance (min)			1 dbb
	Where, $t = \min(20.0, 20.0)$		
	[Ref. IS 800:2007, Cl.10.2.3]		
	$e_{\min} = 1.5d_0$		
Min. End Distance (mm)	$= 1.5 \times 22.0$		
	= 33.0	35	Pass
	[Ref. IS 800:2007, Cl.10.2.4.2]		

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.3.2
Date	04 /02 /2021	Client	Mr. Yogesh D Pisal, Mumbai

Check	Required	Provided	Remarks
Max. End Distance (mm)	$e_{\text{max}} = 12t\varepsilon; \ \varepsilon = \sqrt{\frac{250}{f_y}}$ $e_1 = 12 \times 20.0 \times \sqrt{\frac{250}{290}} = 222.83$ $e_2 = 12 \times 20.0 \times \sqrt{\frac{250}{290}} = 222.83$ $e_{\text{max}} = \min(e_1, \ e_2) = 222.83$ [Ref. IS 800:2007, Cl.10.2.4.3]	35	Pass
Min. Edge Distance (mm)	$e'_{\min} = 1.5d_0$ = 1.5 × 22.0 = 33.0 [Ref. IS 800:2007, Cl.10.2.4.2]	35	Pass
Max. Edge Distance (mm)	$e'_{\text{max}} = 12t\varepsilon; \ \varepsilon = \sqrt{\frac{250}{f_y}}$ $e_1 = 12 \times 20.0 \times \sqrt{\frac{250}{290}} = 222.83$ $e_2 = 12 \times 20.0 \times \sqrt{\frac{250}{290}} = 222.83$ $e'_{\text{max}} = min(e_1, \ e_2) = 222.83$ [Ref. IS 800:2007, Cl.10.2.4.3]	35	Pass
Cross-centre Gauge Distance (mm)		98	Pass

2.7 Critical Bolt Design

Check	Required	Provided	Remarks
-------	----------	----------	---------

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.3.2
Date	04 /02 /2021	Client	Mr. Yogesh D Pisal, Mumbai

Check	Required	Provided	Remarks
Slip Resistance (kN)	$V_{sf} = \frac{V_u}{n}$ $= \frac{120.0}{12}$ $= 10.0$	$V_{dsf} = \frac{\mu_f n_e K_h F_o}{\gamma_{mf}}$ Where $, F_o = 0.7 f_{ub} A_{nb}$ $V_{dsf} = \frac{0.5 \times 1 \times 1 \times 0.7 \times 830.0 \times 245}{1.25 \times 10^3}$ $= 56.94$	Pass
		[Ref. IS 800:2007, Cl.10.4.3]	
Lever Arm (mm)	 r = [482.8, 482.8, 0, 43.6, 369.2, 113.6] Note: r₁ and r₂ are the first rows outside and inside the tension/top flange. r₃ and r₄ are the first rows outside and inside the compression/bottom flange. r₅ is the second row inside tension/top flange, and r₆ is the second row inside the compression/bot row(s) r₇ and beyond are the rows inside the flange placed in a symmetrical manner. Note: The lever arm is computed by considering 		Pass
	the N.A at the centre of the bottom flange. Rows with identical lever arm values mean they are considered acting as bolt group near the tension or compression flange.		

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.3.2
Date	04 /02 /2021	Client	Mr. Yogesh D Pisal, Mumbai

Check	Required	Provided	Remarks
Tension Due to Moment (kN)	$T_1 = \frac{M_{ue}}{2 \times n_c \times \left(r_1 + \sum_{i=4}^{n_r} \frac{r_i^2}{r_1}\right)}$ $= \frac{239.57 \times 10^3}{2 \times 2 \times \left(482.8 + \sum_{i=4}^{6} \frac{r_i^2}{482.8}\right)}$ $= 75.26$ Note: T_1 is the tension in the critical bolt. The critical bolt is the bolt nearest to the tension flange.		ОК

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.3.2
Date	04 /02 /2021	Client	Mr. Yogesh D Pisal, Mumbai

Check	Required	Provided	Remarks
Check Prying Force (kN)	$Q = \frac{l_v}{2l_e} \left[T_e - \frac{\beta \eta f_o b_e t^4}{27 l_e l_v^2} \right]$ $l_v = e - \frac{R_1}{2}$ $= 35 - \frac{17.0}{2} = 26.5 \text{ mm}$ $f_o = 0.7 f_{ub}$ $= 0.7 \times 830.0$ $= 581.0 \text{ N/mm}^2$ $l_e = \min\left(e, 1.1 t \sqrt{\frac{\beta f_o}{f_y}} \right)$ $= \min\left(35, 1.1 \times 20 \times \sqrt{\frac{1 \times 581.0}{290}} \right)$ $= \min(35, 31.14) = 31.14 \text{ mm}$ $\beta = 1 \text{ (pre-tensioned bolt)}$ $\eta = 1.5$ $b_e = \frac{B}{n_c}$ $= \frac{180.0}{2} = 90.0 \text{ mm}$ $Q = \frac{26.5}{2 \times 31.14} \times$		Remarks
	$\left[75.26 - \left(\frac{1 \times 1.5 \times 581.0 \times 90.0 \times 20^4}{27 \times 31.14 \times 26.5^2}\right) \times 10^{-3}\right]$ $Q = 22.98$		
	[Ref. IS 800:2007, Cl.10.4.7]		

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.3.2
Date	04 /02 /2021	Client	Mr. Yogesh D Pisal, Mumbai

Check	Required	Provided	Remarks
Tension Demand (kN)	$T_f = T_1 + Q$ = 75.26 + 22.98 = 98.24	$T_f = 0.90 f_{ub} A_n / \gamma_{mf}$ $< f_{yb} A_{sb} (\gamma_{m1} / \gamma_{m0})$ $= \min \left(0.90 \times 830.0 \times 245 / 1.25, \right.$ $660.0 \times 314.0 \times (1.25/1.1) \right)$ $= \min (146.41, 235.5)$ $= 146.41$ [Ref. IS 800:2007, Cl.10.3.5]	Pass
Combined Capacity, (I.R)	≤ 1	$\left(\frac{V_{sf}}{V_{df}}\right)^2 + \left(\frac{T_f}{T_{df}}\right)^2 \le 1.0$ $\left(\frac{10.0}{56.94}\right)^2 + \left(\frac{98.24}{146.41}\right)^2 = 0.48$ [Ref. IS 800:2007, Cl.10.3.6]	Pass

2.8 Compression Flange Check

Check	Required	Provided	Remarks
Tension in Bolt Rows (kN)		T = [75.26, 75.26, 0, 13.59, 115.11, 35.42]	OK
Reaction at Compression Flange (kN)	$R_c = n_c \sum_{n_r=1}^{n_r} T_{n_r}$ $= 2 \times \sum_{n_r=1}^{6} T_{n_r}$ $= 2 \times 314.64$ $= 629.28$	$F_c = A_g f_y / \gamma_{m0}$ $= \frac{BT f_y}{\gamma_{m0}}$ $= \frac{180.0 \times 17.2 \times 250}{1.1 \times 1000}$ $= 703.64$	Pass

		Created with Osdag®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.3.2
Date	04 /02 /2021	Client	Mr. Yogesh D Pisal, Mumbai

2.9 End Plate Checks

Check	Required	Provided	Remarks
		$H_p = D + (2 \times (2 \times e))$	
Height (mm)		$= 500.0 + (2 \times (2 \times 35))$	Pass
		= 640.0	
		$B_p = B + 25$	
Width (mm)		=180.0+25	Pass
		=205.0	
		$M_{cr} = T_1 \ l_v - Q \ l_e$	
		$= (75.26 \times 26.5 - 22.98 \times 31.14) \times 10^{-3}$	
Moment at Critical Section		= 1.28	OK
(kNm)			UK
(RTTIII)		Note: The critical section is at the toe of the weld or	
		the edge of the flange from bolt center-line	
	$t_p = \sqrt{\frac{4M_{cr}}{b_e(f_y/\gamma_{m0})}}$ $= \sqrt{\frac{4 \times 1.28 \times 10^6}{90 \times (290/1.1)}}$		
Plate Thickness (mm)	$=\sqrt{\frac{4\times1.28\times10^6}{90\times(290/1.1)}}$	20	Pass
	= 14.68		
		$M_p = \left(\frac{b_e t_p^2}{4}\right) \times \frac{f_y}{\gamma_{m0}}$ $= \frac{90 \times 20^2}{4} \times \frac{290}{1.1} \times 10^{-6}$	
Moment Capacity (kNm)	1.28	$= \frac{90 \times 20^2}{4} \times \frac{290}{1.1} \times 10^{-6}$	Pass
		= 2.37	

2.10 Stiffener Design

Check	Required	Provided	Remarks
Height (mm)		$H_{\text{st}} = \frac{H_p - D}{2}$ $= \frac{640.0 - 500.0}{2}$ $= 70.0$	70.0
Length (mm)		$L_{\text{st}} = \frac{H_{\text{st}}}{\tan 30^{\circ}}$ $= \frac{70.0}{\tan 30^{\circ}}$ $= 122$	Pass

		Created with Osdag®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.3.2
Date	04 /02 /2021	Client	Mr. Yogesh D Pisal, Mumbai

Check	Required	Provided	Remarks
Thickness (mm)	t = 10.2	$t_{st} = 12$	Pass
Weld Size (mm)	5	$t_w = 6$	Pass

${\bf 2.11}\quad {\bf Weld\ Design\ \textbf{-}\ Beam\ Web\ to\ End\ Plate\ Connection}$

Check	Required	Provided	Remarks
Weld Strength (N/mm2)	$f_{uw} = \min(f_w, f_u)$ = $\min(500.0, 440)$ [Ref. IS 800:2007, Cl.10.5.7.1.1]	$f_{u_w} = 440$	Pass
Total Weld Length (mm)		$L_w = 2 \times \left[D - (2 \times T) - (2 \times R1) - 20 \right]$ $= 2 \times \left[500.0 - (2 \times 17.2) - (2 \times 17.0) - 20 \right]$ $= 813.0$ Note: Weld is provided on both sides of the web	OK
Weld Size (mm)	$t_w = \frac{V_u}{f_{uw}kL_w} \times \sqrt{3} \ \gamma_{mw}$ $= \frac{120.0 \times 10^3}{440 \times 0.7 \times 813.0} \times \sqrt{3} \times 1.25$ $= 1.04$ [Ref. IS 800:2007, Cl.10.5.7]	6	Pass

		Created with OSCIO	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.3.2
Date	04 /02 /2021	Client	Mr. Yogesh D Pisal, Mumbai

Check	Required	Provided	Remarks
	1) $t_{w \min}$ – based on thickness of the thicker part $t_{\text{thicker}} = \max(20.0, 10.2)$ $= 20.0$ $t_{w \min} = 5$	$t_w = \max(t_w, \ t_{w \min})$	
Min. Weld Size (mm)	2) $t_{w \min}$ – based on thickness of the thinner part	$= \max(1.04, 5)$ = 6	Pass
	$t_{\text{thinner}} = \min(20.0, 10.2)$ = 10.2 $t_{w\min} \le \min(5, 10.2)$		
	[Ref. IS 800:2007, Table 21, C	1 10.5.2.3]	
	$t_{w_{\max}}$ based on thickness of the thinner part		
Max. Weld Size (mm)	$t_{\text{thinner}} = \min(20.0, 10.2)$ = 10.2 $t_{w \max} = 10.2$	$t_w \le t_{w \max}$ $6 \le 10.2$	Pass
	[Ref. IS 800:2007, Cl.10.5.3.1]		
Normal Stress (N/mm2)		$f_a = \frac{H}{0.7t_w L_w}$ $= \frac{18.0 \times 10^3}{0.7 \times 6 \times 813.0}$ $= 5.27$ [Ref. IS 800:2007, Cl.10.5.9]	

		Created with OSCIO	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.3.2
Date	04 /02 /2021	Client	Mr. Yogesh D Pisal, Mumbai

Check	Required	Provided	Remarks
Shear Stress (N/mm2)		$q = \frac{V}{0.7t_w L_w}$ $= \frac{120.0 \times 10^3}{0.7 \times 6 \times 813.0}$ $= 35.14$ [Ref. IS 800:2007, Cl.10.5.9]	
Equivalent Stress (N/mm2)	$f_e = \sqrt{f_a^2 + 3q^2}$ $= \sqrt{5.27^2 + (3 \times 35.14^2)}$ $= 60.91$ [Ref. IS 800:2007, Cl.10.5.10.1.1]	$f_w = \frac{f_u}{\sqrt{3}\gamma_{mw}}$ $= \frac{440}{\sqrt{3} \times 1.25}$ $= 203.23$ [Ref. IS 800:2007, Cl.10.5.7.1.1]	Pass

2.12 Continuity Plate Design

Check	Required	Provided	Remarks
Notch Size (mm)		n=24	OK
		$l_{cp1} = \text{Outer length}$	
		$l_{cp1} = D_c - 2T_c$	
		$= 368.0 - (2 \times 24)$	
		= 320.0	
Length (mm)			OK
		$l_{cp2} = \text{Inner length}$	
		$l_{cp2} = D_c - 2(T_c + n)$	
		$= 368.0 - [2 \times (24 + 24)]$	
		= 272.0	
		$w_{cp} = \frac{B_c - T_c - 2n}{2}$	
Width (mm)		$= \frac{2}{400.0 - 24.0 - 2 \times 24}$	ОК
Width (mm)		$=\frac{33333}{2}$	OK
		= 164.0	
Thickness (mm)	tc = 24.0	25	Pass

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.3.2
Date	04 /02 /2021	Client	Mr. Yogesh D Pisal, Mumbai

2.13 Weld Design - Continuity Plate

Check	Required	Provided	Remarks
W.U.G. J. (N/ a)	$f_{uw} = \min(f_{\rm w}, f_{ucp})$ = \text{min}(500.0, 440)	4 440	
Weld Strength (N/mm2)	[Ref. IS 800 : 2007, Cl. 10.5.7.1.1]	$f_{u_w} = 440$	Pass
	[169, 12 500 , 2001, 50 15101111]	$L_{wcp} = 248.0$	
Total (effective) Weld Length (mm)		Note: Provide weld on one side of the continuity plate	OK
Weld Size (mm)	6	6	Pass
	1) $t_{w \min}$ – based on thickness of the		
	thicker part		
	$t_{\rm thicker} = \max(25, 24.0)$		
	= 25		
	$t_{w \min} = 6$		
		$t_w = \max(t_w, \ t_{w\min})$	
Min. Weld Size (mm)	2) $t_{w \min}$ – based on thickness of the	$= \max(6, 6)$	Pass
	thinner part	= 6	
	$t_{\rm thinner} = \min(25, 24.0)$		
	= 24.0		
	$t_{w\min} \le \min(6, 24.0)$		
	[Ref. IS 800:2007, Table 21, Cl 10.5.2.	3]	
	$t_{w_{\text{max}}}$ based on thickness of the		
	thinner part		
M Will C: ($t_{\rm thinner} = \min(25, 24.0)$	$t_w \le t_{w \max}$	D
Max. Weld Size (mm)	= 24.0	$6 \le 24$	Pass
	$t_{w\max} = 24$		
	[Ref. IS 800:2007, Cl.10.5.3.1]		

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.3.2
Date	04 /02 /2021	Client	Mr. Yogesh D Pisal, Mumbai

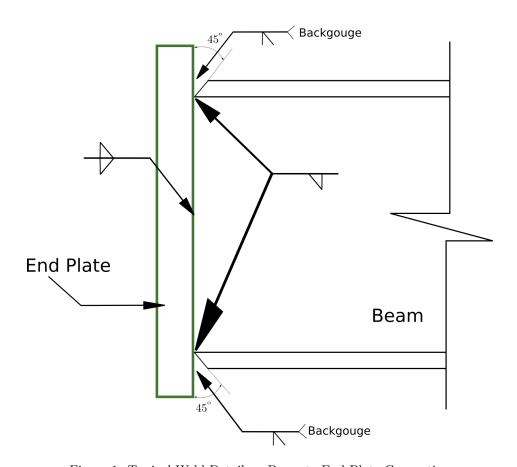


Figure 1: Typical Weld Details -- Beam to End Plate Connection

3 2D Drawings (Typical)

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.3.2
Date	04 /02 /2021	Client	Mr. Yogesh D Pisal, Mumbai

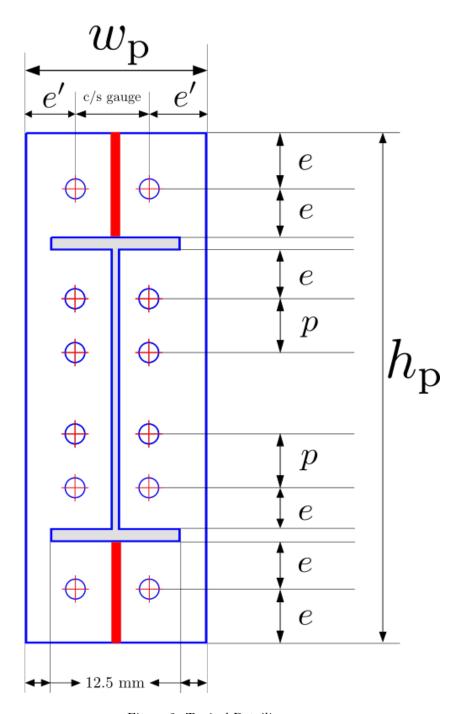


Figure 2: Typical Detailing

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.3.2
Date	04 /02 /2021	Client	Mr. Yogesh D Pisal, Mumbai

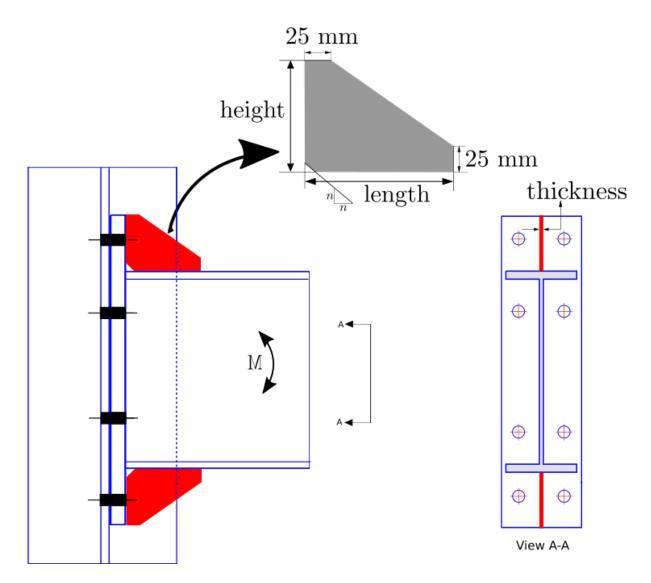
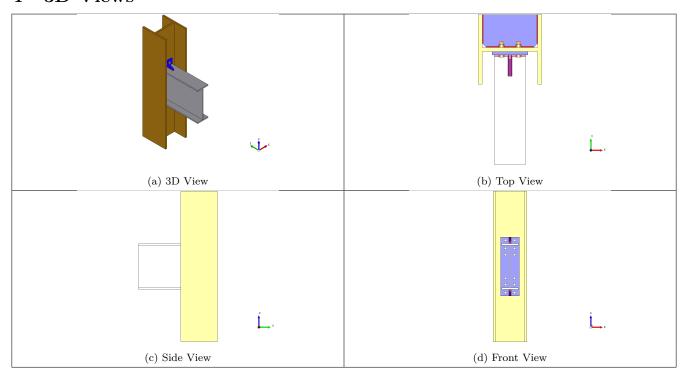



Figure 3: Typical Stiffener Details

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.3.2
Date	04 /02 /2021	Client	Mr. Yogesh D Pisal, Mumbai

4 3D Views

5 Design Log

2021-02-04 14:10:08 - Osdag - WARNING - The Load(s) defined is/are less than the minimum recommended value [Ref. IS 800:2007, Cl.10.7].

2021-02-04 14:10:08 - Osdag - WARNING - [Minimum Factored Load] The external factored bending moment (85.0 kNm) is less than 0.5 times the plastic moment capacity of the beam (470.45 kNm)

2021-02-04 14:10:08 - Osdag - INFO - The minimum factored bending moment should be at least 0.5 times the plastic moment capacity of the beam to qualify the connection as rigid connection (Annex. F-4.3.1, IS 800:2007)

2021-02-04 14:10:08 - Osdag - INFO - The value of load(s) is/are set at minimum recommended value as per Cl. 10.7 and Annex. F, IS 800:2007

2021-02-04 14:10:08 - Osdag - INFO - Designing the connection for a factored moment of $235.22~\mathrm{kNm}$

2021-02-04 14:10:08 - Osdag - WARNING - [End Plate] The end plate of 20.0 mm is thinner than the thickest of the elements being connected

 $2021-02-04\ 14:10:08-Osdag-INFO-Selecting\ a\ plate\ of\ higher\ thickness\ which\ is\ at\ least\ 24\ mm\ thickness\ which\ least\ 24\ mm\ thickness\ 24$

 $2021\text{-}02\text{-}04\ 14\text{:}10\text{:}08\text{-} \ \text{Osdag-INFO-[Bolt Design]} \ \text{Bolt diameter and grade combination ready to perform bolt design}$

2021-02-04 14:10:08 - Osdag - INFO - The solver has selected 1.0 combinations of bolt diameter and grade to perform optimum bolt design in an iterative manner

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.3.2
Date	04 /02 /2021	Client	Mr. Yogesh D Pisal, Mumbai

2021-02-04 14:10:08 - Osdag - INFO - [Optimisation] Performing the design by optimising the plate thickness, using the most optimum plate and a suitable bolt diameter approach

2021-02-04 14:10:08 - Osdag - INFO - If you wish to optimise the bolt diameter-grade combination, pass a higher value of plate thickness using the Input Dock

2021-02-04 14:10:08 - Osdag - INFO - [Flange Strength] The reaction at the compression flange of the beam 629.28 kN is less than the flange capacity 703.64 kN. The flange strength requirement is satisfied.

2021-02-04 14:10:08 - Osdag - INFO - [End Plate] The end plate of 20.0 mm passes the moment capacity check. The end plate is checked for yielding due tension caused by bending moment and prying force

2021-02-04 14:10:08 - Osdag - INFO - [Bolt Design] The bolt of 20.0 mm diameter and 8.8 grade passes the tension check

2021-02-04 14:10:08 - Osdag - INFO - Total tension demand on bolt (due to direct tension + prying action) is 98.24110433241786 kN and the bolt tension capacity is (146.41 kN)

2021-02-04 14:10:08 - Osdag - INFO - [Bolt Design] The bolt of 20.0 mm diameter and 8.8 grade passes the combined shear + tension check

2021-02-04 14:10:08 - Osdag - INFO - The Interaction Ratio (IR) of the critical bolt is 0.481

2021-02-04 14:10:08 - Osdag - INFO - : ======= Design Status =========

2021-02-04 14:10:08 - Osdag - INFO - : Overall beam to column end plate connection design is SAFE

2021-02-04 14:10:08 - Osdag - INFO - : ======= End Of Design =========