
eSim Internship 2023 Report

On

kiCad

Submitted by

Partha Singha Roy
B.Tech (Electronics and Communication Engineering)

KGEC,Kalyani

Under the guidance of

Prof.Kannan M. Moudgalya

Chemical Engineering Department

IIT Bombay

June 27, 2023

Acknowledgment

I would like to express my heartfelt gratitude and appreciation to the entire FOSSEE
eSim team for providing me with the incredible opportunity to be a part of their
esteemed organization as an intern. My experience with the FOSSEE eSim intern-
ship program has been nothing short of exceptional, and I am immensely grateful
for the valuable knowledge and skills I have gained during this period.

I would like to express my special appreciation to my mentors Sumanto Kar Sir
and Rahul Panikar Sir, whose guidance and mentorship have been instrumental in
shaping my internship experience. Their patience, knowledge, and encouragement
have helped me develop a deeper understanding of eSim and its applications in the
field of electronic circuit simulation. Working under their supervision has not only
enhanced my technical skills but also instilled in me a sense of confidence to tackle
complex challenges.

I am also grateful to the entire FOSSEE eSim community for their collaborative
spirit and the welcoming environment they foster. Interacting with fellow interns
and contributors has been an enriching experience, allowing me to exchange ideas,
seek advice, and engage in meaningful discussions. The community’s commitment
to open-source values and the shared goal of making quality education accessible to
all has been truly inspiring.

I am immensely grateful for the invaluable learning experiences, the supportive com-
munity, and the opportunities for personal and professional growth that the FOSSEE
eSim internship has provided me. I am confident that the skills and knowledge I
have acquired will continue to benefit me in my future endeavors. Once again, thank
you to the entire FOSSEE eSim team for this incredible opportunity.

1

Contents

1 Introduction 4

2 Why KiCad v6 ? 6
2.1 KiCad v6.0.11 : . 6

3 PCB Design 7
3.1 STM32 Board Design . 7

4 KiCad integrated Ngspice Simulation 9
4.1 Example . 10

5 Differences between KiCad V4 and V6 11
5.1 New File Format . 11
5.2 File Extension . 12
5.3 Folders . 12

6 Conversion KiCad 4 to KiCad 6 13
6.1 .sch to .kicad sch . 13
6.2 .lib to .kicad sym . 15
6.3 KiCad Display Setting . 16
6.4 Netlist Generation . 17
6.5 The ”??” mark Problem . 18

7 Coordinate Issue 19
7.1 Example . 19
7.2 Reason . 20

7.2.1 KiCad Library Template . 20

8 Porting KiCad 4 to KiCad 6 22
8.1 Makerchip . 22
8.2 NGHDL . 23
8.3 Makerchip and NGHDL generated symbols 24

9 KiCad Installer 26
9.1 Ubuntu 20.04 . 26
9.2 Windows . 27

9.2.1 Build KiCad From its source 27
9.2.2 KiCad Installer for eSim . 27

2

10 NGHDL Installer 28
10.1 NGHDL Executable . 28
10.2 NGHDL Package . 28

11 eSim Installer 29
11.1 Ubuntu 20.04 . 29
11.2 Windows . 32

11.2.1 eSim Executable . 32
11.2.2 Package eSim . 33

12 sym-lib-table 34
12.1 Manage symbol library . 34
12.2 Configuration Folder . 35
12.3 Add eSim Custom Symbols to sym-lib-table 35
12.4 Edit sym-lib-table for eSim . 36

12.4.1 Example . 36
12.5 Add sym-lib-table to eSim Installer 37

13 Bugs 38
13.1 Bug: eSim crash on schematic editor 38
13.2 Bug: Access the Verilog model’s symbols 38
13.3 Bug: Coordinate issue . 38
13.4 Error: 0xc0000142 . 38

13.4.1 Solution . 39

14 Conclusion and Future Scope 40

Bibliography 41

3

Chapter 1

Introduction

FOSSEE (Free/Libre and Open Source Software for Education) project promotes
the use of FLOSS tools to improve the quality of education in our country. It aims
to reduce dependency on proprietary software in educational institutions. It en-
courages the use of FLOSS tools through various activities to ensure commercial
software is replaced by equivalent FLOSS tools. It also develops new FLOSS tools
and upgrade existing tools to meet requirements in academia and research.[1]

The FOSSEE project is part of the National Mission on Education through
Information and Communication Technology (ICT), Ministry of Human Resource
Development (MHRD), Government of India.

KiCad, an open source electronic design automation (EDA) suite, is widely used
for schematic capture and PCB layout. With the release of version 6, KiCad intro-
duced numerous enhancements, including improved performance, a more intuitive
user interface, and enhanced compatibility with modern operating systems. How-
ever, to leverage these new features, it was essential to update eSim, an open-source
circuit simulation tool, to work seamlessly with the latest version of KiCad.[2]

My task is porting KiCad v4 to v6 in eSim software for Windows and Linux
operating systems. eSim is a free/libre and open source EDA tool for circuit design,
simulation, analysis, and PCB design developed by FOSSEE, IIT Bombay. It is an
integrated tool built using open source software such as KiCad, Ngspice, NGHDL,
and VHDL. eSim released under GPL. Because of this, it has the necessary packages
and tools to integrate into it.

The process of porting KiCad v4 to v6 in eSim required meticulous attention to
detail and a comprehensive understanding of both software packages. It involved
analyzing the differences between the two versions, identifying the areas requiring
changes, and implementing the necessary modifications to ensure compatibility.

Throughout this endeavor, I had the opportunity to explore the intricacies of
the KiCad software, gaining a deeper understanding of its underlying architecture,
libraries, and functionalities. I also familiarized myself with the eSim platform,

4

learning about its simulation capabilities and how it integrates with KiCad for effi-
cient circuit design and analysis.

5

Chapter 2

Why KiCad v6 ?

Unfortunately, KiCad 4.0.7 is not available in Ubuntu 20 and above which is a
dependency of eSim. Also, KiCad has stopped providing support for 4.0.7.

2.1 KiCad v6.0.11 :

The most stable release of KiCad v6.0.11, offers critical bug fixes and minor improve-
ments compared to the deprecated KiCad 4. Some notable fixes and enhancements
in v6.0.11 include:

1. Fixing ERC crash: Addressed an issue that caused the ERC (Electrical Rules
Check) to crash during circuit validation.

2. Resolving crash when importing Eagle schematic: Fixed a crash that occurred
when attempting to import a schematic from Eagle CAD software.

3. Fixing crash during language change with the open simulator window: Re-
solved a crash that would happen when changing the language while the sim-
ulator window was open.

4. Restoring proper file extension filters for graphic import: Corrected broken
file extension filters for graphic imports in certain locale settings.

5. Ensuring project rescue with mismatched symbol name cases: Improved the
project rescue feature to handle cases where symbol names have different cap-
italization.

6. Enabling real-time connectivity by default: Real-time connectivity, which
shows immediate connections between components, is now enabled by default
for enhanced design visibility.

These updates in KiCad 6.0.11 contribute to a more stable and reliable PCB design
experience, addressing critical issues and enhancing overall functionality.

6

Chapter 3

PCB Design

KiCad is a popular open-source EDA tool for designing printed circuit boards
(PCBs). It offers a user-friendly interface and a wide range of features for cre-
ating professional-grade PCB designs. With KiCad, you can create schematics,
place components, route traces, and generate manufacturing files. It supports 3rd
party footprints and offers various import/export options. KiCad also includes a
powerful 3D viewer and offers extensive documentation and community support.
Whether you’re a hobbyist or a professional, KiCad provides a robust platform for
PCB design with its intuitive workflow and comprehensive toolset.

3.1 STM32 Board Design

The STM32 Board is designed using KiCad v6.0.11.[10]

Figure 3.1: Circuit Diagram

7

Figure 3.2: PCB layout

Figure 3.3: 3D View

8

Chapter 4

KiCad integrated Ngspice
Simulation

KiCad has integrated the Ngspice circuit simulator, allowing users to perform ac-
curate electrical simulations of their PCB designs. Here’s a step-by-step guide to
using KiCad’s Ngspice simulation:

1. Design your circuit: Create the schematic of your circuit using KiCad’s
schematic editor, placing components and connecting the nets using wires.

2. Assign spice models: Assign Ngspice-compatible spice models to your com-
ponents. These models define the electrical behavior of the components in the
simulation.

3. Configure simulation settings: Define simulation parameters such as sim-
ulation type (DC, AC, transient, etc.), analysis type, simulation time, and
desired outputs.

4. Run the simulation: Initiate the simulation in KiCad’s integrated Ngspice
simulator. Ngspice will analyze your circuit and generate simulation results
based on the defined parameters.

5. Analyze simulation results: Once the simulation is complete, analyze the
generated results, which may include voltage/current waveforms, frequency
response, or other relevant data.

9

4.1 Example

Figure 4.1: Circuit Diagram

Figure 4.2: Circuit Simulation

10

Chapter 5

Differences between KiCad V4
and V6

Modern versions of KiCad can open files created in earlier versions, but can only
write files in the latest formats. This means that in general, there are no special
steps to migrate files from a previous version besides opening the files. In some
cases, the file extension for a file has changed from one KiCad version to the next.
After opening these files, they will be saved in the new format with the new file
extension. The old files will not be deleted automatically.

In general, files created or modified by newer versions of KiCad cannot be opened
by older versions of KiCad. For this reason, it is important to keep backup copies
of your projects when testing a new KiCad release, until you are confident that you
will not need to use the older KiCad version anymore.

5.1 New File Format

KiCad v6 is introducing a new format for the schematic files, which uses the S-
Expressions notation. S-Expressions can represent data in a tree structure format
as a nested list. The new file format makes schematic and layout files in human-
readable form.

S-Expression notation is not new to KiCad. Layout (”.kicad pcb”) and foot-
print files (”.kicad mod”) have used SExpression notation in KiCad 4. But with
KiCad 6, the transition is complete.

Here, The side by side comparison of the same schematic file section

11

KiCad 4 Eeschema file segment KiCad 6 Eeschema file segment
Comp (symbol(lib id ”power:GND”)(at 181 72 0)
L power:GND PWR07 (unit 1)(in bom yes) (on board yes)
U 1 1 5EF25186 (uuid ”186”)
P 7150 2850 (property ”Reference” ”PWR07” (id 0)
F 0 ”PWR07” H 7150 2600 50 0001 C CNN (at 181.61 78.74 0)
F 1 ”GND” H 7155 2677 50 0000 C CNN (effects (font (size 1.27 1.27)) hide)
F 2 ”” H 7150 2850 50 0001 C CNN)
F 3 ”” H 7150 2850 50 0001 C CNN (property ”Value” ”GND” (id 1)
1 7150 2850 (at 181.737 76.7842 0))
1 0 0 -1 (property ”Footprint” ”” (id 2) (at 181 72 0)
EndComp (effects (font (size 1.27 1.27)) hide)

)
(effects (font (size 1.27 1.27)) hide)
)
)

5.2 File Extension

KiCad v6 comes with new file extension. Here the comparism

KiCad 4 file extension KiCad 6 file extension Remarks
.sch .kicad sch Kicad schematic file
.lib .kicad sym KiCad symbol file
.pro .kicad pro Kicad project file

5.3 Folders

KiCad v6 comes with new file extension. Here the comparism

KiCad 4 Folders KiCad 6 Folders
models footprints
library symbols

These are some significant KiCad comparisons for porting KiCad 4 to 6. Addi-
tionally, it’s worth noting that KiCad 4 uses ”mm” for measurements, while KiCad
6 uses ”mil”.

12

Chapter 6

Conversion KiCad 4 to KiCad 6

6.1 .sch to .kicad sch

With the introduction of KiCad v6.0, there is a change in the file extension for
schematic files. The older ”.sch” file extension has been replaced with the ”.ki-
cad sch” extension.

To convert older KiCad schematic files in the ”.sch” format to the new ”.ki-
cad sch” format, you can follow these steps:

1. Open KiCad v6.0 or later.

2. Go to the ”File” menu and select ”Open.”

3. Browse to the location of the older KiCad ”.sch” schematic file.

4. Select the file and click ”Open” to open it in KiCad.

Figure 6.1: Opening .sch file, click OK

5. After clicking OK, now remap the symbols.

13

Figure 6.2: Remap all the symbols

6. Click OK.

Figure 6.3: Click OK

7. Close the Tab

14

Figure 6.4: Close the tab

8. The schematic is now visible.

Figure 6.5: KiCad schematic

9. Press Ctrl+S to save the converted schematic file in the new ”.kicad sch”
format.

By following these steps, you can convert your older KiCad ”.sch” files to the
new ”.kicad sch” format using KiCad version 6.0 or later. Also, in KiCad V6.0,
the utilization of the cache.lib file is essential for remapping all symbols during the
opening of a schematic (.sch) file. Without the cache.lib file, KiCad 6 would be
unable to successfully open the schematic file and carry out the necessary symbol
remapping process.

6.2 .lib to .kicad sym

.lib is the older version of the KiCad schematic file extension. To convert your KiCad
schematics to the new version, follow these steps:

1. Launch KiCad.

2. Go to ”Tools” and select ”Edit Schematic Symbols” from the menu.

3. Click on ”Preferences” and choose ”Manage Symbol Libraries” from the op-
tions.

15

4. In the ”Global Libraries” tab, locate and click on the ”Browse Libraries”
button (represented by a small folder icon).

5. Browse your files and select the ”*.lib” file that you want to convert. Then
click ”Open”.

6. The library you imported will appear in the list. Click ”OK” to confirm.

7. In the symbol library manager, you can now use the filter search field to locate
the symbol you imported. Double-click on the symbol to open the file.

8. Once the symbol file is open, you can make any necessary modifications or
updates to conform to the new KiCad version.

9. Save the updated symbol file with the ”.kicad sym” extension.

By using the KiCad symbol library management functionality, you can successfully
convert and update your old libraries to the new format required by the current
version of KiCad.

6.3 KiCad Display Setting

The presence of green lines in KiCad V6 is often associated with a known issue that
is related to outdated Intel graphics drivers. It appears to be an internal bug within
KiCad V6.[8][9]

Figure 6.6: Green Line Display in KiCad 6

Recommended setting: Fallback graphics

Solution:

• I recommend downloading and installing the latest graphics driver for your
system to address the issue. Upgrading to the most recent version of the
graphics driver can often resolve compatibility problems and help mitigate the
occurrence of the green lines in KiCad V6.

16

• To avoid encountering the green line problem in KiCad V6, you can follow
these steps:

1. Open the KiCad application.

2. Go to the ”Preferences” menu.

3. Select ”Display Settings” from the options.

4. Look for the setting called ”Fallback Graphics” for All Windows.

5. enable or check this option.

By enabling the ”Fallback Graphics” for All Windows option, you can poten-
tially prevent the occurrence of the green line issue in KiCad V6.

Accelerated graphics antialiasing: KiCad can use different methods to pre-
vent aliasing (jagged lines) when rendering using a graphics card. Different methods
may look better on different hardware, so you may want to experiment to find the
one that looks best to you.[11]

Fallback graphics antialiasing: KiCad can also apply antialiasing when using
the fallback graphics mode. Enabling this feature may result in poor performance
on some hardware.[11]

6.4 Netlist Generation

In KiCad v4, the netlist generation option locates in the upper toolbar. You can
find it as a separate button or as part of the toolbar options. It is represented by an
icon that resembles a sheet of paper with a connection symbol. By clicking on this
button or selecting the appropriate option from the upper toolbar, you can generate
the netlist in KiCad v4.

In KiCad v6, the netlist generation option has been moved to a different location.
Instead of the upper toolbar, you can now find the netlist generation option under
the ”File” menu. Here are the steps to access it:

1. Open KiCad version 6.

2. Go to the ”File” menu at the top-left corner of the KiCad window.

3. Click on ”Export” in the dropdown menu.

4. In the submenu that appears, select ”Netlist”.

By following these steps, you will be able to access the netlist generation option in
KiCad v6.

17

6.5 The ”??” mark Problem

In KiCad, if a symbol is no longer available or removed from the library, it can result
in a ”???” error when opening a schematic. A similar issue observes in the newer
versions of KiCad, including version 6.

Instead of displaying ”??” for missing symbols, KiCad provides a more informa-
tive message indicating that the symbols could not be found or loaded. This change
helps users understand the issue more clearly.

To address this error and replace missing symbols with suitable alternatives, you
can follow these steps in KiCad:

1. Open the schematic file (.sch) in KiCad.

2. Select the component with the missing symbol.

3. Press the ”E” key on your keyboard or right-click on the component and choose
”Edit Symbol” from the context menu.

4. In the symbol editor, try to find a similar component symbol that closely
matches the missing one.

5. Assign the appropriate replacement symbol to the component by selecting it
in the symbol editor.

6. Save the symbol changes and exit the symbol editor.

7. The component in the schematic should now display the newly assigned symbol
without the ”??” error.

By following these steps, you can address the issue of missing symbols in KiCad and
ensure that your schematic functions as expected.

Figure 6.7: Question marks

18

Chapter 7

Coordinate Issue

The integrated KiCad 4 in eSim-2.3 has encountered a notable issue related to coordi-
nate discrepancies of some symbols, presenting challenges in the seamless alignment
between cursor positions and the actual positions of the symbols.

When attempting to place components, it becomes evident that the expected
coordinates are not accurately reflected, there by hindering the precise positioning
of symbols on the design canvas. This discrepancy issue persists throughout various
symbol placements within eSim, with the ”dvsd 8 bit priority encoder” component
being among the notable examples affected this predicament.

Users have reported instances where the intended position of the cursor does not
correspond to the actual placement of the symbol.

This coordinate problem has implications for the overall usability and efficiency
of eSim, as it introduces additional complexity and potential errors in the design pro-
cess. Addressing and rectifying these coordinate discrepancies would significantly
enhance the user experience and streamline the design workflow within eSim, ensur-
ing more accurate and consistent symbol placements throughout schematic creation
and circuit layout endeavors.

7.1 Example

One of the components affected by this coordinate problem in eSim is the ”dvsd 8 bit
priority encoder”. The red circle represents the actual symbol, while the blue circle
represents the cursor position.

19

Figure 7.1: Coordinate Issue of ”dvsd 8 bit priority encoder”

7.2 Reason

The coordinate issue is not a bug or problem specific to KiCad 4 or KiCad itself.
Rather, it is an issue related to eSim, which occurs in two distinct scenarios.

• Firstly, The coordinate problem arises during the conversion of Verilog files
to schematics within Makerchip. It seems that the schematic files generated
through this process exhibit the issue.

• Secondly, the coordinate issue is also observed in the context of HGHDL.

In both cases, the coordinates of the components or symbols within the gener-
ated schematics or during the simulation may not align accurately with the expected
cursor positions, leading to difficulties in precise placement and potential inconve-
niences in the design process.

7.2.1 KiCad Library Template

Drawing section:

kicad_lib_template = {

"start_def": "DEF comp_name U 0 40 Y Y 1 F N",

"U_field": "F0 \"U\" 2850 1800 60 H V C CNN",

"comp_name_field": "F1 \"comp_name\" 2850 2000 60 H V C CNN",

"blank_field": ["F2 blank_quotes 2850 1950 60 H V C CNN",

"F3 blank_quotes 2850 1950 60 H V C CNN"],

20

"start_draw": "DRAW",

"draw_pos": "S 2350 2100 3350 1800 0 1 0 N",

"input_port": "X in 1 2150 2000 200 R 50 50 1 1 I",

"output_port": "X out 2 3550 2000 200 L 50 50 1 1 O",

"end_draw": "ENDDRAW",

"end_def": "ENDDEF"

}

In the above template used for generating KiCad schematics using a Python script,
the template itself is structured as a Python dictionary. Within this template, there
is a specific section called ”draw pos” that holds values related to the positioning of
elements within the schematic.

To modify the ”draw pos” value, you can directly access and update the corre-
sponding key or keys . By adjusting the values within ”draw pos”; You can change
the positioning of elements as desired.

Make sure to identify the specific key or keys within the ”draw pos” section that
correspond to the elements you wish to reposition. Update the values associated
with these keys according to the desired coordinates or positional adjustments.

By making these modifications to the ”draw pos” values in the template, you
can effectively customize the positioning of elements within the generated KiCad
schematic through the Python script.

According to the Eeschema documentation

S X1 Y1 X2 Y2 part dmg pen fill Rectangle, from X1,Y1 to X2,Y2. Folders

To resolve the coordinate issue in the generated KiCad schematics, a Python script
can be used to modify the values of X1, Y1, X2, and Y2. By targeting the af-
fected components and accessing their ”draw pos” section, the script can adjust the
coordinates to correct the misalignment. This solution provides an automated ap-
proach to address the coordinate issue, ensuring accurate placement of elements in
the schematics.

21

Chapter 8

Porting KiCad 4 to KiCad 6

In the preceding chapters, I have discussed the process of porting KiCad 4 to KiCad
6. In this chapter, I will explore how eSim utilizes KiCad symbols for its Makerchip
and NGHDL features.

eSim’s Makerchip feature enables the conversion of Verilog/SystemVerilog files to
ngspice-compatible format. As part of this conversion, eSim generates a correspond-
ing KiCad symbol that represents the converted Verilog/SystemVerilog circuit. This
KiCad symbol serves as a visual representation of the circuit within the schematic.

Similarly, eSim’s NGHDL feature facilitates the conversion of VHDL files to
spice-compatible format. During the conversion, eSim generates a KiCad symbol
compared to the VHDL file. This KiCad symbol helps visualize the VHDL-based
circuit in the schematic.

8.1 Makerchip

Inside the eSim repository, you’ll find the ‘src/maker‘ folder. This folder contains
Python scripts responsible for converting Verilog files to ngspice-compatible format.
These scripts enable seamless integration between Verilog designs and the ngspice
simulation engine within eSim, facilitating accurate circuit simulation.

By utilizing these Python scripts, eSim provides users with a seamless pathway
to convert Verilog designs into a format compatible with ngspice, allowing for accu-
rate and efficient simulation of Verilog-based symbols.

To create new KiCad 6 symbols, the Kicad lib template needs to be modified
to align with the updated Eeschema format, which now utilizes S-Expressions. The
modified code may resemble the following structure:

kicad_sym_template = {

"start_def": "(symbol \"comp_name\" (pin_names (offset 1.016)) (in_bom

yes) (on_board yes)",↪→

22

https://github.com/PSR0001/eSim

"U_field":"(property \"Reference\" \"U\" (id 0) (at 12 15 0)(effects

(font (size 1.524 1.524))))",↪→

"comp_name_field":"(property \"Value\" \"comp_name\" (id 1) (at 12 18

0)(effects (font (size 1.524 1.524))))",↪→

"blank_field": [

"(property \"Footprint\" blank_quotes (id 2) (at 72.39

49.53 0)(effects (font (size 1.524 1.524))))",↪→

"(property \"Datasheet\" blank_quotes (id 3) (at 72.39

49.53 0)(effects (font (size 1.524 1.524))))"↪→

],

"draw_pos": "(symbol \"comp_name\"(rectangle (start 0 0) (end 25.40 3.6

)(stroke (width 0) (type default) (color 0 0 0 0))(fill (type

none))))",

↪→

↪→

"start_draw":"(symbol",

"input_port":"(pin input line(at -5.15 0.54 0)(length 5.08)(name \"in\"

(effects(font(size 1.27 1.27))))(number \"1\" (effects (font (size

1.27 1.27)))))",

↪→

↪→

"output_port": "(pin output line(at 30.52 0.54 180)(length 5.08)(name

\"out\" (effects(font(size 1.27 1.27))))(number \"2\" (effects (font

(size 1.27 1.27)))))",

↪→

↪→

"end_draw":"))"

}

By utilizing this modified Kicad lib template structure, the Python script dy-
namically generates accurate symbols based on the modified template, ensuring
alignment with desired specifications for seamless integration into KiCad 6.

For more details about Python Script here.

8.2 NGHDL

Inside the NGHDL repository, you’ll find the ‘src‘ folder. This folder contains
Python scripts responsible for converting VHDL files to ngspice-compatible format.

By utilizing these Python scripts, eSim provides users with a seamless pathway
to convert VHDL designs into a format compatible with ngspice, allowing for accu-
rate and efficient simulation of Verilog-based symbols.

To create new KiCad 6 symbols, the Kicad lib template needs to be modified
to align with the updated Eeschema format, which now utilizes S-Expressions. The
modified code may resemble the following structure:

KiCad V6 Symbol Template

kicad_sym_template = {

"start_def": "(symbol \"comp_name\" (pin_names (offset 1.016)) (in_bom

yes) (on_board yes)",↪→

23

https://github.com/PSR0001/eSim/blob/master/src/maker/createkicad.py
https://github.com/PSR0001/nghdl

"U_field":"(property \"Reference\" \"U\" (id 0) (at 6 7 0)(effects (font

(size 1.524 1.524))))",↪→

"comp_name_field":"(property \"Value\" \"comp_name\" (id 1) (at 8 10

0)(effects (font (size 1.524 1.524))))",↪→

"blank_field": [

"(property \"Footprint\" blank_quotes (id 2) (at 72.39

49.53 0)(effects (font (size 1.524 1.524))))",↪→

"(property \"Datasheet\" blank_quotes (id 3) (at 72.39

49.53 0)(effects (font (size 1.524 1.524))))"↪→

],

"draw_pos": "(symbol \"comp_name\"(rectangle (start 0 0) (end 15.25 2

)(stroke (width 0) (type default) (color 0 0 0 0))(fill (type

none))))",

↪→

↪→

"start_draw":"(symbol",

"input_port":"(pin input line(at -5.15 0.54 0)(length 5.08)(name \"in\"

(effects(font(size 1.27 1.27))))(number \"1\" (effects (font (size

1.27 1.27)))))",

↪→

↪→

"output_port": "(pin output line(at 20.38 0.54 180)(length 5.08)(name

\"out\" (effects(font(size 1.27 1.27))))(number \"2\" (effects (font

(size 1.27 1.27)))))",

↪→

↪→

"end_draw":"))"

}

By utilizing this modified Kicad lib template structure, the Python script dy-
namically generates accurate symbols based on the modified template, ensuring
alignment with desired specifications for seamless integration into KiCad 6.

For more details about Python Script here.

8.3 Makerchip and NGHDL generated symbols

On the left side, we have the symbol generated by Makerchip, which represents the
”test” component. This symbol is created through the Verilog/SystemVerilog to
ngspice conversion process. It visually represents the Verilog/SystemVerilog circuit
within the schematic.

On the right side, We have the symbol generated by NGHDL, which repre-
sents the ”decade counter” component. This symbol generates during the VHDL to
ngspice conversion process. It provides a visual representation of the VHDL-based
circuit within the schematic.

Both symbols serve the purpose of visually representing the corresponding cir-
cuits within eSim. They enable seamless integration between the hardware de-
scription languages (Verilog/SystemVerilog and VHDL) and the ngspice simulation
engine, facilitating accurate and efficient circuit simulation within the eSim environ-

24

https://github.com/PSR0001/nghdl/blob/master/src/createKicadLibrary.py

ment.

Figure 8.1: Example of makerchip and nghdl generated symbols

Also the newer symbols are more compact, the left one represents an older sym-
bol generated by eSim, while the right one represents a newer version. The major
difference between the two symbols is the increased compactness of the newer sym-
bol.

Figure 8.2: Before and After modified symbols

The newer symbol has undergone modifications to reduce its overall size and
make it more space-efficient. This compactness allows for better utilization of the
available area within the schematic, enabling a clearer representation of the compo-
nent while minimizing any potential visual clutter.

By optimizing the symbol’s design and layout, the newer version achieves a more
streamlined appearance without sacrificing its functionality or readability. This en-
hancement not only enhances the visual aesthetics of the schematic but also improves
the overall user experience when working with the symbol within the eSim environ-
ment.

25

Chapter 9

KiCad Installer

Creating a KiCad installer for Windows and Linux involves developing an installa-
tion package that simplifies the setup process.

For Windows, the installer can be an executable file that includes all the nec-
essary components and libraries. On Linux, the installer can automate package
management, handle dependencies, and ensuring a smooth installation experience.

9.1 Ubuntu 20.04

In Ubuntu, installing KiCad is a straightforward process. Open the Terminal and
run the following commands:

The New KiCad 6 installation steps are:

Adding KiCad-6 PPA to local apt-repository

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys

83FBAD2D910F124E↪→

sudo add-apt-repository --yes "deb [trusted=yes]

http://ppa.launchpad.net/kicad/kicad-6.0-releases/ubuntu focal main"↪→

sudo touch /etc/apt/preferences.d/preferences

echo "Package: kicad" | sudo tee -a /etc/apt/preferences.d/preferences >

/dev/null↪→

echo "Pin: version 6.0.11*" | sudo tee -a /etc/apt/preferences.d/preferences >

/dev/null↪→

echo "Pin-Priority: 501" | sudo tee -a /etc/apt/preferences.d/preferences >

/dev/null↪→

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys

3B4FE6ACC0B21F32↪→

sudo add-apt-repository --yes "deb http://archive.ubuntu.com/ubuntu/ focal main

universe"↪→

#Install KiCad V6.0.11

sudo apt-get install -y --no-install-recommends kicad

26

9.2 Windows

To build the KiCad executable for Windows, you have two options. The first option
is to build it from the source code, which involves setting up the build environment
and following the Windows-specific build instructions. The second option is using
the steps provided by the eSim team. This version is designed to work with eSim
and ensures compatibility and integration.

9.2.1 Build KiCad From its source

Building KiCad from its source code involves setting up the built environment on
your system and following the instructions provided for the Windows platform. By
building from source, you have more control over the customization and configura-
tion options. This approach allows you to tailor KiCad to your specific needs and
preferences, ensuring a personalized installation.

Unfortunately, I am unable to build KiCad from its source as I am facing diffi-
culties installing or creating the KiCad installation environment.

9.2.2 KiCad Installer for eSim

The steps provided by the eSim Team for building KiCad from its source are gen-
erally straightforward. However, I have encountered an issue related to the ”in-
stall.nsi” script, as there are differences between the file and folder structure of
KiCad 4 and KiCad 6. These differences are extensively discussed in the ”Differ-
ences between KiCad v4 and v6” section of the report. To successfully proceed
with the installation, modifications need to be made to the ”install.nsi” script to
accommodate the specific file and folder structure of the desired version of KiCad.

Figure 9.1: KiCad 6.0.11 Installer for windows

All the neccessary steps are in https://github.com/PSR0001/KiCad-eSim

27

https://github.com/PSR0001/KiCad-eSim

Chapter 10

NGHDL Installer

NGHDL eSim is a powerful open-source electronic simulator integrated into the eSim
software suite. It allows users to simulate and analyze digital electronic circuits using
a hardware description language (HDL) approach.

10.1 NGHDL Executable

After completing all the necessary changes in the NGHDL code, the NGHDL exe-
cutable is created using PyInstaller, as documented by the eSim team. PyInstaller
is a popular tool for converting Python scripts into standalone executables. By uti-
lizing PyInstaller, the NGHDL code can be packaged into a single executable file.

After following all the necessary steps

Figure 10.1: NGHDL executable

10.2 NGHDL Package

All the necessary components are added to the NGHDL package.

Figure 10.2: NGHDL ZIP

28

Chapter 11

eSim Installer

eSim Installer provides a convenient way to install eSim on Ubuntu and Windows
operating systems. It simplifies the setup process by automating the installation
and configuration steps. For Ubuntu, it ensures compatibility with the required
dependencies and streamlines the installation. On Windows, it offers a user-friendly
interface and takes care of the necessary dependencies. The eSim Installer signifi-
cantly simplifies the installation process of eSim, making it more accessible for users
on both platforms.

11.1 Ubuntu 20.04

Installing eSim with the new KiCad 6 version on Ubuntu using the eSim installer is a
straightforward process. It involves modifying the ”installKicad” and ”copyKicadLi-
brary” functions in the ”install-eSim.sh” bash script. By making these adjustments,
the eSim installer can seamlessly handle the installation of KiCad 6 and copy the
necessary KiCad libraries. These allow for a smooth and hassle-free installation
experience of eSim with the latest KiCad version on Ubuntu.

InstallKicad function with KiCad 6

function installKicad

{

echo "Installing KiCad..........................."

#sudo add-apt-repository ppa:js-reynaud/ppa-kicad

kicadppa="kicad/kicad-6.0-releases"

findppa=$(grep -h -r "^deb.*$kicadppa*" /etc/apt/sources.list* > /dev/null

2>&1 || test $? = 1)↪→

if [-z "$findppa"]; then

echo "Adding KiCad-6 PPA to local apt-repository"

if [[$(lsb_release -rs) == 20.*]]; then

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80

--recv-keys 83FBAD2D910F124E↪→

29

sudo add-apt-repository --yes "deb [trusted=yes]

http://ppa.launchpad.net/kicad/kicad-6.0-releases/ubuntu focal

main"

↪→

↪→

sudo touch /etc/apt/preferences.d/preferences

echo "Package: kicad" | sudo tee -a

/etc/apt/preferences.d/preferences > /dev/null↪→

echo "Pin: version 6.0.11*" | sudo tee -a

/etc/apt/preferences.d/preferences > /dev/null↪→

echo "Pin-Priority: 501" | sudo tee -a

/etc/apt/preferences.d/preferences > /dev/null↪→

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80

--recv-keys 3B4FE6ACC0B21F32↪→

sudo add-apt-repository --yes "deb http://archive.ubuntu.com/ubuntu/

focal main universe"↪→

else

sudo add-apt-repository ppa:kicad/kicad-6.0-releases

fi

else

echo "KiCad-6 is available in synaptic"

fi

sudo apt-get install -y --no-install-recommends kicad

if [[$(lsb_release -rs) == 20.*]]; then

sudo add-apt-repository -ry "deb http://archive.ubuntu.com/ubuntu/ focal

main universe"↪→

fi

}

CopyKicadLibrary function to copy all the KiCad 6 symbols and tem-
plates to usr/share/kicad folder.

function copyKicadLibrary

{

if [-d ~/.config/kicad/6.0];then

echo "kicad folder already exists"

else

echo ".config/kicad does not exist"

mkdir -p ~/.config/kicad/6.0

fi

Dump KiCad config path

echo "$HOME/.config/kicad" >

$eSim_Home/library/supportFiles/kicad_config_path.txt↪→

#Copy fp-lib-table for switching modes

cp -r library/supportFiles/fp-lib-table ~/.config/kicad/6.0

cp -r library/supportFiles/fp-lib-table-online ~/.config/kicad/6.0

30

echo "fp-lib-table copied in the directory"

copy sym-lib-table for eSim-custom symbols

cp -r library/supportFiles/sym-lib-table ~/.config/kicad/6.0

echo "sym-lib-table copied in the directory"

#Extract custom KiCad Library

tar -xJf library/kicadLibrary.tar.xz

#Copy KiCad libraries

echo "Copying KiCad libraries...................."

sudo cp -r kicadLibrary/symbols /usr/share/kicad/

sudo cp -r kicadLibrary/footprints /usr/share/kicad/

sudo cp -r kicadLibrary/template/* /usr/share/kicad/template/

#Copy KiCad library made for eSim

sudo cp -r kicadLibrary/kicad_eSim-Library/* /usr/share/kicad/symbols/

Full path of ’kicad.pro file’

KICAD_PRO="/usr/share/kicad/template/kicad.kicad_pro"

KICAD_ORIGINAL="/usr/share/kicad/template/kicad.pro.original"

if [-f "$KICAD_ORIGINAL"];then

echo "kicad.pro.original file found"

sudo cp -rv kicadLibrary/template/kicad.kicad_pro ${KICAD_PRO}

else

echo "Making copy of original file"

sudo cp -rv ${KICAD_PRO}{,.original}

sudo cp -rv kicadLibrary/template/kicad.kicad_pro ${KICAD_PRO}

fi

set +e # Temporary disable exit on error

trap "" ERR # Do not trap on error of any command

Remove extracted KiCad Library - not needed anymore

rm -rf kicadLibrary

set -e # Re-enable exit on error

trap error_exit ERR

#Change ownership from Root to the User

sudo chown -R $USER:$USER /usr/share/kicad/symbols/

}

31

11.2 Windows

Creating an installer for eSim is a complex task due to its numerous dependencies. It
involves gathering and bundling all the required dependencies and configuring the
NSI script accordingly. The NSI script handles the installation process, ensuring
that all dependencies are properly installed. This comprehensive approach ensures
that users can easily set up eSim on their systems, with the installer taking care of
the intricate process of managing dependencies and providing a streamlined instal-
lation experience.

11.2.1 eSim Executable

eSim executable is created using pyinstaller a python library for creating the exe-
cutable for windows. All the codes related to KiCad 6 is already updated.

The step by step guidance are in https://github.com/PSR0001/eSim

Figure 11.1: eSim Executable

32

https://github.com/PSR0001/eSim/tree/installers/Windows

11.2.2 Package eSim

Figure 11.2: Installer Folder

After executing the ”esim-setup-script-sky130.nsi” file in NSIS (Nullsoft Scriptable
Install System),

Figure 11.3: eSim Installer

33

Chapter 12

sym-lib-table

KiCad organizes symbols into symbol libraries, which hold collections of symbols.
Each symbol in a schematic is uniquely identified by a full name that is composed
of a library nickname and a symbol name.

12.1 Manage symbol library

KiCad uses a table of symbol libraries to map a symbol library nickname to an
underlying symbol library on disk. Kicad uses a global symbol library table as
well as a table specific to each project. To edit either symbol library table, use
Preferences >Manage Symbol Libraries...

Figure 12.1: Manage symbols in KiCad 6

The global symbol library table contains the list of libraries that are always

34

available regardless of the currently loaded project. The table is saved in the file
sym-lib-table in the KiCad configuration folder.

12.2 Configuration Folder

• Windows
\AppData\Roaming\kicad\6.0

• Ubuntu
./config/kicad/6.0

12.3 Add eSim Custom Symbols to sym-lib-table

Please add the following code to the sym-lib-table:

1 (lib (name "eSim_Analog")(type "KiCad")(uri "${

KICAD6_SYMBOL_DIR }/ eSim_Analog.kicad_sym")(options "")(

descr ""))

2 (lib (name "eSim_Devices")(type "KiCad")(uri "${

KICAD6_SYMBOL_DIR }/ eSim_Devices.kicad_sym")(options "")(

descr ""))

3 (lib (name "eSim_Digital")(type "KiCad")(uri "${

KICAD6_SYMBOL_DIR }/ eSim_Digital.kicad_sym")(options "")(

descr ""))

4 (lib (name "eSim_Hybrid")(type "KiCad")(uri "${

KICAD6_SYMBOL_DIR }/ eSim_Hybrid.kicad_sym")(options "")(

descr ""))

5 (lib (name "eSim_Miscellaneous")(type "KiCad")(uri "${

KICAD6_SYMBOL_DIR }/ eSim_Miscellaneous.kicad_sym")(

options "")(descr ""))

6 (lib (name "eSim_Nghdl")(type "KiCad")(uri "${

KICAD6_SYMBOL_DIR }/ eSim_Nghdl.kicad_sym")(options "")(

descr ""))

7 (lib (name "eSim_Ngveri")(type "KiCad")(uri "${

KICAD6_SYMBOL_DIR }/ eSim_Ngveri.kicad_sym")(options "")(

descr ""))

8 (lib (name "eSim_Plot")(type "KiCad")(uri "${

KICAD6_SYMBOL_DIR }/ eSim_Plot.kicad_sym")(options "")(

descr ""))

9 (lib (name "eSim_SKY130")(type "KiCad")(uri "${

KICAD6_SYMBOL_DIR }/ eSim_SKY130.kicad_sym")(options "")(

descr ""))

10 (lib (name "eSim_SKY130_Subckts")(type "KiCad")(uri "${

KICAD6_SYMBOL_DIR }/ eSim_SKY130_Subckts.kicad_sym")(

options "")(descr ""))

11 (lib (name "eSim_Sources")(type "KiCad")(uri "${

KICAD6_SYMBOL_DIR }/ eSim_Sources.kicad_sym")(options "")(

descr ""))

35

12 (lib (name "eSim_Subckt")(type "KiCad")(uri "${

KICAD6_SYMBOL_DIR }/ eSim_Subckt.kicad_sym")(options "")(

descr ""))

13 (lib (name "eSim_User")(type "KiCad")(uri "${

KICAD6_SYMBOL_DIR }/ eSim_User.kicad_sym")(options "")(

descr ""))

12.4 Edit sym-lib-table for eSim

Optimizing the sym-lib-table can significantly improve the execution efficiency by
avoiding the unnecessary loading of all symbols. Since loading symbols consumes
considerable time and CPU resources, it is advisable to select only the required
symbols to include. By customizing the sym-lib-table to include specific symbols,
you can streamline the process, reduce overhead, and enhance overall performance.
This approach ensures a more efficient execution of the script, striking a balance be-
tween functionality and resource utilization. Ultimately, such optimization results
in faster processing, improved user experience, and optimal utilization of computa-
tional power and time.

12.4.1 Example

Only custom eSim symbols are currently loaded here.

Figure 12.2: Custom sym-lib-table

36

12.5 Add sym-lib-table to eSim Installer

• Windows

1 CopyFiles "$INSTDIR\eSim\library\supportFiles\

sym-lib-table" "$PROFILE\AppData\Roaming\kicad

\6.0\"

• Ubuntu

1 # copy sym-lib-table for eSim-custom symbols

2 cp -r library/supportFiles/sym-lib-table ~/. config/

kicad /6.0

3 echo "sym-lib-table copied in the directory"

37

Chapter 13

Bugs

13.1 Bug: eSim crash on schematic editor

An issue has been identified where eSim crashes when opening or editing a schematic
without any project selection. This problem occurs when attempting to perform
these actions without selecting a specific project in eSim.

Here the details https://github.com/FOSSEE/eSim/issues/241

13.2 Bug: Access the Verilog model’s symbols

Users can access Verilog model symbols for KiCad even after deleting the model
from Ngveri. It is expected that the model’s symbol would no longer be accessible
in KiCad after deleting it from Ngveri. However, inside the eSim/src/maker folder,
there are no codes to delete that symbol.

Here the details https://github.com/FOSSEE/eSim/issues/237

13.3 Bug: Coordinate issue

The Coordinate issue is already detailed and explained in the dedicated chapter
specifically addressing this problem.

13.4 Error: 0xc0000142

During the eSim installation, I encountered the error message ”Application Unable
to Start Correctly (Error: 0xc0000142).” This error was caused by the presence of
a winAVR installation on my system.

38

https://github.com/FOSSEE/eSim/issues/241
https://github.com/FOSSEE/eSim/issues/237

13.4.1 Solution

Uninstalling winAVR, it is recommended to uninstall all C-program related compil-
ers and utilities. This ensures a clean removal of any conflicting components that
may be causing the error.

Here the details stackoverflow

Figure 13.1: Error: 0xc0000142

39

https://stackoverflow.com/questions/33679486/eclipse-using-mingw-make-fails-without-msys

Chapter 14

Conclusion and Future Scope

I successfully achieved the target of porting KiCad 4 to KiCad 6 and installed eSim
with KiCad 6. I tested it with various circuits and encountered some bugs/issues
during the testing period. One of the issues I faced was the Coordinate issue, which
is clearly mentioned in this report.I successfully installed eSim in both Ubuntu and
Windows, integrating it with KiCad 6. I found that the overall performance was
good, and KiCad 6 was well synchronized with eSim. The integration between the
two platforms worked seamlessly, allowing for a smooth and efficient circuit simula-
tion experience.

The future work involves removing the integrated Ngspice simulation from eSim
in KiCad 6 and improving the overall performance to make it more efficient. The
objective is to separate the Ngspice integration from eSim while retaining its inte-
gration with KiCad 6. This step aims to optimize the performance and functionality
of eSim, enhancing the circuit simulation experience.

40

Bibliography

[1] FOSSEE Official Website. 2023.
URL: https://fossee.in

[2] KiCad Offical Website. 2023.
URL: https://www.kicad.org

[3] Kicad Documentation.
URL: https://docs.kicad.org

[4] Kicad KLC(KiCad Library Convention).
URL: https://klc.kicad.org/

[5] Kicad Library Format.
URL: https://www.compuphase.com/electronics/LibraryFileFormats.

pdf

[6] Kicad S-Expression.
URL: https://dev-docs.kicad.org/en/file-formats/sexpr-intro/

[7] Kicad File and Folders.
URL: https://docs.kicad.org/6.0/en/kicad/kicad.html#kicad_files_

and_folders

[8] Green Display.
URL: https://www.reddit.com/r/KiCad/comments/ta44dq/green_lines_

in_kicad_602/

[9] Horizantal Green Line.
URL: https://forum.kicad.info

[10] STM32 Board Desigm:
URL:

[11] Horizantal Green Line.
URL:

41

https://fossee.in
https://www.kicad.org
https://docs.kicad.org
https://klc.kicad.org/
https://www.compuphase.com/electronics/LibraryFileFormats.pdf
https://www.compuphase.com/electronics/LibraryFileFormats.pdf
https://dev-docs.kicad.org/en/file-formats/sexpr-intro/
https://docs.kicad.org/6.0/en/kicad/kicad.html#kicad_files_and_folders
https://docs.kicad.org/6.0/en/kicad/kicad.html#kicad_files_and_folders
https://www.reddit.com/r/KiCad/comments/ta44dq/green_lines_in_kicad_602/
https://www.reddit.com/r/KiCad/comments/ta44dq/green_lines_in_kicad_602/
https://forum.kicad.info/t/solved-horizontal-green-lines-in-every-kicad-6-application/33715

	Introduction
	Why KiCad v6 ?
	KiCad v6.0.11 :

	PCB Design
	STM32 Board Design

	KiCad integrated Ngspice Simulation
	Example

	Differences between KiCad V4 and V6
	New File Format
	File Extension
	Folders

	Conversion KiCad 4 to KiCad 6
	.sch to .kicad_sch
	.lib to .kicad_sym
	KiCad Display Setting
	Netlist Generation
	The "??" mark Problem

	Coordinate Issue
	Example
	Reason
	KiCad Library Template

	Porting KiCad 4 to KiCad 6
	Makerchip
	NGHDL
	Makerchip and NGHDL generated symbols

	KiCad Installer
	Ubuntu 20.04
	Windows
	Build KiCad From its source
	KiCad Installer for eSim

	NGHDL Installer
	NGHDL Executable
	NGHDL Package

	eSim Installer
	Ubuntu 20.04
	Windows
	eSim Executable
	Package eSim

	sym-lib-table
	Manage symbol library
	Configuration Folder
	Add eSim Custom Symbols to sym-lib-table
	Edit sym-lib-table for eSim
	Example

	Add sym-lib-table to eSim Installer

	Bugs
	Bug: eSim crash on schematic editor
	Bug: Access the Verilog model's symbols
	Bug: Coordinate issue
	Error: 0xc0000142
	Solution

	Conclusion and Future Scope
	Bibliography

