		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.1.2
Date	04 /02 /2021	Client	Dr. Harshvardhan Subbarao, Mumbai

1 Input Parameters

Main M	odule	Momen	t Connection	
Mod	ule	Beam-to-Column End Plate Connection		
Connec	tivity	Column Web-Beam Web		
End Plat	e Type	Flushed - R	eversible Moment	
Bending Mon	nent (kNm)			45.0
Shear For	ce (kN)			70.0
Axial For	ce (kN)			0.0
	Column Section	- Mechanical	Properties	
	Column Se	ction	UC 30	5 x 305 x 118
	Materia	l	E 250	(Fe 410 W)A
тҮ	Ultimate Strength	, Fu (MPa)		410
	Yield Strength,	Fy (MPa)		250
	Mass, $m (kg/m)$	117.9	$I_z \ (\mathrm{cm}^4)$	27672.0
4 t	Area, $A \ (\mathrm{cm}^2)$	150.2	$I_y(\text{cm}^4)$	9058.0
ZZ D	D (mm)	314.5	r_z (cm)	13.6
	B (mm)	307.4	r_y (cm)	7.77
B Y	t (mm)	12.0	$Z_z \ (\mathrm{cm}^3)$	1760.0
	T (mm)	18.7	$Z_y \ (\mathrm{cm}^3)$	589.0
	Flange Slope	90	Z_{pz} (cm ³)	1958.0
	$R_1 (\mathrm{mm})$	15.2	$Z_{py} \ (\mathrm{cm}^3)$	895.0
	$R_2 (mm)$	0.0		
	Beam Section -	Mechanical I	Properties	
	Beam Sec	tion	MB 300	
~	Materia	l	E 250 (Fe 410 W)A	
т	Ultimate Strength	, F_u (MPa)	410	
	Yield Strength,	F_y (MPa)	250	
	Mass, $m (kg/m)$	46.02	$I_z \ (\mathrm{cm}^4)$	8990.0
4 t	Area, $A \ (\mathrm{cm}^2)$	58.6	$I_y(\mathrm{cm}^4)$	486.0
ΖΖ Β	D (mm)	300.0	r_z (cm)	12.3
P	B (mm)	140.0	r_y (cm)	2.87
R ₂	<i>t</i> (mm)	7.7	$Z_z \ (\mathrm{cm}^3)$	599.0
- в	T (mm)	13.1	$Z_y \ (\mathrm{cm}^3)$	69.4
Y	Flange Slope	98	Z_{pz} (cm ³)	681.0

		Created with OSCAG®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.1.2
Date	04 /02 /2021	Client	Dr. Harshvardhan Subbarao, Mumbai

	$R_1 (mm)$	14.0	$Z_{py} \ (\mathrm{cm}^3)$	117.0
	$R_2 (mm)$	7.0		
	Plate Details - Inp	out and Desig	n Preference	
Thiskness	(mm)		[8, 10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40, 45,	
	(IIIII)		50, 56, 63, 75, 8	[0, 90, 100, 110, 120]
Mater	ial		E 250 (Fe 410 W)A
Ultimate Strengt	h, Fu (MPa)			410
Yield Strength	, Fy (MPa)			240
	Bolt Details - Inp	ut and Desig	n Preference	
Diameter	(mm)			[20]
Property	Class			[9.8]
Туре	9		Bearing Bolt	
Bolt Ter	ision		Non pre-tensioned	
Hole T	Hole Type			andard
Slip Factor, (μ_f)				0.3
Weld Details - Input and Desig			n Preference	
Type of Weld	Fabrication		Sho	op Weld
Material Grade Over	write, F_u (MPa)			435.0
Beam Flange to	o End Plate		Gro	ove Weld
Beam Web to	End Plate		Fill	et Weld
Stiffen	er		Fillet Weld	
Continuity Plate		Fillet Weld		
	Detailing - Design Prefe			
Edge Preparati	on Method		Rolled, machine-flar	ne cut, sawn and planed
Gap Between Me	embers (mm)			0.0
Are the Members Exposed	Are the Members Exposed to Corrosive Influences?			True

		Created with OSCAG®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.1.2
Date	04 /02 /2021	Client	Dr. Harshvardhan Subbarao, Mumbai

2 Design Checks

Design Status	Pass

2.1 Beam to Column - Compatibility Check

Check	Required	Provided	Remarks
Beam Section Compatibility	$B_{\text{req}} = B_b + 25$ = 140.0 + 25 = 165.0	$B_{available} = D_c - (2T_c) - (2R_{1c}) - 10$ = 314.5 - (2 × 18.7) - (2 × 15.2) - 10 = 236.7	Compatible

2.2 Member Capacity - Supported Section

Check	Required	Provided	Remarks
Shear Capacity (kN)		$V_{dy} = \frac{A_v f_y}{\sqrt{3}\gamma_{m0}}$ = $\frac{0.6 \times 273.8 \times 7.7 \times 250}{\sqrt{3} \times 1.1 \times 1000}$ = 165.98 [Ref. IS 800:2007, Cl.10.4.3]	Restricted to low shear
Plastic Moment Capacity (kNm)		$M_{d_z} = \frac{\beta_b Z_{p_z} f y}{\gamma_{m0}}$ = $\frac{1.0 \times 681000.0 \times 250}{1.1 \times 10^6}$ = 154.77 [Ref. IS 800:2007, Cl.8.2.1.2]	$\mathrm{V}~<~0.6$ Vdy

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.1.2
Date	04 /02 /2021	Client	Dr. Harshvardhan Subbarao, Mumbai

2.3 Member Capacity - Supporting Section

Check	Required	Provided	Remarks
Plastic Moment Capacity (kNm)		$M_{dz} = \frac{\beta_b Z_{pz} fy}{\gamma_{m0}}$ = $\frac{0.9 \times 1958000.0 \times 250}{1.1 \times 10^6}$ = 400.0 Note: The capacity of the section is not based on the beam-colum or column design. The actual capacity might vary. [Ref. IS 800:2007, Cl.8.2.1.2]	Semi- compact
Plastic Moment Capacity (kNm)		$\begin{split} M_{dy} &= \frac{\beta_b Z_{py} f y}{\gamma_{m0}} \\ &= \frac{0.66 \times 895000.0 \times 250}{1.1 \times 10^6} \\ &= 133.86 \end{split}$ Note: The capacity of the section is not based on the beam-colum or column design. The actual capacity might vary. [Ref. IS 800:2007, Cl.8.2.1.2]	Semi- compact

2.4 Load Consideration

Check	Required	Provided	Remarks
Axial Force (kN)		$P_x = 0.0$	OK

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.1.2
Date	04 /02 /2021	Client	Dr. Harshvardhan Subbarao, Mumbai

Check	Required	Provided	Remarks
		$V_{y_{\min}} = \min(0.15V_{d_y}, 40.0)$ = min(0.15 × 165.98, 40.0) = min(24.9, 40.0) = 24.9 $V_u = \max(V_u, V_{u_{\min}})$	
Shear Force (kN)	$V_y = 70.0$	but, $\leq V_{dy}$ = max(70.0, 24.9)	Pass
		= 70.0	
		[Ref. IS 800:2007, Cl.10.7]	
Bending Moment (major axis) (kNm)	M = 45.0	$M_{z\min} = 0.5M_{dz}$ = 0.5 × 154.77 = 77.39 $M_u = \max(M_z, M_{z\min})$ but, $\leq M_{dy}$ of the column section = max(45.0, 77.39) \leq 133.86 = 77.39	Pass
		[Ref. IS 800:2007, Cl.8.2.1.2]	
Effective Bending Moment (major axis) (kNm)		$M_{ue} = M_u + P_x \times \left(\frac{D}{2} - \frac{T}{2}\right) \times 10^{-3}$ $= 77.39 + 0.0 \times \left(\frac{300.0}{2} - \frac{13.1}{2}\right) \times 10^{-3}$ $= 77.39$	ОК

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.1.2
Date	04 /02 /2021	Client	Dr. Harshvardhan Subbarao, Mumbai

2.5 Bolt Optimization

Check	Required	Provided	Remarks
Diameter (mm)	Bolt Diameter Optimization	d = 20	Pass
Property Class	Bolt Property Class Optimization	9.8	Pass
Hole Diameter (mm)		$d_0 = 22.0$	OK
No. of Bolt Columns		$n_c = 2$	Pass
No. of Bolt Rows		$n_r = 2$	Pass
Total No. of Bolts		$n = n_r X n_c = 4$	Pass

2.6 Detailing

Check	Required	Provided	Remarks
	$p_{\min} = 2.5d$		
	$= 2.5 \times 20.0$		
Min. Pitch Distance (mm)	= 50.0	70	Pass
	[Ref. IS 800:2007, Cl.10.2.2]		
	$p_{\max} = \min(32t, \ 300)$		
	$= \min(32 \times 36.0, 300)$		
	$= \min(1152.0, 300)$		
Max Pitch Distance (mm)	= 300	70	Doce
Max. Fitch Distance (mm)		10	1 455
	Where, $t = \min(36.0, 36.0)$		
	[Ref. IS 800:2007, Cl.10.2.3]		
	$e_{\min} = 1.5d_0$		
	$= 1.5 \times 22.0$		
Min. End Distance (mm)	= 33.0	35	Pass
	[Ref. IS 800:2007, Cl.10.2.4.2]		

		Created with OSCAG®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.1.2
Date	04 /02 /2021	Client	Dr. Harshvardhan Subbarao, Mumbai

Check	Required	Provided	Remarks
Max. End Distance (mm)	$e_{\text{max}} = 40 + 4t$ Where, $t = \min(36.0, 36.0)$ $= 40 + (4 \times 36)$ $e_{\text{max}} = 184.0$ [Ref. IS 800:2007, Cl.10.2.4.3]	35	Pass
Min. Edge Distance (mm)	$e'_{\min} = 1.5d_0$ = 1.5 × 22.0 = 33.0 [Ref. IS 800:2007, Cl.10.2.4.2]	35	Pass
Max. Edge Distance (mm)	$e'_{\text{max}} = 40 + 4t$ Where, $t = \min(36.0, 36.0)$ $= 40 + (4 \times 36)$ $e'_{\text{max}} = 184.0$ [Ref. IS 800:2007, Cl.10.2.4.3]	35	Pass
Cross-centre Gauge Dis- tance (mm)		92	Pass

2.7 Critical Bolt Design

Check	Required	Provided	Remarks
Shear Capacity (kN)		$V_{dsb} = \frac{f_{ub}n_n A_{nb}}{\sqrt{3}\gamma_{mb}}$ = $\frac{900.0 \times 1 \times 245}{1000 \times \sqrt{3} \times 1.25}$ = 101.84 [Ref. IS 800:2007, Cl.10.3.3]	ОК

		Created with OSCAG®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.1.2
Date	04 /02 /2021	Client	Dr. Harshvardhan Subbarao, Mumbai

Check	Required	Provided	Remarks
		$k_b = \min\left(\frac{e}{3d_0}, \frac{p}{3d_0} - 0.25, \frac{f_{ub}}{f_u}, 1.0\right)$	
		$= \min\left(\frac{35}{3\times22.0}, \ \frac{70}{3\times22.0} - 0.25, \ \frac{900.0}{410}, \ 1.0\right)$	
Kb		$= \min(0.53, 0.81, 2.2, 1.0)$	OK
		= 0.53	
		[Ref. IS 800:2007, Cl.10.3.4]	
		$V_{\rm dpb} = \frac{2.5k_b dt f_u}{\gamma_{mb}}$	
		$=\frac{2.5\times0.53\times20.0\times36.0\times410}{}$	
Bearing Capacity		1000×1.25	ОК
(kN)		= 312.91	
		[Ref. IS 800:2007, Cl.10.3.4]	
		$V_{\rm db} = \min (V_{\rm dsb}, V_{\rm dpb})$	
		$= \min (101.84, 312.91)$	
Bolt Capacity (kN)		= 101.84	
		[Ref. IS 800:2007, Cl.10.3.2]	
		$l_g = \sum \left(t_p + t_{\text{member}} \right)$	
		$=\sum$ (36.0 + 12.0)	
		= 48.0 mm	
		$5d = 5 \times 20.0 = 100.0$	
Large Grip Length		$8d = 8 \times 20.0 = 160.0$	Pass
Reduction Factor			
		Since, $l_g < 5d$	
		$\beta_{lg} = 1.0$	
		$[Ref. \ IS \ 800: 2007, \ Cl. \ 10.3.3.2]$	

		Created with OSDAG®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.1.2
Date	04 /02 /2021	Client	Dr. Harshvardhan Subbarao, Mumbai

Check	Required	Provided	Remarks
		$V_{\rm db} = V_{\rm db} \beta_{lg}$	
		$= 101.84 \times 1.0$	
Bolt Capacity		= 101.84	ОК
(post reduction			
factor) (KIN)		$[Ref.\ IS\ 800:2007,\ Cl.\ 10.3.3.2]$	
	$V_{sb} = \frac{V_u}{n}$		
Shear Demand (per	$=\frac{70.0}{100}$	$V_{db} = 101.84$	Pass
bolt) (kN)	4		
	= 17.5 r = [245, 35, 41, 55]		
	7 – [240.00, 41.00]		
	Note: r_1 is the first row incide tension / top flange		
	ro is the first row inside compression/hottom flange		
	Further row(s) are added in a symmetrical manner		
	with odd rows placed near the tension/top flange		
	and even row placed near the compression/bottom		
Lever Arm (mm)	flange respectively		Pass
	nungo rospoortery.		
	Note: The lever arm is computed by considering		
	the N.A at the centre of the bottom flange.		
	Rows with identical lever arm values		
	mean they are considered acting as bolt		
	group near the tension or compression flange.		
	$T_1 = \frac{M_{ue}}{(m_{ue})^2}$		
	$n_c \times \left(r_1 + \sum_{i=1}^{r_i} \frac{r_i^2}{r_i}\right)$		
	$\left(\begin{array}{c} \sum_{i=2}^{n} r_{1} \right)$		
	$=\frac{77.39 \times 10^3}{(2000)^2}$		
Tension Due to Moment (kN)	$2 \times \left(245.35 + \sum_{i=1}^{n} \frac{r_i^2}{245.25}\right)$		
	$\left(\begin{array}{c} \sum_{i=2}^{2} 243.53 \right)$		ОК
	= 153.32		
	Note: T_1 is the tension in the critical bolt.		
	The critical bolt is the bolt nearest		
	to the tension flange.		

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.1.2
Date	04 /02 /2021	Client	Dr. Harshvardhan Subbarao, Mumbai

Check	Required	Provided	Remarks
Check	Required $Q = \frac{l_v}{2l_e} \left[T_e - \frac{\beta \eta f_o b_e t^4}{27 l_e l_v^2} \right]$ $l_v = e - \frac{R_1}{2}$ $= 35 - \frac{14.0}{2} = 28.0 \text{ mm}$ $f_o = 0.7 f_{ub}$ $= 0.7 \times 900.0$ $= 630.0 \text{ N/mm}^2$ $l_e = \min\left(e, 1.1t \sqrt{\frac{\beta f_o}{f_y}}\right)$ $= \min\left(35, 1.1 \times 36 \times \sqrt{\frac{2 \times 630.0}{240}}\right)$ $= \min(35, 90.73) = 35 \text{ mm}$ $\beta = 2 \text{ (non pre-tensioned bolt)}$ $\eta = 1.5$ $b_e = \frac{B}{n_c}$ $= \frac{140.0}{2} = 70.0 \text{ mm}$ $Q = \frac{28.0}{2 \times 35} \times \left[153.32 - \left(\frac{2 \times 1.5 \times 630.0 \times 70.0 \times 36^4}{27 \times 35 \times 28.0^2}\right) \times 1 \right]$ $Q = 0.0$ Note : The end plate is sufficiently thick to	Provided ↓	Remarks OK
	[Ref. IS 800:2007, Cl.10.4.7]		

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.1.2
Date	04 /02 /2021	Client	Dr. Harshvardhan Subbarao, Mumbai

Check	Required	Provided	Remarks
Tension Demand (kN)	$T_b = T_1 + Q$ = 153.32 + 0.0 = 153.32	$T_{db} = 0.90 f_{ub} A_n / \gamma_{mb}$ $< f_{yb} A_{sb} (\gamma_{mb} / \gamma_{m0})$ $= \min \left(0.90 \times 900.0 \times 245 / 1.25, 720.0 \times 314.0 \times (1.25/1.1) \right)$ $= \min(158.76, 256.91)$ $= 158.76$ [Ref. IS 800:2007, Cl.10.3.5]	Pass
Combined Capac- ity (I.R.)	≤ 1	$\left(\frac{V_{sb}}{V_{db}}\right)^2 + \left(\frac{T_b}{T_{db}}\right)^2 \le 1.0$ $\left(\frac{17.5}{101.84}\right)^2 + \left(\frac{153.32}{158.76}\right)^2 = 0.96$ [Ref. IS 800:2007, Cl.10.3.6]	Pass

2.8 Compression Flange Check

Check	Required	Provided	Remarks
Tension in Bolt Rows (kN)		T = [153.32, 25.96]	ОК
Reaction at Compression Flange (kN)	$R_c = n_c \sum_{n_r=1}^{n_r} T_{n_r}$ $= 2 \times \sum_{n_r=1}^{2} T_{n_r}$ $= 2 \times 179.28$ $= 358.56$	$F_{c} = A_{g} f_{y} / \gamma_{m0}$ = $\frac{BT f_{y}}{\gamma_{m0}}$ = $\frac{140.0 \times 13.1 \times 250}{1.1 \times 1000}$ = 416.82	Pass

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.1.2
Date	04 /02 /2021	Client	Dr. Harshvardhan Subbarao, Mumbai

2.9 End Plate Checks

Check	Required	Provided	Remarks
		$H_p = D + 25$	
Height (mm)		= 300.0 + 25	Pass
		= 325.0	
		$B_p = B + 25$	
Width (mm)		= 140.0 + 25	Pass
		= 165.0	
		$M_{cr} = T_1 \ l_v - Q \ l_e$	
		$= (153.32 \times 28.0 - 0.0 \times 35) \times 10^{-3}$	
Manuart at Oritical Castion		= 4.29	OV
(kNm)			UK
		Note: The critical section is at the toe of the weld or	
		the edge of the flange from bolt center-line	
	$t_p = \sqrt{\frac{4M_{cr}}{b_e(f_y/\gamma_{m0})}}$		
Plate Thickness (mm)	$= \sqrt{\frac{4 \times 4.29 \times 10^6}{70 \times (240/1.1)}}$	36	Pass
	= 33.53		
		$M_p = \left(\frac{b_e t_p^2}{4}\right) \times \frac{f_y}{\gamma_{m0}}$	
Moment Capacity (kNm)	4.29	$= \frac{70 \times 36^2}{4} \times \frac{240}{1.1} \times 10^{-6}$	Pass
		= 4.95	

2.10 Longitudinal Stiffener Design

Check	Required	Provided	Remarks
		$W_{st} = B_p - \frac{t}{2}$	
Width (mm)		$= 165.0 - \frac{7.7}{2}$	78.65
		= 78.65	
		$L_{\rm st} = 2W_{st}$	
Length (mm)		$= 2 \times 78.65$	Pass
		= 157.3	
Thickness (mm)	t = 7.7	$t_{st} = 8$	Pass

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.1.2
Date	04 /02 /2021	Client	Dr. Harshvardhan Subbarao, Mumbai

Check	Required	Provided	Remarks
Weld Size (mm)	8	$t_w = 8$	Pass

2.11 Weld Design - Beam Web to End Plate Connection

Check	Required	Provided	Remarks
Weld Strength (N/mm2)	$f_{u_w} = \min(f_w, f_u)$ = min(435.0, 410) [Ref. IS 800:2007, Cl.10.5.7.1.1]	$f_{u_w} = 410$	Pass
Total Weld Length (mm)		$L_w = 2 \times [D - (2 \times T) - (2 \times R1) - 20]$ = 2 × [300.0 - (2 × 13.1) - (2 × 14.0) - 20] = 443.9 Note: Weld is provided on both sides of the web	ОК
Weld Size (mm)	$t_w = \frac{V_u}{f_{uw}kL_w} \times \sqrt{3} \ \gamma_{mw}$ = $\frac{70.0 \times 10^3}{410 \times 0.7 \times 443.9} \times \sqrt{3} \times 1.25$ = 1.19 [Ref. IS 800:2007, Cl.10.5.7]	8	Pass

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.1.2
Date	04 /02 /2021	Client	Dr. Harshvardhan Subbarao, Mumbai

Check	Required	Provided	Remarks
	1) $t_{w\min}$ - based on thickness of the		
	thicker part		
	$t_{\rm thicker} = \max(36.0, 7.7)$		
	= 36.0		
	$t_{w\min} = 7.7$		
		$t_w = \max(t_w, \ t_{w\min})$	
Min. Weld Size (mm)	2) $t_{w\min}$ - based on thickness of the	$= \max(1.19, 7.7)$	Pass
	thinner part	= 8	
	$t_{\rm thinner} = \min(36.0, 7.7)$		
	= 7.7		
	$t_{w\min} \leq \min(7.7, 7.7)$		
	[Ref. IS 800:2007, Table 21, Cl	10.5.2.3]	
	$t_{w\max}$ based on thickness of the		
	thinner part		
Max Wold Size (mm)	$t_{\rm thinner} = \min(36.0, 7.7)$	$t_w \leq t_{w\max}$	Fail
Max. Weld Size (IIIII)	= 7.7	$8 \leq 7.7$	Faii
	$t_{w\max} = 7.7$		
	[Ref. IS 800:2007, Cl.10.5.3.1]		

2.12 Continuity Plate Design

Check	Required	Provided	Remarks
Notch Size (mm)		n = 24	ОК

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.1.2
Date	04 /02 /2021	Client	Dr. Harshvardhan Subbarao, Mumbai

Check	Required	Provided	Remarks
Length (mm)		$l_{cp1} = \text{Outer length}$ $l_{cp1} = D_c - 2T_c$ $= 314.5 - (2 \times 18.7)$ $= 277.1$ $l_{cp2} = \text{Inner length}$ $l_{cp2} = D_c - 2(T_c + n)$ $= 314.5 - [2 \times (18.7 + 24)]$ $= 229.1$	ОК
Width (mm)		$w_{cp} = \frac{B_c - T_c - 2n}{2}$ $= \frac{307.4 - 12.0 - 2 \times 24}{2}$ $= 123.0$	ОК
Thickness (mm)	tc = 12.0	12	Pass

2.13 Weld Design - Continuity Plate

Check	Required	Provided	Remarks
Weld Strength (N/mm2)	$f_{uw} = \min(f_w, f_{u_{cp}})$ = min(435.0, 410) [Ref. IS 800 : 2007, Cl. 10.5.7.1.1]	$f_{u_w} = 410$	Pass
Total (effective) Weld Length (mm)		$L_{wcp} = 217.1$ Note: Provide weld on one side of the continuity plate	OK
Weld Size (mm)	5	6	Pass

		Created with OSdag®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.1.2
Date	04 /02 /2021	Client	Dr. Harshvardhan Subbarao, Mumbai

Check	Required	Provided	Remarks
	1) $t_{w\min}$ - based on thickness of the		
	thicker part		
	$t_{\rm thicker} = \max(12, 12.0)$		
	= 12		
	$t_{w\min} = 5$		
		$t_w = \max(t_w, \ t_{w\min})$	
Min. Weld Size (mm)	2) $t_{w\min}$ - based on thickness of the	$= \max(6, 5)$	Pass
	thinner part	= 6	
	$t_{\rm thinner} = \min(12, 12.0)$		
	= 12		
	$t_{w\min} \leq \min(5, 12)$		
	[Ref. IS 800:2007, Table 21, Cl 10.5.2.3	8]	
	$t_{w\max}$ based on thickness of the		
	thinner part		
Max Weld Size (mm)	$t_{\rm thinner} = \min(12, 12.0)$	$t_w \le t_{w\max}$	Pass
Max. Weld Size (mm)	= 12	$6 \leq 12$	1 455
	$t_{w\max} = 12$		
	[Ref. IS 800:2007, Cl.10.5.3.1]		

		Created with OSdag [®]	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.1.2
Date	04 /02 /2021	Client	Dr. Harshvardhan Subbarao, Mumbai

Figure 1: Typical Weld Details -- Beam to End Plate Connection

3 2D Drawings (Typical)

		Created with OSCAG [®]	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.1.2
Date	04 /02 /2021	Client	Dr. Harshvardhan Subbarao, Mumbai

Figure 2: Typical Detailing

		Created with OSCAG®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.1.2
Date	04 /02 /2021	Client	Dr. Harshvardhan Subbarao, Mumbai

Figure 3: Typical Stiffener Details

		Created with OSCAG®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.1.2
Date	04 /02 /2021	Client	Dr. Harshvardhan Subbarao, Mumbai

4 3D Views

5 Design Log

2021-02-04 13:56:26 - Osdag - WARNING - The Load(s) defined is/are less than the minimum recommended value [Ref. IS 800:2007, Cl.10.7].

2021-02-04 13:56:26 - Osdag - WARNING - [Minimum Factored Load] The external factored bending moment (45.0 kNm) is less than 0.5 times the plastic moment capacity of the beam (154.77 kNm)

2021-02-04 13:56:26 - Osdag - INFO - The minimum factored bending moment should be at least 0.5 times the plastic moment capacity of the beam to qualify the connection as rigid connection (Annex. F-4.3.1, IS 800:2007)

2021-02-04 13:56:26 - Osdag - INFO - The value of load(s) is/are set at minimum recommended value as per Cl.10.7 and Annex. F, IS 800:2007

2021-02-0413:56:26 - Osdag - INFO - Designing the connection for a factored moment of 77.39 kNm

2021-02-04 13:56:26 - Osdag - WARNING - [End Plate] The end plate of 8.0 mm is thinner than the thickest of the elements being connected

2021-02-04 13:56:26 - Osdag - INFO - Selecting a plate of higher thickness which is at least 13 mm thick

2021-02-04 13:56:26 - Osdag - WARNING - [End Plate] The end plate of 10.0 mm is thinner than the thickest of the elements being connected

2021-02-0413:56:26 - Osdag - INFO - Selecting a plate of higher thickness which is at least 13 mm thick

		Created with OSCAG®	
Company Name	IIT Bombay	Project Title	Moment Connection
Group/Team Name	Osdag	Subtitle	Beam-to-Column End Plate
Designer	Engineer#1	Job Number	1.2.2.1.2.1.2
Date	04 /02 /2021	Client	Dr. Harshvardhan Subbarao, Mumbai

2021-02-04 13:56:26 - Osdag - WARNING - [End Plate] The end plate of 12.0 mm is thinner than the thickest of the elements being connected

2021-02-04 13:56:26 - Osdag - INFO - Selecting a plate of higher thickness which is at least 13 mm thick

2021-02-04 13:56:26 - Osdag - INFO - [Bolt Design] Bolt diameter and grade combination ready to perform bolt design

2021-02-04 13:56:26 - Osdag - INFO - The solver has selected 1.0 combinations of bolt diameter and grade to perform optimum bolt design in an iterative manner

2021-02-04 13:56:26 - Osdag - INFO - [Optimisation] Performing the design by optimising the plate thickness, using the most optimum plate and a suitable bolt diameter approach

2021-02-04 13:56:26 - Osdag - INFO - If you wish to optimise the bolt diameter-grade combination, pass a higher value of plate thickness using the Input Dock

2021-02-04 13:56:26 - Osdag - INFO - [Flange Strength] The reaction at the compression flange of the beam 358.56 kN is less than the flange capacity 416.82 kN. The flange strength requirement is satisfied.

2021-02-04 13:56:26 - Osdag - INFO - [End Plate] The end plate of 36.0 mm passes the moment capacity check. The end plate is checked for yielding due tension caused by bending moment and prying force

2021-02-04 13:56:26 - Osdag - INFO - [Bolt Design] The bolt of 20.0 mm diameter and 9.8 grade passes the tension check

2021-02-04 13:56:26 - Osdag - INFO - Total tension demand on bolt (due to direct tension + prying action) is 153.31644812248757 kN and the bolt tension capacity is (158.76 kN)

2021-02-04 13:56:26 - Osdag - INFO - [Bolt Design] The bolt of 20.0 mm diameter and 9.8 grade passes the combined shear + tension check

2021-02-04 13:56:26 - Osdag - INFO - The Interaction Ratio (IR) of the critical bolt is 0.962

2021-02-04 13:56:26 - Osdag - INFO - : Overall beam to column end plate connection design is ${\rm SAFE}$

2021-02-04 13:56:26 - Osdag - INFO - : ======= End Of Design ==========