
On

Submitted by

Subhradip Chakraborty

Under the guidance of

Prof.Kannan M. Moudgalya

Chemical Engineering Department

IIT Bombay

April 12, 2023

Implementing processors in eSim

Winter Internship Report

Acknowledgment

I would like to express my gratitude to the FOSSEE team for providing me with
an excellent opportunity. This internship has provided a deep insight into the tech-
nology that industry is focused on and also it gave me opportunity to promote and
help developing an opensource community.My heartfelt thanks go to Prof. Kannan
M. Moudgalya for his invaluable and constructive input during the planning and
execution of our research work.
I want to extend my gratitude to the eSim team for providing me with all the nec-
essary resources and guidance throughout the project. Our mentors Mr. Sumanto
Kar, Mr. Rahul Paknikar, and Mrs. Usha Vishwanathan, as well as the entire team
helped and supported me throught the internship period, which will undoubtedly
benefit me in the near future. Their dedication and hard work made my fellowship
experience a joyous one. I would like to give a special mention to Mr. Sumanto
Kar for his willingness to share his knowledge and assist me whenever I was stuck
in executing the problem statement.
I plan upon using the knowledge and experiences gained here to enhance my ca-
reer growth and contribute to the betterment of society. The wonderful experiences
I gained here during the as fresher trying to get into the VLSI industry will be
cherished for a lifetime.

1

Contents

1 Introduction 4
1.1 eSim . 4
1.2 NGHDL . 4
1.3 Makerchip . 4
1.4 EDA Playground . 5

2 Problem Statement 6
2.1 Approach . 6

3 Basic-SIMD-Processor 7
3.1 Block Diagram . 7
3.2 Simulation of SIMD ALU . 8

3.2.1 SIMD Adder . 8
3.2.2 SIMD Shifter . 9
3.2.3 SIMD Multiply . 9

3.3 Implmentation of the processor . 10
3.3.1 Simulation in Makerchip . 15
3.3.2 Simulation in eSim . 18

4 MIPS Processor 19
4.1 Architecture . 19
4.2 Simulation of the processor . 20

4.2.1 Simulation of ALU . 20
4.2.2 Simulation of processor using testbench 21
4.2.3 Simulation of processor in makerchip 24
4.2.4 Simulation of processor in eSim 26

5 Ngveri Keywords In eSim-2.3 28

6 Simulating Digital Circuits for MU 29
6.0.1 Mux . 29
6.0.2 DeMux . 30
6.0.3 Decoder IC 74138 . 31
6.0.4 D Flip Flop . 33
6.0.5 JK Flip Flop . 33
6.0.6 SR Flip Flop . 34
6.0.7 Universal Shift Register . 35

2

6.0.8 Updown Counter . 37

Bibliography 39

3

Chapter 1

Introduction

FOSSEE (Free/Libre and Open Source Software for Education) is a project part of
the National Mission on Education through Information and Communication Tech-
nology (ICT), Ministry of Human Resource Development (MHRD), Government of
India. FOSSEE has developed various open source tools and promotes the use of
these tools in improving the quality of education and helping every individual avail
these sources free of cost. The softwares is being developed in such a way that it
can stay relevant with respect to the commercial softwares.[1]

1.1 eSim

eSim is a free/libre and open source EDA tool for circuit design, simulation, analysis
and PCB design developed by FOSSEE, IIT Bombay. It is an integrated tool built
using free/libre and open source software such as KiCad, Ngspice, NGHDL and
GHDL.

1.2 NGHDL

NGHDL is a mixed mode circuit simulator developed by FOSSEE, using NgSpice
and GHDL. The NGHDL feature makes it easier to create user-defined models for
eSim’s simulation of mixed-signal circuits. In NGHDL, the analogue and digital
components communicate through sockets and NgSpice is used to simulate the ana-
logue components and GHDL to simulate the digital components. This feature was
added to eSim so that a user who is familiar with designing circuits in Verilog can
do so with eSim. In order to write Verilog code for a digital model and install it as
a model in Ngspice, NGHDL offers an interface.

1.3 Makerchip

Makerchip is an online browser based IDE which is developed on verilator which
is used to perform simulation of Verilog/ System Verilog/ TL-Verilog based files.
Verilator is a tool which converts the Verilog files to C++ object. Before converting
a verilog file in ngveri in eSim first the design is simulated here with random inputs

4

to check whether the design is producing consistent and desired results. If the design
is correctly simulated we proceed with our mixed signal design.

1.4 EDA Playground

EDA Playground is an online browser based emulator which is used to edit, simulate
and synthesize SystemVerilog, Verilog, VHDL and other HDLs. I have used the EDA
Playground as it is free of cost and effective in writing testbenches for the complex
processor design that we are going to implement on eSim. The testbench execution
capability is also used to verify some of the open source processor testbenches which
were used to find the functioning of the processor.

5

Chapter 2

Problem Statement

Implementing open source microcontrollers/processors using NGHDL
present in eSim so that the user can simulate these processors in eSim
by changing the instruction sets which can be changed from file or by
providing instruction through the input pins in KiCad.

2.1 Approach

The general approach which I used to implement the problem statement is first
searching from an open source processor on GitHub or Opencores which have any
open source licensing such as MIT license. Then the implementation process is as
follows:

• The verilog code, each file by file was simulated in makerchip and then fed to
Ngveri to see if it converts correctly without throwing any error.

• Then that individual file is simulated and the Ngspice waveform is generated
to check the desired waveform.

• After all the components are simulated the final cputop file is simulated in
makerchip and a module is created to link the input instruction with that of
the processor top file. Then the simulations and conversion takes place by
adding the other files as dependencies in ngveri.

• The final object is simulated in Ngspice to check the final result of the processor
instruction set.

6

Chapter 3

Basic-SIMD-Processor

It is a simple SIMD processor which is designed in verilog and has a 16-bit SIMD
ALU. The ALU operation takes two clock cycles, the first cycle is used to load values
into the registers and the second is used to perform the operations. The instruction
used by this processor is 18 bit. This is an open source processor available on github
(link: https://github.com/zslwyuan/Basic-SIMD-Processor-Verilog-Tutorial). This
project was chosen because this processor is used for layout design and post layout
simulations were performed.

3.1 Block Diagram

Figure 3.1: Block Diagram Implementation of Processor [3]

In a simple processor without a pipeline the processor is divided into 5 stages. The
five stages are Information Fetch (IF), Information Decode (ID), Execute (EX),
Memory (MEM) and Write Back (WB). A 10 bit address is used to fetch the in-
struction set from the instruction memory and this operation is performed in the IF
stage. In the next stage the instruction is decoded and some of the control registers

7

will be set. In the EX stage mainly the ALU operations are performed or some
control signals like jump are implemented. If the information contains any store or
load then the MEM stage is used to perform those operations. The WB stage is the
last stage where the data processed is written back to the registers.

3.2 Simulation of SIMD ALU

3.2.1 SIMD Adder

The SIMD adder is first simulated in makerchip and then implemented in eSim. It
is based on 4 4 bit adders which supports subtraction also. There are three control
signals H,O and Q which are used to control the different width of the input signal.
This control supports the forwarding of the carry bit.

Figure 3.2: Implemented the Adder circuit in eSim

Figure 3.3: Simulation of Adder circuit in eSim

8

3.2.2 SIMD Shifter

The SIMD shifter is based on two 16 bit shifters which support different widths. In
this block the shifter uses two control signals H and O which are used to determine
whether the MSB of the 4 bit block should take 0 or the value from the LSB in front
of it. Similarly like the adder circuit we simulate the shifter also.

Figure 3.4: Implemented the Shifter circuit in eSim

3.2.3 SIMD Multiply

The SIMD multiplier is based on the SIMD adder and SIMD shifter. Here also we
have three control signals H,O,Q and are used to control the input width. It is
implemented as a typical multiplier circuit where the adder is utilized and the least
significant 16 bits of the sum is the output of multiplication. Similarly like the adder
circuit we simulate the multiplier also.

Figure 3.5: Implemented the Multiplier circuit in eSim

9

3.3 Implmentation of the processor

The cputop file is has to be simulated for the processor perform the operations. Our
objective is to implement it on eSim, so we cannot directly use the top file, we have
to design a code which provides the instruction set to the top file just like a test-
bench. The first approach which I used to implement this technique was to design
a connector block having the input ports as values and instruction set and output
is connected to the top file manually in Kicad. The problem with this approach
is that because of the two separate blocks there are timing issues which interfered
with the desired output. The second approach that i used is that to call the top
file inside this conncector file and add those files as dependencies during conversion.
This approach worked and gave us the correct output.

The authors of the opensource processor has provided us with the sample instuc-
tion sets those are:

INST_MEM[0] = 18’b100110_00_0000000000; // load MEM0 into H0

load16bit R0 im=0000000000↪→

INST_MEM[1] = 18’b100110_01_0000000001; // load MEM1 into H1

load16bit R1 im=0000000001↪→

INST_MEM[2] = 18’b100110_10_0000000010; // load MEM2 into H2

load16bit R2 im=0000000010↪→

INST_MEM[3] = 18’b000000_00000000_00_01; // add H1 to H0

add16bit R0=0000000000000101 R1=0000000000001111↪→

INST_MEM[4] = 18’b000000_00000000_10_00; // add H0 to H2

add16bit R2=0000000000000100 R0=0000000000010100↪→

INST_MEM[5] = 18’b101001_00_0000000000; // store H0 back into MEM0

store16bit R0=0000000000010100 im=0000000000↪→

INST_MEM[6] = 18’b101100_01_0100100010; // set H1 to 0100100010

set16bit R1 im=0100100010↪→

INST_MEM[7] = 18’b000000_00000000_01_10; // add H2 to H1

add16bit R1=0000000100100010 R2=0000000000011000↪→

INST_MEM[8] = 18’b101001_01_0000000011; // store H1 back into MEM3

store16bit R1=0000000100111010 im=0000000011↪→

INST_MEM[9] = 18’b101001_10_0000000100; // store H2 back into MEM4

store16bit R2=0000000000011000 im=0000000100↪→

INST_MEM[10] = 18’b101001_00_0000000101; // store H0 back into MEM5

store16bit R0=0000000000010100 im=0000000101↪→

INST_MEM[11] = 18’b100111_01_0000000010; // load MEM2 into O1

load8bit R1 im=0000000010↪→

INST_MEM[12] = 18’b100111_10_0000000011; // load MEM3 into O2

load8bit R2 im=0000000011↪→

INST_MEM[13] = 18’b100111_00_0000000100; // load MEM4 into O0

load8bit R0 im=0000000100↪→

10

INST_MEM[14] = 18’b101101_01_0001011010; // set each register in O1 set8bit

R1 im=0001011010↪→

INST_MEM[15] = 18’b100101_00_0000000010; // setloop = 2 setloop

im= 2↪→

INST_MEM[16] = 18’b000001_00000000_00_01; // add O0 to O1 add8bit

R0=0000000000011000 R1=0101101001011010↪→

INST_MEM[17] = 18’b000001_00000000_10_00; // add O2 to O0 add8bit

R2=0000000100111010 R0=0101101001110010↪→

INST_MEM[18] = 18’b000111_00000000_10_01; // sub O1 from O2 sub8bit

R2=0101101110101100 R1=0101101001011010↪→

INST_MEM[19] = 18’b001101_00000000_10_01; // mul O2 with O1 mul8bit

R2=0000000101010010 R1=0101101001011010↪→

INST_MEM[20] = 18’b101010_01_0000000101; // store O1 MEM5 into

store8bit R1=0101101001011010 im=0000000101↪→

INST_MEM[21] = 18’b101010_10_0000000110; // store O2 MEM6 into O2

store8bit R2=0101101011010100 im=0000000110↪→

INST_MEM[22] = 18’b101010_00_0000000111; // store O0 MEM7 into O0

store8bit R0=0101101001110010 im=0000000111↪→

INST_MEM[23] = 18’b100110_01_0000000101; // load MEM5 into H1

load16bit R1 im=0000000101↪→

INST_MEM[24] = 18’b100110_10_0000000111; // load MEM7 into H2

load16bit R2 im=0000000111↪→

INST_MEM[25] = 18’b001100_00000000_10_01; // mul H2 with H1

mul16bit R2=0101101001110010 R1=0101101001011010↪→

INST_MEM[26] = 18’b000110_00000000_10_01; // sub H1 from H2

sub16bit R2=1110000000010100 R1=0101101001011010↪→

INST_MEM[27] = 18’b011000_0000000000_01; // shift right H1

Rshift16bit R1=0101101001011010↪→

INST_MEM[28] = 18’b010101_0000000000_10; // shift left H2

Lshift16bit R2=1000010110111010↪→

INST_MEM[29] = 18’b000011_10_0000001110; // add im_number into H2

add16bit R2=0000101101110100 im=0000001110↪→

INST_MEM[30] = 18’b001001_10_0000001110; // sub im_number from H2

sub16bit R2=0000101110000010 im=0000001110↪→

INST_MEM[31] = 18’b100001_0000000000_10; // not H2

not16bit R2=0000101101110100↪→

INST_MEM[32] = 18’b011011_00000000_01_00; // H1 and H0

and16bit R1=0010110100101101 R0=0000000000010100↪→

INST_MEM[33] = 18’b011110_00000000_10_01; // H2 or H1 or16bit

R2=1111010010001011 R1=0000000000000100↪→

11

INST_MEM[34] = 18’b101100_00_0000001111; // set H0 to 0000001111

set16bit R0 im=0000001111↪→

INST_MEM[35] = 18’b101100_01_0000000100; // set H1 to 0000000100

set16bit R1 im=0000000100↪→

INST_MEM[36] = 18’b101100_10_0000000010; // set H2 to 0000000010

set16bit R2 im=0000000010↪→

INST_MEM[37] = 18’b010010_000000_00_01_10; // H0+H1*H2

MAC16bit R0=0000000000001111 R1=0000000000000100 R2=0000000000000010↪→

INST_MEM[38] = 18’b001001_00_0000001000; // sub im_number from H0

sub16bit R0=0000000000010111 im=0000001000↪→

INST_MEM[39] = 18’b001111_01_0000001101; // mul H1 with im_number

mul16bit R1=0000000000000100 im=0000001101↪→

INST_MEM[40] = 18’b101001_01_0000000111; // store H1 back into MEM7

store16bit R1=0000000000110100 im=0000000111↪→

INST_MEM[41] = 18’b101001_10_0000000100; // store H2 back into MEM4

store16bit R2=0000000000000010 im=0000000100↪→

INST_MEM[42] = 18’b101001_00_0000001000; // store H0 back into MEM8

store16bit R0=0000000000001111 im=0000001000↪→

INST_MEM[43] = 18’b100111_01_0000000110; // load MEM6 into O1

load8bit R1 im=0000000110↪→

INST_MEM[44] = 18’b100111_10_0000000111; // load MEM7 into O2

load8bit R2 im=0000000111↪→

INST_MEM[45] = 18’b100111_00_0000001000; // load MEM8 into O0

load8bit R0 im=0000001000↪→

INST_MEM[46] = 18’b011001_0000000000_01; // shift right O1

Rshift8bit R1=0101101011010100↪→

INST_MEM[47] = 18’b010110_0000000000_10; // shift left O2

Lshift8bit R2=0000000000110100↪→

INST_MEM[48] = 18’b000100_10_0000001110; // add im_number into O2 add8bit

R2=0000000001101000 im=0000001110↪→

INST_MEM[49] = 18’b001010_10_0000001110; // sub im_number from O2 sub8bit

R2=0000111001110110 im=0000001110↪→

INST_MEM[50] = 18’b100010_0000000000_10; // not O2 not8bit

R2=0000000001101000↪→

INST_MEM[51] = 18’b011100_00000000_01_00; // O1 and O0 and8bit

R1=0010110101101010 R0=0000000000001111↪→

INST_MEM[52] = 18’b011111_00000000_10_01; // O2 or O1 or8bit

R2=1111111110010111 R1=0000000000001010↪→

INST_MEM[53] = 18’b101101_00_0000001111; // set O0 to 0000001111 set8bit

R0 im=0000001111↪→

INST_MEM[54] = 18’b101101_01_0000000100; // set O1 to 0000000100 set8bit

R1 im=0000000100↪→

12

INST_MEM[55] = 18’b101101_10_0000000010; // set O2 to 0000000010 set8bit

R2 im=0000000010↪→

INST_MEM[56] = 18’b010011_000000_00_01_10; // O0+O1*O2 MAC8bit

R0=0000111100001111 R1=0000010000000100 R2=0000001000000010↪→

INST_MEM[57] = 18’b001010_00_0000001000; // sub im_number from O0 sub8bit

R0=0001011100010111 im=0000001000↪→

INST_MEM[58] = 18’b010000_01_0000001101; // mul O1 with im_number mul8bit

R1=0000010000000100 im=0000001101↪→

INST_MEM[59] = 18’b101010_01_0000001001; // store O1 into MEM9

store8bit R1=0011010000110100 im=0000001001↪→

INST_MEM[60] = 18’b101010_10_0000000110; // store O2 into MEM6

store8bit R2=0000001000000010 im=0000000110↪→

INST_MEM[61] = 18’b101010_00_0000000111; // store O0 into MEM7

store8bit R0=0000111100001111 im=0000000111↪→

INST_MEM[62] = 18’b101000_01_0000001001; // load MEM9 into Q1

load4bit R1 im=0000001001↪→

INST_MEM[63] = 18’b101000_10_0000000110; // load MEM6 into Q2

load4bit R2 im=0000000110↪→

INST_MEM[64] = 18’b101000_00_0000000111; // load MEM7 into Q0

load4bit R0 im=0000000111↪→

INST_MEM[65] = 18’b101110_10_0001011010; // set each register in Q2 set4bit

R2 im=0001011010↪→

INST_MEM[66] = 18’b011010_0000000000_01; // shift right Q1

Rshift4bit R1=0011010000110100↪→

INST_MEM[67] = 18’b010111_0000000000_10; // shift left Q2

Lshift4bit R2=1010101010101010↪→

INST_MEM[68] = 18’b000101_10_0000001110; // add im_number into Q2 add4bit

R2=0100010001000100 im=0000001110↪→

INST_MEM[69] = 18’b001011_10_0000001110; // sub im_number from Q2 sub4bit

R2=0010001000100010 im=0000001110↪→

INST_MEM[70] = 18’b100011_0000000000_10; // not Q2 not4bit

R2=0100010001000100↪→

INST_MEM[71] = 18’b011101_00000000_01_00; // Q1 and Q0 and4bit

R1=0001001000010010 R0=0000111100001111↪→

INST_MEM[72] = 18’b100000_00000000_10_01; // Q2 or Q1 or4bit

R2=1011101110111011 R1=0000001000000010↪→

INST_MEM[73] = 18’b101110_00_0000001111; // set Q0 to 0000001111 set4bit

R0 im=0000001111↪→

INST_MEM[74] = 18’b101110_01_0000000100; // set Q1 to 0000000100 set4bit

R1 im=0000000100↪→

INST_MEM[75] = 18’b101110_10_0000000010; // set Q2 to 0000000010 set4bit

R2 im=0000000010↪→

13

INST_MEM[76] = 18’b010100_000000_00_01_10; // Q0+Q1*Q2 MAC4bit

R0=1111111111111111 R1=0100010001000100 R2=0010001000100010↪→

INST_MEM[77] = 18’b001011_00_0000001000; // sub im_number from Q0 sub4bit

R0=0111011101110111 im=0000001000↪→

INST_MEM[78] = 18’b010001_01_0000000101; // mul Q1 with im_number mul4bit

R1=0100010001000100 im=0000000101↪→

INST_MEM[79] = 18’b101110_01_0001011010; // set each register in Q1 set4bit

R1 im=0001011010↪→

INST_MEM[80] = 18’b000010_00000000_00_01; // add Q0 to O1 add4bit

R0=1111111111111111 R1=1010101010101010↪→

INST_MEM[81] = 18’b000010_00000000_10_00; // add Q2 to Q0 add4bit

R2=0010001000100010 R0=1001100110011001↪→

INST_MEM[82] = 18’b001000_00000000_10_01; // sub Q1 from Q2 sub4bit

R2=1011101110111011 R1=1010101010101010↪→

INST_MEM[83] = 18’b001110_00000000_10_01; // mul Q2 with Q1 mul4bit

R2=0001000100010001 R1=1010101010101010↪→

INST_MEM[84] = 18’b101011_01_0000001001; // store Q1 into MEM9

store4bit R1=1010101010101010 im=0000001001↪→

INST_MEM[85] = 18’b101011_10_0000000110; // store Q2 into MEM6

store4bit R2=1010101010101010 im=0000000110↪→

INST_MEM[86] = 18’b101011_00_0000000111; // store Q0 into MEM7

store4bit R0=1001100110011001 im=0000000111↪→

INST_MEM[87] = 18’b100100_00_0000010000; // jump to 16

loopjump LC= x im= 16↪→

INST_MEM[88] = 18’b111111_000000000000; // halt

DATA_MEM[0] = 5;

DATA_MEM[1] = 15;

DATA_MEM[2] = 4;

14

3.3.1 Simulation in Makerchip

The code that i used to connect the top file of the processor is written below. Here
only few of the instruction sets were taken to check the working of the processor
whether it provided us a correct output. In this instrction set choses it add two
numbers a and b and store it in register which is indicated by the makerchip wave-
form given below.

module fossee_proc1(

input clk,

input rst,

input [15:0] a,

input [15:0] b,

input [15:0] c,

input [15:0] inst_in,

output reg done,

output reg [17:0] instruction_in,

output reg [15:0] data_in,

output reg [15:0] data_out,

output reg [9:0] instruction_addr,

output reg [9:0] data_addr,

output reg data_R,

output reg data_W

);

reg [17:0] INST_MEM[1023:0];

reg [15:0] DATA_MEM[1023:0];

//wire done;

//reg [17:0] instruction_in;

//reg [15:0] data_in;

//wire [15:0] data_out;

//wire [9:0] instruction_addr;

//wire [9:0] data_addr;

//wire data_R;

//wire data_W;

CPUtop uut (

.clk (clk), // system clock

.rst (rst), // system reset (active high)

.instruction_in (instruction_in),

.data_in(data_in),

.data_out(data_out),

.instruction_addr(instruction_addr),

.data_addr(data_addr),

.data_R(data_R),

.data_W(data_W),

15

.done(done)

);

initial begin

INST_MEM[0] = 18’b100110_00_0000000000; // load MEM0 into H0 load16bit

R0 im=0000000000↪→

INST_MEM[1] = 18’b100110_01_0000000001; // load MEM1 into H1 load16bit

R1 im=0000000001↪→

INST_MEM[2] = 18’b100110_10_0000000010; // load MEM2 into H2 load16bit

R2 im=0000000010↪→

//INST_MEM[3] = 18’b000000_00000000_00_01; // add H1 to H0

add16bit R0=0000000000000101 R1=0000000000001111↪→

//INST_MEM[4] = 18’b000000_00000000_10_00; // add H0 to H2

add16bit R2=0000000000000100 R0=0000000000010100↪→

INST_MEM[4] = 18’b101001_00_0000000000; // store H0 back into MEM0

store16bit R0=0000000000010100 im=0000000000↪→

//INST_MEM[6] = 18’b101100_01_0100100010; // set H1 to 0100100010

set16bit R1 im=0100100010↪→

//INST_MEM[7] = 18’b000000_00000000_01_10; // add H2 to H1

add16bit R1=0000000100100010 R2=0000000000011000↪→

INST_MEM[5] = 18’b101001_01_0000000011; // store H1 back into MEM3

store16bit R1=0000000100111010 im=0000000011↪→

INST_MEM[6] = 18’b101001_10_0000000100; // store H2 back into MEM4

store16bit R2=0000000000011000 im=0000000100↪→

INST_MEM[7] = 18’b101001_00_0000000101; // store H0 back into MEM5 store16bit

R0=0000000000010100 im=0000000101↪→

end

always @(negedge clk)

begin

DATA_MEM[0] = a;

DATA_MEM[1] = b;

DATA_MEM[2] = c;

INST_MEM[3] = inst_in;

end

always @(negedge clk)

begin

if (data_R)

begin

if (data_W)

begin

DATA_MEM[data_addr] <= data_out;

$display("write mem %d: %b",data_addr,data_out);

16

end

else

data_in <= DATA_MEM[data_addr];

end

end

always @(negedge clk)

begin

instruction_in <= INST_MEM[instruction_addr];

$display("inst_addr %d: %b",instruction_addr,INST_MEM[instruction_addr]);

end

endmodule

Figure 3.6: Simulation of the design in Makerchip

17

3.3.2 Simulation in eSim

Now we convert our verilog model to ngspice model which can be simulated. Given
below shows that we have got our desired result in ngspice plot.

Figure 3.7: Circuit Design of Processor

Figure 3.8: Simulation of the processor on eSim

18

Chapter 4

MIPS Processor

This open source processor was taken from opencores website and it is aimed at
implementing a Microprocessor without Interlocked Pipe Stages (MIPS processor)
with Reduced Instruction Set (RISC) architecture. The processor is coded in Verilog
Hardware Description language with a 16 bit instruction set. This processor is a
pipeline based processor with main 5 stages : the information fetch (IF), information
decode (ID), execute (EX), memory (MEM) and write back (WB). The advantage
of the pipeline is that it breaks a complex task into various stages that increases
the speed and reduces the complexity. In the pipeline as soon as one instruction
finishes processing in 1 stage the other data is sent to that stage simultaneously
which increases the speed. But due to this there are various hazards which occur in
the processor. The three main type of hazards are data hazard, control hazard and
structural hazard. To avoid this hazard we add stall cycles.

4.1 Architecture

Figure 4.1: The architecture of the processor as mentioned by the authors [4]

19

4.2 Simulation of the processor

There are multiple verilog files in this project so we can simulate all of them sepa-
rately and then combine. This could be one approach of proceeding forward but the
this is time taking and not much useful in terms of proceeding forward. The approach
i used was to simulate the ALU file separately as it performs all the arithmatic and
logical operations so it is important to check that file. Then i simulated the test
benches provided by the authors of the ALU operations to verify the makerchip and
EDAplayground result. The whole processor is then simulated on EDAplayground
and a testbench was written to validate the processor. Now some changes were done
to simulate it esim and makerchip which you can easily find out once you go through
the codes.

4.2.1 Simulation of ALU

First we simulate it in makerchip using custom values or using random values. Then
we run the testbenches of ALU provided by the author to check all the operations
at once.

Figure 4.2: Simulation of ALU in makerchip

20

Figure 4.3: Simulation of ALU using testbench

4.2.2 Simulation of processor using testbench

module mips_16_core_top_tb_0_v;

reg clk;

reg rst;

reg [15:0] instruction [18:0];

integer j;

reg [15:0] output_res [7:0];

wire [‘PC_WIDTH-1:0] pc;

parameter CLK_PERIOD = 10;

always #(CLK_PERIOD /2)

clk =~clk;

integer i;

integer test;

mips_16_core_top uut (

.clk(clk),

.rst(rst),

.pc(pc)

);

initial begin

21

instruction[0] = 16’b1001001000001000;

instruction[1] = 16’b1001010001001000;

instruction[2] = 16’b1001011010001000;

instruction[3] = 16’b0001100010011000;

instruction[4] = 16’b1011100001000010;

instruction[5] = 16’b1010101001000010;

instruction[6] = 16’b0010110100101000;

instruction[7] = 16’b1100000110111000;

instruction[8] = 16’b1001111111000001;

instruction[9] = 0;

instruction[10] = 0;

instruction[11] = 0;

instruction[12] = 0;

instruction[13] = 0;

instruction[14] = 0;

instruction[15] = 0;

instruction[16] = 0;

instruction[17] = 0;

instruction[18] = 0;

end

initial begin

clk = 0;

rst = 0;

#100;

#(CLK_PERIOD/2)

#1

display_debug_message;

test1;

$stop;

end

task display_debug_message;

begin

$display("\n***************************");

$display("mips_16 core test");

$display("***************************\n");

end

endtask

task sys_reset;

begin

rst = 0;

#(CLK_PERIOD*1) rst = 1;

#(CLK_PERIOD*1) rst = 0;

22

end

endtask

task test1;

begin

for (j = 0 ; j< 19; j = j+1) begin

uut.IF_stage_inst.imem.rom[j] = instruction[j];

$display("instruction",j," ",instruction[j]);

$display("rom",j," ",uut.IF_stage_inst.imem.rom[j]);

end

$display("rom load successfully\n");

$display("running test1\n");

sys_reset;

#1

#(CLK_PERIOD*100)

display_all_regs;

$display("ram[10] = %d", uut.MEM_stage_inst.dmem.ram[10]);

sys_reset;

end

endtask

task display_all_regs;

begin

$display("display_all_regs:");

$display("------------------------------");

$display("R0\tR1\tR2\tR3\tR4\tR5\tR6\tR7");

for(i=0; i<8; i=i+1) begin

output_res[i] = uut.register_file_inst.reg_array[i];

$display("The output R",i," :",output_res[i]);

end

$display("\n------------------------------");

end

endtask

endmodule

23

Figure 4.4: Simulation of processor using testbench

4.2.3 Simulation of processor in makerchip

In this section we change the code so that it can be simulated in verilator. This
code is used in eSim to simulate the processor.

module connector(

input ck,

output reg [15:0] res,

output reg [3:0] resou

);

reg rs;

reg [15:0] instruct [18:0];

integer j = 0;

wire [7:0] pc;

integer CLPERIOD = 10;

integer i = 0;

integer tes;

integer tes_complete;

integer loa;

integer k = 0;

integer pri = 0;

reg [15:0] vah [7:0];

mips_16_core_top uut (

.clk(ck),

.rst(rs),

.pc(pc)

);

initial begin

$readmemb("test0.txt",instrut);

24

end

initial begin

tes_complete = 1;

end

always@(posedge ck) begin

if (j<19) begin

uut.IF_stage_inst.imem.rom[j] = instruct[j];

j= j+ 1;

end

else

loa = 1;

end

always@(posedge ck) begin

if ((tes_complete == 1) && (loa == 1)) begin

if (i<=80) begin

vah[i] = uut.check_inst.re_array[i];

i = i + 1;

end

else

pri = 1;

end

end

always@(posedge ck) begin

if ((pri == 1) && (k <8)) begin

res = vah[k];

resou = k;

k = k + 1;

end

end

endmodule

25

Figure 4.5: Simulation of processor in makerchip

4.2.4 Simulation of processor in eSim

I simulated the processor in eSim and got the desired register values which matched
with that of the makerchip as well as the testbench Implemented.

Figure 4.6: Circuit Design used for simulation

26

Figure 4.7: Simulation of the processor

27

Chapter 5

Ngveri Keywords In eSim-2.3

To convert a Verilog model into Ngspice we use the makerchip and ngveri. The mak-
erchip is used to first simulate the file and check the resultant waveform and then
the verilog file is converted. After a successful generation of the desired waveform
we save the verilog file, then add the dependency files (if any) in Ngveri and convert
the file into Ngspice.

While performing the conversion some of the keywords in Ngveri might throw
an error while simulating. These are mainly the names and types of the input and
output ports declared in the verilog file.

• All the input, output and inout ports should avoid names which include input,
output, reg, wire, read, write, execute, decode, fetch as substrings.

• All variable names that are declared as default variables in verilog at the start
of the code should not be used to define the size of any vector in the input
and output ports.

• Should not use the unknown type (x) in variables it may throw an error while
converting as it is not supported by verilator.

• Avoid using module names such as register it throws an error that file and
module name are not the same although we used the same module and file
name. The keyword register creates a problem.

• Do Not use a two dimensional vector example memory as an input and output
port of a module, it will throw an error.

• Do Not use @ or wait commands which are not supported by verilator.

If you find any other keywords or variable names which throws an error while
converting from verilog to Ngspice do let us know.

28

Chapter 6

Simulating Digital Circuits for MU

These are some of the cirucits which were asked by Mumbai University to be simu-
lated and tested. I first coded all the circuits in verilog and then it was simulated
in makerchip for simualtion.

6.0.1 Mux

module mux (

input [3:0] a,

input [3:0] b,

input [3:0] c,

input [3:0] d,

input [1:0] sel,

output reg [3:0] out

);

always @ (a or b or c or d or sel) begin

case (sel)

2’b00 : out <= a;

2’b01 : out <= b;

2’b10 : out <= c;

2’b11 : out <= d;

endcase

end

endmodule

29

Figure 6.1: Simulation of MUX

6.0.2 DeMux

module Demux(

output reg [3:0] Y0,

output reg [3:0] Y1,

output reg [3:0] Y2,

output reg [3:0] Y3,

input [1:0] sel,

input [3:0] din);

always @(sel) begin

case (sel)

2’b00 : begin

Y0 = din;

Y1 = 0;

Y2 = 0;

Y3 = 0;

end

2’b01 : begin

Y0 = 0;

Y1 = din;

Y2 = 0;

Y3 = 0;

end

2’b10 : begin

30

Y0 = din;

Y1 = 0;

Y2 = din;

Y3 = 0;

end

2’b11 : begin

Y0 = 0;

Y1 = 0;

Y2 = din;

Y3 = 0;

end

endcase

end

endmodule

Figure 6.2: Simulation of DEMUX

6.0.3 Decoder IC 74138

module dec74138(

input a,

input b,

input c,

input e1_bar,

input e2_bar,

31

input e3,

output reg [7:0] out

);

always@(a or b or c) begin

if ((e1_bar == 0) && (e2_bar == 0) && (e3 == 1)) begin

out=8’b11111111;

case ({a,b,c})

3’b000: out[0]=1’b0;

3’b001: out[1]=1’b0;

3’b010: out[2]=1’b0;

3’b011: out[3]=1’b0;

3’b100: out[4]=1’b0;

3’b101: out[5]=1’b0;

3’b110: out[6]=1’b0;

3’b111: out[7]=1’b0;

endcase

end

else

out = 8’b11111111;

end

endmodule

Figure 6.3: Simulation of DECODER IC

32

6.0.4 D Flip Flop

module d_ff(

input D

input clk

input reset

output reg Q

);

always @(posedge clk)

begin

if(reset==1’b1)

Q <= 1’b0;

else

Q <= D;

end

endmodule

Figure 6.4: Simulation of D Flip Flop

6.0.5 JK Flip Flop

module jk_ff (

input j,

33

input k,

input clk,

output reg q,

output qb

);

always @ (posedge clk) begin

case ({j,k})

2’b00 : q <= q;

2’b01 : q <= 0;

2’b10 : q <= 1;

2’b11 : q <= ~q;

endcase

end

assign qb = ~q;

endmodule

Figure 6.5: Simulation of JK Flip Flop

6.0.6 SR Flip Flop

module sr_ff(

input s,r,clk,

output q, qbar

);

34

wire out1;

wire out2;

nand (out1,clk,s);

nand (out2,clk,r);

nand (q,out1,qbar);

nand (qbar,out2,q);

endmodule

Figure 6.6: Simulation of SR Flip Flop

6.0.7 Universal Shift Register

module universal_shift(

input clk,

input reset,

input right_sel,

input din,

output reg [3:0] dout,

output s_left,

output s_right

);

always@(posedge clk) begin

if (reset == 1)

35

dout <= 0;

else begin

if (right_sel == 1)

dout <= {din,dout[3:1]};

else

dout <= {dout[2:0],din};

end

end

assign s_left = dout[0];

assign s_right = dout[3];

endmodule

Figure 6.7: Simulation of Left Shift Register

36

Figure 6.8: Simulation of Right Shift Register

6.0.8 Updown Counter

module upordown(

input clk,

input reset,

input up_high,

output reg [3:0] count

);

always@(posedge clk) begin

if(reset == 1)

count <= 0;

else begin

if(up_high == 1) begin

if(count == 15)

count <= 0;

else

count <= count + 1;

end

else begin

if (count == 0)

count <= 4’d15;

else

count <= count - 1;

end

37

end

end

endmodule

Figure 6.9: Simulation of Updown Counter

38

Bibliography

[1] FOSSEE Official Website.
URL: https://fossee.in/about

[2] Wikipedia Official Website.
URL: https://en.wikipedia.org/wiki/KiCad/

[3] Processor 1 SIMD.
URL: https://github.com/zslwyuan/Basic-SIMD-Processor-Verilog-Tutorial

[4] opencores Official Website.
URL: https://opencores.org/

[5] eSim Official website.
URL: https://esim.fossee.in/

[6] FOSSEE official webpage.
URL: https://fossee.in/fellowship/2019

[7] Geeks For Geeks official webpage.
URL: https://www.geeksforgeeks.org/bcd-to-7-segment-decoder

[8] Chip Verify official webpage.
URL: https://www.chipverify.com/

39

https://fossee.in/about
https://en.wikipedia.org/wiki/KiCad/
https://github.com/zslwyuan/Basic-SIMD-Processor-Verilog-Tutorial
https://opencores.org/
https://esim.fossee.in/
https://fossee.in/fellowship/2019
https://www.geeksforgeeks.org/bcd-to-7-segment-decoder
https://www.chipverify.com/

	Introduction
	eSim
	NGHDL
	Makerchip
	EDA Playground

	Problem Statement
	Approach

	Basic-SIMD-Processor
	Block Diagram
	Simulation of SIMD ALU
	SIMD Adder
	SIMD Shifter
	SIMD Multiply

	Implmentation of the processor
	Simulation in Makerchip
	Simulation in eSim

	MIPS Processor
	Architecture
	Simulation of the processor
	Simulation of ALU
	Simulation of processor using testbench
	Simulation of processor in makerchip
	Simulation of processor in eSim

	Ngveri Keywords In eSim-2.3
	Simulating Digital Circuits for MU
	Mux
	DeMux
	Decoder IC 74138
	D Flip Flop
	JK Flip Flop
	SR Flip Flop
	Universal Shift Register
	Updown Counter

	Bibliography

