
Winter Fellowship Report

On

Web Based CAD Model Converter and Renderer

Submitted by

Aditya Mavle

Under the guidance of

Prof. Sidhartha Ghosh

Civil Engineering Department

IIT Bombay

Under the mentorship of

Danish Ansari Nagesh Karmali
Software Engineer Senior Manager(Research)
Osdag,FOSSEE Department of Computer Science Engineering
IIT Bombay IIT Bombay

August 17, 2023

Acknowledgment

I would like to express my deep and sincere gratitude to my guide Prof. Siddhartha Ghosh who has
provided all the required resources for the successful completion of this internship. I thank Mr.
Danish Ansari and Mr. Nagesh Karmali for offering me valuable suggestions throughout the
internship. They have provided valuable mentorship and a sense of direction throughout. Without
their patient instruction, insightful criticism and expert guidance, the completion of this report
would not have been possible.

I am also thankful to everyone at FOSSEE who was involved in the selection process based on the
screening tasks, for providing me a platform to work on and an opportunity to be a part of the team
which promotes open-source software.

1

Contents

1 Introduction 4
1.1 FOSSEE Internship . 4
1.2 What is Osdag . 4
1.3 What is Osdag on Web . 4
1.4 Who can use Osdag? . 4

2 Building the WebGL Based CAD Model Renderer 6
2.1 Need of modifying Osdag’s Graphics/CAD stack . 6
2.2 Components of the WebGL Canvas and ThreeJS Scene 7
2.3 Final Features of CAD Model Renderer and Scene Results 8

2.3.1 Default Isometric View and Centre Alignment 8
2.3.2 Model Pan,Zoom and Rotation Controls . 9
2.3.3 Model Material and Texture Properties . 9
2.3.4 Multiple Models single scene supported . 9

2.4 Integration with Frontend . 11
2.4.1 Framework Choice . 11
2.4.2 Integration Implementation . 11

2.5 Future Updates to Renderer . 13

3 Implementation of CAD File Converter 14
3.1 Need of CAD Format conversion . 14
3.2 Choice of Framework:FreeCAD . 14
3.3 FreeCAD Macros:Implementation of CAD Converter 15
3.4 Back-end Integration of the CAD Process:CAD Model API 16

4 References 17

5 Appendix 18
5.1 Code Samples . 18

2

List of Figures

2.1 Initial Scene Render of a Beam-Beam Splice Bolted Connection 8
2.2 Snippet of setting up View and Camera conigurations. 9
2.3 Model Material and Texture Metadata . 10
2.4 Multiple models in the same scene . 10
2.5 ThreeJS canvas integrated with frontend . 12
2.6 Code snippet of Canvas integration . 12

3.1 CAD Render and Converter Flow . 16

3

Chapter 1

Introduction

1.1 FOSSEE Internship

Osdag internship is provided under the FOSSEE project. FOSSEE project promotes the use of FOSS
(Free/Libre and Open-Source Software) tools to improve the quality of education in our country.
FOSSEE encourages the use of FOSS tools through various activities to ensure the availability of
competent free software equivalent to commercial (paid) software. The FOSSEE project is a part
of the National Mission on Education through Information and Communication Technology (ICT),
Ministry of Education, Government of India. Osdag is one such open-source software that comes under
the FOSSEE project. Osdag internship is provided through the FOSSEE project. Any UG/PG/Ph.D.
holder can apply for this internship. And the selection will be based on a screening task.

1.2 What is Osdag

Osdag is Free/Libre and Open-Source Software being developed for the design of steel structures fol-
lowing IS 800:2007 and other relevant design codes. OSDAG helps users in designing steel connections,
members and systems using interactive Graphical User Interface (GUI). The source code is written in
Python, 3D CAD images are developed using PythonOCC. GitHub is used to ensure smooth workflow
between different modules and team members. It is in a path where people from around the world
would be able to contribute to its development. FOSSEE’s “Share alike” policy would improve the
standard of the software when the source code is further modified based on the industrial and edu-
cational needs across the country. Design and Detailing Checklist (DDCL) for different connections,
members and structure designs is one of the main products of this project. It would create a repos-
itory and design guidebook for steel construction based on Indian Standard codes and best industry
practices

1.3 What is Osdag on Web

Osdag on Web is the web version of Osdag currently under development.It will feature all the function-
alities of Osdag and the user would be able to use it without any necessary software installation.The
web source code is written in, additional to the initial stack,Django-REST framework for backend and
APIs,ReactJs for the frontend and ThreeJS/React-Three-Fiber for the rendering of CAD models on
the Web.

1.4 Who can use Osdag?

Osdag is primarily created for use in academia for students and teachers but industry professionals
also find it useful. As Osdag is currently funded by MHRD, the Osdag team is developing software
in such a way that it can be used by the students during their academics and to give them a better
insight look in the subject. Osdag can be used by anyone starting from novice to professionals. Its

4

simple user interface makes it flexible and attractive than other software. Video tutorials are available
to help get started. The video tutorials of Osdag can be accessed here.

• The video tutorials of OSDAG can be easily accessed from
https://osdag.fossee.in/resources/videos or YouTube.

• The sample design problems for different modules can be viewed from
https://osdag.fossee.in/resources/sample-design

• One can view the user tools used for the development of OSDAG from
https://osdag.fossee.in/resources/user-tools

• OSDAG can be downloaded from
https://osdag.fossee.in/resources/downloads

• OSDAG on Web codebase(develop branch)
https://github.com/osdag-admin/Osdag-web/tree/develop

5

https://osdag.fossee.in/resources/videos
https://osdag.fossee.in/resources/sample-design
https://osdag.fossee.in/resources/user-tools
https://osdag.fossee.in/resources/downloads
https://github.com/osdag-admin/Osdag-web/tree/develop

Chapter 2

Building the WebGL Based CAD
Model Renderer

2.1 Need of modifying Osdag’s Graphics/CAD stack

• Since in the Osdag desktop app, the graphics and CAD rendering is handled by the Python-
Open Cascade (OCC) library,we needed a more viable and lightweight alternative to it, so that
Osdag’s structural models could be rendered on Web.

• Rendering 3D models on the Web also requires WebGL compatibility ,which is a JavaScript API
for rendering interactive 2D and 3D graphics.

• Hence we used ThreeJS, which is a cross-browser JavaScript library and application programming
interface used to create and display animated 3D computer graphics in a web browser using
WebGL.

• Using the core logic and model file generation capabilities of the Python-OCC code to generate
model files, there was also a need to implement a CAD file converter that would convert the
CAD file from the original OCC-generated formats of

1. BREP (Boundary Representation)

2. STEP (Standard for the Exchange of Product Data)

3. IGES (Initial Graphics Exchange Specification)

to file formats compatible with ThreeJS’s model loaders like:

1. OBJ (Wavefront OBJect)

2. GLTF (GL Transmission Format).

• The CAD file converter was implemented using FreeCAD, which is a general-purpose parametric
3D CAD modeler.It is a freeware software which supports the functionalities of writing code
macros in it,which enables us to perform various operations on CAD models and files.The CAD
Converter will be further explored in Chapter 3.

6

2.2 Components of the WebGL Canvas and ThreeJS Scene

A Three.js scene is a container that holds all the elements required to create and display a 3D world.
It serves as the stage where 3D objects, cameras, lights, and other components are placed and inter-
act.Three.js is an object-oriented library.This means that components of a scene are represented as
instances of specific classes, and these classes have methods and properties that define their behav-
ior and characteristics.The objects of these classes have to be instantiated according to the desired
characteristics of the scene components.The main components of our ThreeJS scene were:

• Scene: The heart of the 3D environment, the scene is initiated using new THREE.Scene(). This
serves as a digital container for all 3D entities within a design. The scene elegantly gathers
together a design’s intricacies, from objects to lighting, providing a unified canvas for the 3D
representation.

• Model Loader: A pivotal tool, model loaders like the OBJLoader and GLTFLoader are instru-
mental in the incorporation of 3D assets from external modeling software into a Three.js scene.
These loaders allow the seamless import of intricate 3D elements, ranging from complex objects
to intricate characters and expansive scenes. The OBJLoader and GLTFLoader facilitate the
translation of these assets into a format that the Three.js engine can seamlessly render and
display.

• Camera: The camera dictates the viewpoint or perspective from which the entire scene is ob-
served. In our use case, the Perspective Camera was initially embraced. This camera mimics
the human eye’s perception, enhancing the realism of the visual experience. Subsequently, the
Orthographic Camera was employed, strategically enabling the representation of various isomet-
ric views for objects within the scene. The camera, in essence, is the ”eye” through which users
perceive the 3D world.

• Renderer: Acting as the translator between 3D models and the pixels displayed on a web page,
the renderer is an indispensable component. It harnesses the power of WebGL to take the
abstract 3D scene and translate it into a coherent visual. This process involves converting
intricate geometry and lighting into tangible pixels, effectively materializing the 3D design for
the viewer.

• Lights: Illumination is a cornerstone of any visual representation, and in the realm of 3D, lights
play a pivotal role. In our context, the AmbientLight class instance was employed to emulate
the global illumination effect, granting a consistent level of brightness to the entire scene. These
lights contribute significantly to the visual ambiance and enhance the depth and realism of the
rendered objects.

• Materials: Materials go beyond the mere geometry of 3D objects; they define how these objects
appear to the viewer. Inclusive of parameters such as color, texture, metalness, transparency,
and shininess, materials are the visual essence of a model. Our approach involved creating
generic material parameters that could be tailored to the specifics of different steel structures.
This practice ensured each type of structure within a scene could be uniquely identifiable, thus
enhancing the clarity and comprehensibility of the rendered design

A WebGL canvas is an HTML5 element used to display WebGL graphics on a web page. It provides a
drawing surface where WebGL, a powerful graphics technology, can render both 2D and intricate 3D
graphics with hardware acceleration. This canvas acts as a viewport for visualizing interactive and dy-
namic content, making it a core component for creating immersive visual experiences directly within a
web browser. When utilizing the Three.js library,the management and creation of the WebGL canvas
are often facilitated by the Three.js renderer. This renderer streamlines the integration of WebGL’s
capabilities, offering us an efficient way to translate complex 3D Model scenes into captivating visuals
without delving into low-level graphics programming intricacies. This amalgamation of HTML5, We-
bGL, and Three.js empowers web applications to deliver interactive and visually compelling renditions
of 3D structures across a wide range of devices, enhancing user engagement and fostering creativity.

7

Figure 2.1: Initial Scene Render of a Beam-Beam Splice Bolted Connection

2.3 Final Features of CAD Model Renderer and Scene Results

2.3.1 Default Isometric View and Centre Alignment

• The initial rendition employed an instance of THREE.PerspectiveCamera, which simulated real-
world perspective by making objects farther away appear smaller than those closer to the camera.
This effect introduced a sense of depth within the 3D scene, contributing to its realism.

• However, this approach led to an inconsistency in the apparent lengths and dimensions of struc-
tural edges, particularly when the model was panned or viewed from different angles. This
inconsistency compromised the accurate representation of the model’s spatial relationships.

• Additionally, the initial rendition positioned the model in a manner that wasn’t centered around
its global coordinates. This contributed to challenges in maintaining a coherent spatial reference
point and could potentially lead to confusion when interpreting the model.

• To address these limitations, the decision was made to adopt the isometric view as the default
for rendering CAD models. The isometric view, achieved using a THREE.OrthographicCamera
instance, ensures equal foreshortening along all three axes. This results in a clear, undistorted
representation where objects retain their proportional relationships, aiding in accurate measure-
ment and interpretation.

• Implementing the isometric view involved configuring a THREE.OrthographicCamera instance
to replace the previously used THREE.PerspectiveCamera. This switch enhanced the consis-
tency of edge lengths and dimensions throughout the model, promoting a more accurate depiction
of the design.

• In addition to the camera adjustment, the model itself was aligned precisely with the axes.
This alignment was achieved by utilizing a THREE.Group() instance, which allowed for the
precise manipulation of the model’s positioning and orientation. This step ensured that the
model’s inherent geometry aligned seamlessly with the coordinate system, facilitating accurate
visualization and analysis.

8

• The final implementation code is referenced in the appendix [1]

Figure 2.2: Snippet of setting up View and Camera conigurations.

2.3.2 Model Pan,Zoom and Rotation Controls

• The CAD renderer incorporates comprehensive zoom, pan, and orbit controls that allow inter-
active manipulation of the models within the scene, enhancing the user’s ability to explore and
analyze the design from various perspectives.

• Among these controls, the orbit control functionality enables the user to smoothly rotate the
view around a central point, providing a dynamic and immersive experience.

• Presently, the implementation of the orbit control feature involves utilizing an instance of
THREE.OrbitControls(), a specialized control provided by Three.js. This control empowers
users to intuitively navigate the model by dragging the cursor or touch gestures, making the
visualisation process interactive and engaging.

• By integrating these controls, the CAD renderer offers a user-friendly interface that goes beyond
static visuals, enabling users to actively engage with and understand the intricacies of the 3D
models. This interactive capability proves invaluable for design analysis and evaluation.

2.3.3 Model Material and Texture Properties

• For the model material representation after experimentation with different materials in ThreeJS,I
proceeded finally with THREE.MeshPhysicalMaterial.

• MeshPhysicalMaterial is a material type in Three.js that simulates real-world physically-based
rendering (PBR) properties, making it suitable for rendering realistic surfaces like metals and
plastics. It takes into account parameters such as color, metalness, roughness, transparency,
and clearcoat, allowing for accurate representation of complex materials with advanced shading
effects.

2.3.4 Multiple Models single scene supported

• The CAD renderer showcases versatility by supporting the simultaneous rendering of multiple
models within a shared scene. This capability is crucial for scenarios involving complex assem-
blies or designs that consist of multiple interconnected components.

9

Figure 2.3: Model Material and Texture Metadata

• Each model is meticulously positioned and visualized around its own global coordinates. This
fidelity to the original geometry ensures that the visual representation remains consistent with
the way these models were created using the Python-OCC backend.

• This capability not only serves the purpose of accurate visualization but also has practical
applications. For instance, it allows for the representation of intricate steel structures where
individual components are distinguished by distinct colors. Each color assigned to a substructure
can correspond to a specific section of the larger steel assembly.

• This approach enhances the clarity of representation and facilitates efficient communication of
design concepts. By enabling the clear identification of different parts within a complex whole,
this feature aids in comprehension, assessment, and collaborative discussions, particularly for
large and intricate structures. The rendered models collectively provide a comprehensive visual
narrative of the assembly’s composition and arrangement.

Figure 2.4: Multiple models in the same scene

10

2.4 Integration with Frontend

2.4.1 Framework Choice

The integration of the CAD Model Viewer with the frontend requires the ThreeJS scene of our CAD
model to be embedded in a ReactJS View.

In order to facilitate this the ThreeJS canvas was integrated with the React view using a framework
called React-Three-Fiber which is a React renderer for ThreeJS.
The reasons for using the above framework were

• Beyond mere compatibility, React Three Fiber introduces a declarative syntax that enables
the description of complex 3D environments as React components. This high-level approach
provides developers with a more intuitive and readable means of constructing and managing
intricate scenes, fostering an environment where 3D graphics are authored with the same clarity
as traditional user interfaces.

• An exceptional feature of React Three Fiber is its adept use of React’s hooks. By employing
hooks such as useState and useEffect, developers can effortlessly manage state and handle side
effects within 3D components. This integration significantly simplifies the process of incorpo-
rating dynamic behaviors and interactive features into 3D scenes, enhancing their richness and
interactivity.

• Furthermore, React Three Fiber’s integration capitalizes on React’s well-established ecosystem.
This synergy empowers developers to harness React’s core principles of component reusability,
efficient updates, and performance optimization. By applying React’s familiar development
patterns to 3D graphics, the learning curve for crafting immersive environments is lowered, and
best practices for web development naturally extend to the 3D realm.

• The utilization of React Three Fiber resonates particularly well with the broader React commu-
nity. Developers already versed in React’s principles can swiftly transfer their skills to crafting
3D experiences, minimizing the complexity of adopting a new technology stack. This trans-
lates into a more streamlined development process and ensures a more consistent and cohesive
experience for users interacting with both 3D and traditional UI elements.

2.4.2 Integration Implementation

• The main operating page of Osdag on the web, which serves as the central hub for user in-
teraction, is thoughtfully structured using a collection of div classes. Each of these div classes
encapsulates specific components, such as Input Values, the CAD Model Renderer, the Output
Dock, and other relevant parameters, ensuring a modular and organized layout for the user
interface.

• A div class, functioning as a virtual DOM element, serves as a flexible container that can house
other JSX elements or components. Notably, the div class with the class name superMainBody-
mid is designed to house the content that occupies the middle section of the Model render page.

• Within this superMainBody-mid div, a crucial integration occurs: the inclusion of the Canvas
component from React Three Fiber. This integration results in the creation of a WebGL canvas
within the div, providing an essential canvas for rendering dynamic 3D content.

• Nestled within the Canvas component, a functional component named Model is employed. This
component, derived from React Three Fiber’s offerings, acts as a representation of the 3D CAD
Model Scene. This structured approach not only enhances the maintainability of the codebase
but also promotes code reuse through modularization.

• This Model functional component is drawn from a separate rendering script named three-
render.jsx. In this script, the Model function is meticulously defined. This function, orchestrated

11

Figure 2.5: ThreeJS canvas integrated with frontend

based on the principles discussed in sections 2.2 and 2.3, constructs a comprehensive 3D scene
comprising various essential components.

• One of the notable features of this setup is the portability of the Model function. By being
exportable, it can be utilized to render the model in any WebGL canvas. This flexibility ensures
that the CAD Viewer is versatile, capable of rendering a diverse range of 3D models.[]

Figure 2.6: Code snippet of Canvas integration

12

2.5 Future Updates to Renderer

1. Fixing Model Orientation: Aligning Axes with the Model’s Global Coordinates
One of the upcoming enhancements involves refining the orientation of the CAD model within
the Three.js scene. This advancement seeks to seamlessly align the axes of the 3D environment
with the global coordinates of the imported CAD model. This alignment is pivotal for ensuring
a consistent and intuitive user experience. By automatically adjusting the camera and model
positions, users will be able to interact with the model more effectively, eliminating any confusion
caused by misaligned axes. This update will not only enhance the overall visual appeal of the
rendering but also contribute to accurate measurements and annotations, as users can confidently
interpret the model’s representation.

2. Developing Color Coded Formatting of Various Components and Their Respective
Colors
In the pursuit of enhancing the clarity and interpretability of the CAD model, we are working
on the implementation of a sophisticated color-coded formatting system. This innovative feature
will assign distinct and consistent colors to different components of the model, such as beams,
joints, and supports. By employing a standardized color palette, the rendering will reflect the
structural hierarchy and relationships among various elements. This approach will empower
users to easily differentiate between components, facilitating a deeper understanding of the
model’s intricacies. Furthermore, this color coding system will contribute to improved analysis
capabilities, enabling users to swiftly identify crucial elements and their interconnections. To
ensure adaptability, we are also considering options for users to customize the color scheme
according to their preferences and specific requirements.

3. Toggle Keys for Orthographic, x, y Axis Views
As part of our ongoing efforts to enhance user navigation and interaction, we are developing
toggle keys that provide users with swift access to different viewing perspectives. This feature
will enable users to seamlessly transition between various viewpoints, including orthographic and
specific x or y axis views. The inclusion of predefined views will streamline the navigation process.
By incorporating keyboard shortcuts to toggle between different perspectives, we aim to optimize
workflow efficiency, allowing users to effortlessly switch between views without interrupting their
design or analysis tasks. This enhancement seeks to make the CAD viewer more accessible and
user-friendly, catering to a diverse range of users while bolstering overall productivity.

13

Chapter 3

Implementation of CAD File Converter

3.1 Need of CAD Format conversion

• As previously highlighted in section 2.1, a pivotal task in preparing 3D structure models for
effective web rendering is the conversion of CAD file formats. Common formats such as BREP,
STL, and IGES need to be seamlessly transformed into WebGL-compatible formats, including
OBJ and GLTF. These conversions are indispensable for ensuring that intricate 3D models are
optimally showcased on the web platform.

• A paramount requirement during this inter-format conversion is to safeguard the fidelity of the
model’s texture, structure, and geometrical properties. The conversion process must uphold a
strict standard of being lossless, preserving the intricate details that characterize the original
model.

• Beyond maintaining fidelity, efficiency in the conversion process is paramount. To ensure a
smooth and seamless rendering experience, the conversion process must transpire with minimal
time delay. This responsiveness contributes to the overall user experience and prevents undue
waiting periods during rendering.

• The development of this CAD Model Converter is meticulously guided by a well-defined system
flow. This flow allows the CAD Model Renderer to seamlessly fetch the converted model from
a pre-determined, fixed path. This structured approach enhances the integration between the
converter and renderer, streamlining the rendering pipeline.

• In light of these complex requirements, the CAD Model Converter has been ingeniously crafted.
This converter serves as a crucial bridge between the diverse world of CAD formats and the web’s
WebGL-compatible formats. It ensures that the rendering process is marked by fidelity, efficiency,
and a seamless flow of data, ultimately contributing to the high-quality visual experience that
Osdag’s users encounter.

3.2 Choice of Framework:FreeCAD

• Notably, FreeCAD served as the framework underpinning the successful implementation of the
CAD converter process. A pivotal aspect of FreeCAD is its extensive support for Macros—Python
scripts that facilitate the automation of repetitive tasks and actions within the software. These
Macros grant users the power to create personalized tools, functions, and subroutines, all or-
chestrated and executed by FreeCAD’s powerful engine.

• The integration with FreeCAD’s Macros is of paramount importance for the CAD converter’s
functioning. The process leverages these scripts to facilitate the seamless transformation of 3D
model formats. The adaptability and automation that Macros bring are critical to the efficiency
of the conversion process.

14

• A distinct advantage of FreeCAD lies in its support for command-line invocation. This capability
proved pivotal for the integration, as the macro designed for CAD file conversion could be
effortlessly executed as a subprocess through a single command-line instruction. This integration
not only streamlines the workflow but also contributes to the overall efficiency and speed of the
CAD conversion process.

• One of the compelling features of FreeCAD’s macros is their ability to harness pre-built functions.
This facet greatly simplifies the inter-format conversion process. The pre-built functions provide
a solid foundation, enabling the seamless translation of intricate 3D model representations from
one format to another, ensuring that the intricate details are accurately preserved throughout
the transformation.

3.3 FreeCAD Macros:Implementation of CAD Converter

• The CAD converter process was implemented as a FreeCAD macro,utilising FreeCAD’s pre-
defined functions.

• Given the input CAD file path in BREP format and the path of the output directory to save
the OBJ file in, the Macro converts the CAD file.

• Command-Line Arguments: The script receives command-line arguments, specifically the path
of the BREP file (sys.argv[2]) and the desired output filename for the GLTF file (sys.argv[3]).
If the number of arguments is less than three, an error message is printed, and the script exits.

• Opening the BREP File: The script uses the Part.open() function from the FreeCAD library to
open the BREP file located at the specified path. The BREP file represents a 3D solid model
in a geometric format suitable for FreeCAD.

• Object Retrieval: The script retrieves the FreeCAD active document (FreeCAD.activeDocument())
and iterates through the objects within the document where each objects represents a distinct
steel structure Model.

• GLTF Export: After identifying the objects to be exported, the script calls the Mesh.export()
function to export the object as a OBJ file with the provided output filename. The object is
converted to a triangular mesh suitable for OBJ export.

• Overall, this script [3] serves as a FreeCAD macro.In this case, it automates the process of
exporting 3D objects from a FreeCAD document(any CAD file format opened in FreeCAD) to
a OBJ file format, making it more accessible for use in our ThreeJS scene.

15

3.4 Back-end Integration of the CAD Process:CAD Model API

• The API is designed to handle GET requests for the purpose of generating and retrieving CAD
models. These models are constructed based on user input values provided in the input dock.
The CAD Model Render process invokes this API to retrieve the essential .OBJ 3D CAD Model
file, a critical element for rendering intricate 3D designs within the ThreeJS scene.

• The API’s primary role revolves around processing GET requests. When triggered, it associates
the provided design session id with the specific input values linked to that session. These input
values are then utilized within a specialized function leveraging Python OCC. This function
meticulously crafts the BREP Model file, tailored to the provided input parameters. This BREP
Model is temporarily stored in a designated directory, serving as an intermediate step.

• The subsequent phase involves triggering a subprocess. This subprocess effectively summons
FreeCAD through command-line instructions. Within FreeCAD, a designated macro is executed,
seamlessly converting the BREP file into an OBJ file format. This OBJ file is then securely stored
in a predetermined, static directory, ready for further utilization.

• With the transformed OBJ file in hand, the CAD Model Renderer’s duty comes to the fore.
It adeptly employs this file to create a visual representation of the model within the 3D scene
orchestrated by the ThreeJS engine.

• Figure 3.1 visually summarizes this sequence, illustrating the journey of user inputs evolving into
a 3D model in the ThreeJS scene. In essence, the API serves as a critical connector, transforming
user inputs into a visual 3D representation. It’s an intermediary between user intent and digital
visualization, facilitating a seamless transition from concept to a interactive 3D representation,

Figure 3.1: CAD Render and Converter Flow

16

Chapter 4

References

1. Three.js documentation
https://threejs.org/docs/index.htmlmanual/en/introduction/Creating-a-scene

2. Three.js official forum
https://discourse.threejs.org/

3. SBCode’s Three.js tutorials and samples
https://sbcode.net/threejs/loaders-obj/

4. Python OpenCascade documentation
https://liuxinwinadmin.gitee.io/pythonocc− docs/index.html

5. React-Three-Fiber Canvas component documentation
https://docs.pmnd.rs/react-three-fiber/api/canvas

6. Code Sandbox React-Three-Fiber examples
https://codesandbox.io/examples/package/react-three-fiber

7. FreeCAD Macros documentation
https://wiki.freecad.org/Macrosrecipes

8. Stack Overflow
https://stackoverflow.com/questions/23450588/isometric-camera-with-three-js

9. Animating scenes with WebGL and Three.js
https://www.august.com.au/blog/animating-scenes-with-webgl-three-js/

10. MDN Canvas component documentation
https://developer.mozilla.org/en-US/

17

https://threejs.org/docs/index.html#manual/en/introduction/Creating-a-scene
https://discourse.threejs.org/
https://sbcode.net/threejs/loaders-obj/
https://liuxinwin_admin.gitee.io/pythonocc-docs/OCC.BRep.html#:~:text=OCC.-,BRep%20module,by%20the%20Geom%20and%20Geom2dpackages
https://docs.pmnd.rs/react-three-fiber/api/canvas
https://codesandbox.io/examples/package/react-three-fiber
https://wiki.freecad.org/Macros_recipes
https://stackoverflow.com/questions/23450588/isometric-camera-with-three-js
https://www.august.com.au/blog/animating-scenes-with-webgl-three-js/
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial

Chapter 5

Appendix

5.1 Code Samples

1. Three.js renderer implementation

import ∗ as THREE from ’ . / three . j s−master / bu i ld / three . module . j s ’
import { STLLoader } from ’ . / three . j s−master / examples / jsm/ l oade r s /STLLoader . j s ’
import { OBJLoader } from ’ . / three . j s−master / examples / jsm/ l oade r s /OBJLoader . j s ’
import { OrbitContro l s } from ’ . / three . j s−master / examples / jsm/ con t r o l s /Orbi tContro l s . j s ’
import Stat s from ’ . / three . j s−master / examples / jsm/ l i b s / s t a t s . module . j s ’
const scene = new THREE. Scene ()
scene . add (new THREE. AxesHelper (10000))
const l i g h t = new THREE. AmbientLight ()
l i g h t . p o s i t i o n . s e t (10000 , 10000 , 10000)
scene . add (l i g h t)
const aspect = window . innerWidth / window . innerHe ight ;
const d = 2000 ;
const camera = new THREE. OrthographicCamera (− d ∗ aspect , d ∗ aspect , d , − d , 0 .001 , 200000000) ;

camera . p o s i t i o n . s e t (10000 , 10000 , 10000) ; // a l l components equal
camera . lookAt (scene . p o s i t i o n) ; // or the o r i g i n
const r endere r = new THREE.WebGLRenderer ()
r endere r . outputEncoding = THREE. sRGBEncoding
rendere r . s e t S i z e (window . innerWidth , window . innerHe ight)
document . body . appendChild (r endere r . domElement)

const c on t r o l s = new OrbitContro l s (camera , r endere r . domElement)
c on t r o l s . enableDamping = true
c on t r o l s . enableZoom = true
c on t r o l s . enablePan = true
c on t r o l s . addEventListener (’ change ’ , render) ;
c on t r o l s . minPolarAngle = 0 ;
c on t r o l s . maxPolarAngle = 180 ;

const envTexture = new THREE. CubeTextureLoader () . load ([
’ . / three . j s−master / examples / t ex tu r e s /cube/ p i s a /px . png ’ ,
’ . / three . j s−master / examples / t ex tu r e s /cube/ p i s a /nx . png ’ ,
’ . / three . j s−master / examples / t ex tu r e s /cube/ p i s a /py . png ’ ,
’ . / three . j s−master / examples / t ex tu r e s /cube/ p i s a /ny . png ’ ,
’ . / three . j s−master / examples / t ex tu r e s /cube/ p i s a /pz . png ’ ,
’ . / three . j s−master / examples / t ex tu r e s /cube/ p i s a /nz . png ’

])

18

envTexture . mapping = THREE. CubeReflectionMapping

const mate r i a l = new THREE. MeshPhysica lMater ia l ({
c o l o r : 0 xb2f fc8 ,
envMap : envTexture ,
meta lness : 0 . 25 ,
roughness : 0 . 1 ,
opac i ty : 1 . 0 ,
t ransparent : true ,
t r ansmi s s i on : 0 . 99 ,
c l e a r c o a t : 1 . 0 ,
c l earcoatRoughness : 0 .25

})
const mate r i a l 2 = new THREE. MeshPhysica lMater ia l ({

c o l o r : 0 x0000f f ,
envMap : envTexture ,
meta lness : 0 . 25 ,
roughness : 0 . 1 ,
opac i ty : 1 . 0 ,
t ransparent : true ,
t r ansmi s s i on : 0 . 99 ,
c l e a r c o a t : 1 . 0 ,
c l earcoatRoughness : 0 .25

})

const group = new THREE. Group () ;
var l oade r = new OBJLoader () ;
l oade r . load (’/ a s s e t s /output−obj . obj ’ , f unc t i on (obj) {

obj . t r a v e r s e (func t i on (ch i l d) {
i f (c h i l d . isMesh) {

var m = ch i l d ;
m. receiveShadow = true ;
m. castShadow = true ;
m. mate r i a l = mate r i a l ;

}
i f (c h i l d . i s L i gh t) {

var l = ch i l d ;
l . castShadow = f a l s e ;
l . shadow . b i a s = −0.003;
l . shadow . mapSize . width = 2048 ;
l . shadow . mapSize . he ight = 2048 ;

}
}) ;
obj . t r a v e r s e (func t i on (ob j e c t) {

i f (ob j e c t . isMesh && ob j e c t . name) {
conso l e . l og (ob j e c t . name) ;

}
}) ;
group . add (obj) ;

} , f unc t i on (xhr) {
conso l e . l og ((xhr . loaded / xhr . t o t a l) ∗ 100 + ’% loaded ’) ;

} , f unc t i on (e r r o r) {
conso l e . l og (e r r o r) ;

19

}) ;

var l oader2 = new OBJLoader () ;
l oader2 . load (’/ a s s e t s /bb−s p l i c e −bo l ted (1) . obj ’ , f unc t i on (obj) {

obj . t r a v e r s e (func t i on (ch i l d) {
i f (c h i l d . isMesh) {

var m = ch i l d ;
m. receiveShadow = true ;
m. castShadow = true ;
m. mate r i a l = mater ia l 2 ;

}
i f (c h i l d . i s L i gh t) {

var l = ch i l d ;
l . castShadow = f a l s e ;
l . shadow . b i a s = −0.003;
l . shadow . mapSize . width = 2048 ;
l . shadow . mapSize . he ight = 2048 ;

}
}) ;
obj . t r a v e r s e (func t i on (ob j e c t) {

i f (ob j e c t . isMesh && ob j e c t . name) {
conso l e . l og (ob j e c t . name) ;

}
}) ;
group . add (obj) ;

} , f unc t i on (xhr) {
conso l e . l og ((xhr . loaded / xhr . t o t a l) ∗ 100 + ’% loaded ’) ;

} , f unc t i on (e r r o r) {
conso l e . l og (e r r o r) ;

}) ;
window . addEventListener (’ r e s i z e ’ , onWindowResize , f a l s e)
func t i on onWindowResize () {

camera . aspect = window . innerWidth / window . innerHe ight
camera . updateProject ionMatr ix ()
r endere r . s e t S i z e (window . innerWidth , window . innerHe ight)
render ()

}

const mate r i a l 3 = new THREE. MeshPhysica lMater ia l ({
c o l o r : 0 x f f 0000 ,
envMap : envTexture ,
meta lness : 0 . 25 ,
roughness : 0 . 1 ,
opac i ty : 1 . 0 ,
t ransparent : true ,
t r ansmi s s i on : 0 . 99 ,
c l e a r c o a t : 1 . 0 ,
c l earcoatRoughness : 0 .25

})

var l oader3 = new OBJLoader () ;
l oader3 . load (’/ a s s e t s / f in−plate−og . obj ’ , f unc t i on (obj) {

obj . t r a v e r s e (func t i on (ch i l d) {

20

i f (c h i l d . isMesh) {
var m = ch i l d ;
m. receiveShadow = true ;
m. castShadow = true ;
m. mate r i a l = mater ia l 3 ;

}
i f (c h i l d . i s L i gh t) {

var l = ch i l d ;
l . castShadow = f a l s e ;
l . shadow . b i a s = −0.003;
l . shadow . mapSize . width = 2048 ;
l . shadow . mapSize . he ight = 2048 ;

}
}) ;
obj . t r a v e r s e (func t i on (ob j e c t) {

i f (ob j e c t . isMesh && ob j e c t . name) {
conso l e . l og (ob j e c t . name) ;

}
}) ;
group . add (obj) ;

} , f unc t i on (xhr) {
conso l e . l og ((xhr . loaded / xhr . t o t a l) ∗ 100 + ’% loaded ’) ;

} , f unc t i on (e r r o r) {
conso l e . l og (e r r o r) ;

}) ;

scene . add (group) ;

new or ig in = group . getWorldPos it ion ((0 , 0 , 0)) ;
c on so l e . l og (new or ig in)
const s t a t s = Stat s ()
document . body . appendChild (s t a t s . dom)

func t i on animate () {
requestAnimationFrame (animate)

c on t r o l s . update ()

render ()

s t a t s . update ()
}

f unc t i on render () {
r endere r . render (scene , camera)

}

animate ()

2. React-Three-Fiber Renderer Implementation

import { OBJLoader } from ’ three / examples / jsm/ l oade r s /OBJLoader . j s ’

21

import { OrbitContro ls , useTexture } from ’ @react−three / dre i ’
import { useLoader } from ’ @react−three / f i b e r ’ ;
import React , {useMemo} from ” reac t ” ;
f unc t i on Model () {

const obj = useLoader (OBJLoader , ”/ output−obj . obj ”) ; // i s s u e i s here that our . obj model i s not g e t t i n g loaded in the ob j l oade r
// conso l e . l og (’ obj l oade r : ’ , obj)
// return <pr im i t i v e ob j e c t={obj } />
const t ex ture = useTexture (”/ t ex ture . png ”) ;
// conso l e . l og (’ t ex tur e : ’ , t ex tur e)
const geometry = useMemo (() => {

l e t g ;
obj . t r a v e r s e ((c) => {

i f (c . type === ”Mesh”) {
const c = c ;
g = c . geometry ;

}
}) ;
// conso l e . l og (”Done Loading ”)
re turn g ;

} , [obj]) ;

// I ’ ve used meshPhys ica lMater ia l because the t ex ture needs l i g h t s to be seen proper ly
// AxesHelper param changing the axes l eng th s
// s c a l e : model s c a l e
re turn (
<group name=’ scene ’>

<axesHelper args ={[200]}/>
<mesh geometry={geometry} s c a l e ={0.008}>

<meshPhys ica lMater ia l attach = ”mate r i a l ” c o l o r={’#FF0000 ’} metalness ={0.25} roughness ={0.1} opac i ty ={2.0} t ransparent = { t rue } t ransmi s s i on ={0.99} c l e a r c o a t ={1.0} c learcoatRoughness={0.25}/>
</mesh>
<OrbitContro l s />

</group>
) ;

}

export d e f au l t Model ;

3. FreeCAD code

import FreeCAD
import Part
import Mesh
import sys
import os
i f l en (sys . argv) < 3 :

p r i n t (’ Error : No output path argument provided ’)
sys . e x i t ()

Retr i eve the path argument
path = sys . argv [2]
output f i l ename = sys . argv [3]

#pr in t (type (path))
p r i n t (’The path o f the brep f i l e ’ , path)

22

Part . open (path)

doc = FreeCAD . activeDocument ()
p r i n t (doc . Label)
doc name = doc . Label

o b j s =[]
f o r objz in doc . Objects :

p r i n t (objz .Name)
p r in t (doc name)
p r in t (” In s i d e For ”)
#i f objz .Name == doc name :
p r i n t (” In s i d e i f ”)

Export the ob j e c t to g l t f f o r
o b j s . append (objz)

break # Stop loop ing once you f i nd the ob j e c t
p r i n t (’ This i s the f i l e to which we export ’ , output f i l ename)
Mesh . export (o b j s , output f i l ename)
de l o b j s

4. CAD Model API

from django . sho r t cu t s import render , r e d i r e c t
from django . u t i l s . html import escape , ur l encode
from django . http import HttpResponse , HttpRequest
from django . views import View
from osdag . models import Design
from django . u t i l s . crypto import ge t random st r ing
from django . views . de co ra to r s . c s r f import c s r f exempt
from django . u t i l s . d e co ra to r s import method decorator
from osdag ap i import developed modules , ge t module ap i
from osdag ap i . e r r o r s import OsdagApiException
import typing
import j son
import os
import subproces s
import time

rest f ramework
from rest f ramework import s t a tu s
from rest f ramework . re sponse import Response

import ing models
from osdag . models import Design

@method decorator (csr f exempt , name=’dispatch ’)
c l a s s CADGeneration (View) :

”””
Update input va lue s in database .

CAD Model API (c l a s s CADGeneration (View)) :
Accepts GET reque s t s .
Returns BREP f i l e as content type text / p l a i n .
Request must prov ide s e s s i o n cook i e id .

”””

23

de f get (s e l f , r eque s t : HttpRequest) :
Get des ign s e s s i o n id .
c o o k i e i d = reques t .COOKIES. get (” f i n p l a t e c o n n e c t i o n s e s s i o n ”)
p r i n t (c o ok i e i d)
Error Checking : I f des ign s e s s i o n id provided .
i f c o o k i e i d == None or c o ok i e i d == ’ ’ :

Returns e r r o r re sponse .
r e turn HttpResponse (” Error : P lease open module ” , s t a tu s =400)

Error Checking : I f des ign s e s s i o n e x i s t s .
i f not Design . ob j e c t s . f i l t e r (c o o k i e i d=cook i e i d) . e x i s t s () :

Return e r r o r re sponse .
r e turn HttpResponse (” Error : This des ign s e s s i o n does not e x i s t ” , s t a tu s =404)

t ry : # Error check ing whi l e l oad ing input data
Get s e s s i o n ob j e c t from db .
t ry :

d e s i g n s e s s i o n = Design . ob j e c t s . get (c o ok i e i d=cook i e i d)
except :

p r i n t (’ Error in obta in ing the f i n p l a t e c o nn e c t i o n s e s s i o n ’)

t ry :
module api = get module ap i (

d e s i g n s e s s i o n . module id) # Get module api
except :

p r i n t (’ e r r o r in obta in ing modele api from the d e s i gn s e s s i o n ’)
Error Checking : I f input data not entered .

#i f not d e s i g n s e s s i o n . c u r r e n t s t a t e :
Return e r r o r re sponse .
return HttpResponse (” Error : P lease ente r input data f i r s t ” , s t a tu s =409)
Load input data in to d i c t i ona ry .
t ry :

i npu t va lu e s = d e s i g n s e s s i o n . i npu t va lu e s
except :

p r i n t (’ e r r o r in load ing the inpu t va lu e s from the d e s i g n s e s s i o n ins tance ’)
except Exception as e :

Return e r r o r re sponse .
p r i n t (’ f i r s t e ror r ’)
r e turn HttpResponse (” Error : I n t e r n a l s e r v e r e r r o r : ” + repr (e) , s t a tu s =500)

s e c t i o n = ”Model” # Sect i on o f model to generate (d e f au l t f u l l model) .
i f r eque s t .GET. get (” s e c t i o n ”) != None : # I f s e c t i o n i s s p e c i f i e d ,

s e c t i o n = reques t .GET[” s e c t i o n ”] # Set s e c t i o n
p r in t (’ s e c t i o n : ’ , s e c t i o n)

t ry : # Error check ing whi l e Generating BREP F i l e .
Generate CAD Model .
p r i n t (’ c r e a t i n g cad model ’)
path = module api . c r eate cad mode l (

input va lue s , s e c t i on , c o o k i e i d)
p r i n t (’ path : ’ , path)
des ignObject = Design . ob j e c t s . get (c o ok i e i d = cook i e i d)
t ry :

i f (not path) :

24

pr in t (’ path i s f a l s e ’)
s e t the c ad de s i gn s t a t u s to Fa l se
des ignObject . c ad d e s i gn s t a tu s = False
des ignObject . save ()

re turn HttpResponse (’CAD model gene ra t i on f a i l e d ’ , s t a tu s = 400)
i f (path) :

s e t the c ad de s i gn s t a t u s to True
p r in t (’ path i s va l id ’)
des ignObject . c ad d e s i gn s t a tu s = True
des ignObject . save ()

except Exception as e :
p r i n t (’ Exception found whi l e sav ing the CAD des ign s t a tu s : ’ , e)

except OsdagApiException as e : # I f s e c t i o n does no e x i s t
re turn HttpResponse (repr (e) , s t a tu s =400) # Return e r r o r re sponse .

except Exception as e :
Return e r r o r re sponse .
r e turn HttpResponse (” Error : I n t e r n a l s e r v e r e r r o r : ” + repr (e) , s t a tu s =500)

#try :
os . chd i r (’ /home ’)
#except Exception as e :
pr in t (’ chd i r e : ’ , e)

t ry :
Pass the path va r i ab l e as a command−l i n e argument to the FreeCAD macro
c u r r e n t d i r = os . path . dirname (os . path . abspath (f i l e))
Get the path o f the parent d i r e c t o r y
pa r en t d i r = os . path . dirname (os . path . dirname (c u r r e n t d i r))
macro path = os . path . j o i n (

parent d i r , ’ f r e e c a d u t i l s / o p e n b r e p f i l e . FCMacro ’)
command = ’/ snap/bin / f r e e cad . cmd ’
path = ’ f i l e s t o r a g e / cad models /Uv9aURCfBDmhoosxMUy2UT7P3ghXcvV3 Model . brep ’
p a t h t o f i l e = os . path . j o i n (parent d i r , path)
output d i r = os . path . j o i n (

parent d i r , ’ o s d ag c l i e n t / pub l i c /output−obj . obj ’)
except Exception as e :

p r i n t (’ output d i r e : ’ , e)
Cal l the subproces s to c r e a t e the empty output f i l e
t ry :

subproces s . run ([” touch ” , ou tput d i r])
except Exception as e :

p r i n t (’ subproces s run e : ’ , e)

command with arg = f ’{ command} {macro path} { p a t h t o f i l e } { output d i r } ’
Execute the command us ing subproces s . Popen ()
p roce s s = subproces s . Popen (command with arg . s p l i t ())

time . s l e e p (3)
re sponse = HttpResponse (output d i r , s t a tu s =201)
re sponse [” content−type ”] = ” text / p l a i n ”
return response

25

	Introduction
	FOSSEE Internship
	What is Osdag
	What is Osdag on Web
	Who can use Osdag?

	Building the WebGL Based CAD Model Renderer
	Need of modifying Osdag's Graphics/CAD stack
	Components of the WebGL Canvas and ThreeJS Scene
	Final Features of CAD Model Renderer and Scene Results
	Default Isometric View and Centre Alignment
	Model Pan,Zoom and Rotation Controls
	Model Material and Texture Properties
	Multiple Models single scene supported

	Integration with Frontend
	Framework Choice
	Integration Implementation

	Future Updates to Renderer

	Implementation of CAD File Converter
	Need of CAD Format conversion
	Choice of Framework:FreeCAD
	FreeCAD Macros:Implementation of CAD Converter
	Back-end Integration of the CAD Process:CAD Model API

	References
	Appendix
	Code Samples

