
Summer Fellowship Report

On

Bug Fixing and Feature Enhancement of eSim

Submitted by

Abhishek Soni

Under the guidance of

Sumanto Kar

IIT Bombay

July 17, 2025

Acknowledgment

I wish to express my heartfelt gratitude and appreciation to the entire FOSSEE
team for having me as a part of their Summer Fellowship Internship program they
offered. The experience and knowledge that I have gained during this internship
period is hard to express in words. I have gained tremendous insights about
various programming concepts and have met very talented and hardworking people
as a part of this internship.
I would like express my heartfelt appreciation to my mentor Sumanto Kar sir who
has helped me throughout this internship with great patience and diligence. From
him I have gained greater insight about eSim and also on how to write better and
effective code. Working under him communicating various ideas about the project
has helped me gain better grasp at communicating abstract concepts. He has
instilled knowledge and confidence throughout this endeavor.
I am very grateful to the whole eSim community for providing me the help needed
throughout this internship phase. I am very much confident that the skills that I
have gained through this internship will continue to benefit me throughout my
career. Once again, I thank the entire FOSSEE team for the unforgettable
opportunity.

1

Contents

1 Introduction 4
1.1 About FOSSEE . 4
1.2 Overview of eSim and Its Tools . 4
1.3 Project Scope and Objective . 6

2 Key issues and Features 7
2.1 Simulation Crash due to lint off . 7
2.2 Missing Model Removal Option . 8
2.3 Project Folder Not Reopening . 8
2.4 Lack of Snapshot and Timeline . 8
2.5 Inconsistent File Sync . 9

3 Approach and Methodology 10
3.1 Handling Simulation Crash from lint off 10
3.2 Enabling Model Removal in NGHDL 10
3.3 Restoring Last Opened Folder on Restart 11
3.4 Introducing Snapshot and Timeline Support 11
3.5 Fixing File Sync in Project Explorer 11

4 Implementation Details 13
4.1 Handling Crash from lint off . 13
4.2 Model Removal Logic in NGHDL . 13
4.3 Restoring Last Opened Project Folder 14
4.4 Snapshot Creation and Timeline Integration 15
4.5 Real-time File Synchronization in Project Explorer 17

5 Results and Testing 18
5.1 Visual Results After Fixes . 18

5.1.1 Resolved Crash from lint off Removal 18
5.1.2 NGHDL Model Deletion Feature 18
5.1.3 Last Opened Project Auto-Restore 19
5.1.4 Snapshot and Timeline Functionality 20
5.1.5 Real-time File Synchronization 20

5.2 Stability and Functionality Improvements 20
5.3 User Experience Enhancements . 21

2

6 Conclusion and Future Work 23
6.1 Summary of Contributions . 23
6.2 Key Challenges and Resolutions . 23
6.3 Recommendations for Future Enhancements 24
6.4 Scope for Community Contribution 25

3

Chapter 1

Introduction

1.1 About FOSSEE

FOSSEE (Free/Libre and Open Source Software for Education) is a national ini-
tiative funded by the Ministry of Education (MoE), Government of India, and im-
plemented by IIT Bombay. The project aims to promote the use and development
of free and open-source software (FOSS) in academia and research. With the ever-
increasing cost of proprietary software, many educational and research institutions
face limitations in accessing advanced tools. FOSSEE addresses this gap by sup-
porting open-source alternatives that are accessible, customizable, and cost-effective.

Through initiatives like tool development, student internships, content creation,
and workshops, FOSSEE empowers students, educators, and professionals to adopt
open-source tools in their workflows. It not only helps reduce software costs but
also builds a community-driven ecosystem for innovation and collaboration. The in-
ternship program under FOSSEE allows students to contribute directly to impactful
projects such as eSim, thereby gaining real-world experience in software development
and problem-solving.

1.2 Overview of eSim and Its Tools

eSim (Electronics Simulation) is an open-source EDA (Electronic Design Automa-
tion) software developed by FOSSEE, IIT Bombay. It integrates multiple open-
source tools to provide a complete environment for schematic creation, simulation
(analog, digital, and mixed-signal), and PCB design. eSim is designed as a pow-
erful, cost-effective alternative to proprietary EDA tools, making it suitable for
educational, research, and small-scale industrial applications.

eSim brings together various open-source modules in a unified GUI. Each module
plays a specific role in the workflow, from schematic design to simulation and PCB
layout:

• Eeschema: A schematic editor originally from KiCad, Eeschema is used to
create and manage electronic circuit schematics. It supports symbol libraries,

4

annotation, electric rules checking (ERC), and netlist generation.

• CvPcb: This tool maps components in the schematic to their physical foot-
prints. It simplifies footprint association through manual or automatic filtering
and previewing of component footprints, including 3D visualization.

• Pcbnew: Pcbnew is the PCB layout editor used in eSim. It allows for the
design of printed circuit boards with features like rats-nest display, design rule
checks (DRC), auto-routing, and multi-layer layout support.

• Ngspice: Ngspice is the core simulator for analog, digital, and mixed-signal
circuits in eSim. It supports DC, AC, and transient analysis and is capable of
simulating a wide range of semiconductor devices.

• KiCad to Ngspice Converter: This converter bridges the gap between
schematic design and simulation. It converts KiCad-generated netlists into
Ngspice-compatible formats and allows for detailed configuration of sources,
models, and simulation parameters.

• Model Builder: This tool enables users to define or modify device models
such as diodes, BJTs, MOSFETs, and IGBTs, enhancing the accuracy and
customizability of simulations.

• Subcircuit Builder: Used to create reusable subcircuits like op-amps or IC
modules. It simplifies complex design by allowing hierarchical circuit modeling
and easy integration into other projects.

• NGHDL: NGHDL integrates VHDL-based digital simulation using GHDL. It
enables mixed-signal simulation by interfacing digital logic with analog com-
ponents through Ngspice.

• NgVeri: A Verilog/SystemVerilog simulation module using Verilator and
SandPiper SaaS. It supports digital simulation and mixed-signal co-simulation
with Ngspice.

• Makerchip-App: A cloud-based Verilog IDE interfaced with eSim to allow
users to write, simulate, and test Verilog code using the Makerchip platform,
especially useful for digital design education.

• OpenModelica: Integrated with eSim for advanced system-level modeling
and simulation using the Modelica language. It allows users to analyze and
optimize complex electrical systems with OMEdit and OMOptim.

By combining these tools into a single platform, eSim provides a comprehensive
and flexible workflow for electronics design and simulation, while maintaining full
transparency and control through its open-source foundation.

5

1.3 Project Scope and Objective

The scope of the project undertaken during the internship revolves around improv-
ing the usability, functionality, and reliability of the eSim platform. As an evolving
open-source tool, eSim continuously benefits from community contributions that
enhance its features and fix limitations. The main objective of this project is to
support that mission by addressing key usability challenges, enhancing interface el-
ements, and streamlining user workflows within the tool.

The broader impact of this work lies in strengthening eSim as a viable alterna-
tive to proprietary EDA tools, particularly in educational and research institutions
where budget constraints are significant. Improvements made during the internship
aim to reduce user friction, improve the stability of the tool, and provide a more
intuitive and seamless user experience. This not only benefits current users but also
encourages wider adoption of eSim in electronics education and small-scale hard-
ware development. Ultimately, the project’s goal is to contribute meaningfully to
the open-source ecosystem by making high-quality design and simulation tools more
accessible.

6

Chapter 2

Key issues and Features

2.1 Simulation Crash due to lint off

A critical issue encountered during simulation in eSim was linked to the misuse and
handling of the lint off.txt file. This file contains a list of known linting warnings that
the simulator should ignore during code analysis. While the intent is to allow users
to selectively suppress warnings, problems arise when the file includes entries that
are either misspelled, deprecated, or no longer relevant to the simulation context.
During simulation, the system attempts to parse each line of the file and match
it against known warning types. If it fails to find a match, the backend fails to
handle the mismatch gracefully resulting in a crash that terminates the simulation
process without explanation. The problem worsens when users try to modify this
list using the graphical interface in eSim. Specifically, when attempting to remove
the last entry in the lint off.txt list using the Remove lint off button, an unhandled
exception occurs. This error suggests that the UI list and the underlying Python list
used for tracking entries become unsynchronized. Instead of handling the edge case,
the application crashes, leaving the user with no clear understanding of what went
wrong. This not only disrupts the workflow but can also discourage less-experienced
users from interacting with lint controls.

Figure 2.1: Unhandled exception while removing last lint off entry

7

2.2 Missing Model Removal Option

Within the NGHDL (Next Generation Hardware Description Language) interface of
eSim, there was no built-in option to remove or delete user-added models. While the
interface provided functionality for uploading and selecting custom VHDL models
for digital simulation, users were left without a direct way to manage or delete these
models once they were no longer needed. This limitation often led to a cluttered
workspace and confusion, especially for users experimenting with multiple model
versions.

The lack of a model removal feature also posed usability and maintenance issues.
Users either had to manually locate and delete the model files from internal folder-
srisking accidental deletion of essential filesor continue working with an overloaded
interface containing obsolete or incorrect entries. This missing feature reduced the
efficiency of the workflow, particularly in academic or development environments
where iterative testing of models is common.

2.3 Project Folder Not Reopening

Another notable issue was that eSim failed to reopen the previously accessed project
folder upon restarting the application. Each time users relaunched eSim, they were
required to manually browse to and open their working directory. This disrupted
the user experience, particularly for those working on large or long-term projects
where frequent reopening of the software was necessary.

This lack of persistent session memory proved inconvenient and time-consuming.
It also increased the chances of users mistakenly working in unintended directories
or losing track of their last active project. For new users, this behavior could lead to
the false assumption that their project data was lost or not saved properly, creating
a usability barrier in an otherwise streamlined development tool.

2.4 Lack of Snapshot and Timeline

eSim initially lacked a dedicated feature to take snapshots of the project state or view
historical versions in a timeline. This became problematic for users who frequently
made changes to circuit designs and simulations, especially when they needed to
revert to a previous working version. Without such functionality, users had to rely
on external backups or manually copy folders, which is inefficient and error-prone.

The absence of a snapshot and timeline mechanism made version control cumber-
some and discouraged experimentation. Users working on academic or collaborative
projects often needed to track progress, roll back recent changes, or compare differ-
ent circuit versions. Without this capability, managing iterations and maintaining
a reliable workflow within the tool was a significant challenge.

8

2.5 Inconsistent File Sync

In the Project section of eSim, a usability issue was observed where file changes
made externally (outside of eSim) were not reflected in real-time. For instance,
when a file was deleted or modified directly from the operating system, the changes
did not immediately appear in the file tree unless the user manually collapsed and
re-expanded the project folder. This static file view created a mismatch between
the actual project state and what was shown in the interface.

This lack of dynamic file synchronization was especially disruptive for users who
frequently switched between code editors and eSim or used scripts to modify files.
It not only delayed updates but also introduced a risk of working with outdated
files unknowingly. For larger projects with many files, this inconsistency made file
management inside eSim less reliable and intuitive.

9

Chapter 3

Approach and Methodology

3.1 Handling Simulation Crash from lint off

To resolve the simulation crash caused by the lint off.txt file, I focused on the part of
the backend code responsible for removing specific entries from this file. The crash
occurred when the system attempted to remove an entry that did not exist in the
underlying list, especially when users tried to delete the last remaining item. This
led to an unhandled exception and abrupt termination of eSim.

To fix this, I introduced a try except block around the code segment handling
entry removal. This ensured that any unexpected failure during the deletion process
such as attempting to remove a non-existent item would be gracefully handled.
Instead of crashing, the application now shows a dialog box with the message ”Could
not remove lint off entry”, informing the user of the issue without disrupting the
session. This approach improved both stability and user experience.

3.2 Enabling Model Removal in NGHDL

Previously, NGHDL in eSim allowed users to upload digital models, but lacked any
functionality to remove them through the interface. This limitation made it difficult
for users to manage outdated or unused models, especially in iterative testing envi-
ronments. To resolve this, the model storage structure and internal reference system
were analyzedspecifically across directories like ghdl, and files such as modpath.lst,
KiCad symbol files, and associated XML configurations.

After mapping out the lifecycle of a model across the system, implemented a
model deletion workflow that could be triggered via a new button in the NGHDL
dialog. The backend logic was designed to remove all relevant components of the
selected model, including its directory, entry in the modpath.lst file, corresponding
XML metadata, symbol blocks in KiCad libraries, and any residual files in the
DUTghdl testbench folder. To ensure robustness, added a confirmation dialog for
users before deletion, and surrounded all file operations with exception handling.
If any step in the removal process fails, an error message is displayed: ”An error
occurred while deleting the model”, preventing unexpected crashes.

10

3.3 Restoring Last Opened Folder on Restart

The absence of persistent session handling in eSim created a disruption in user work-
flow, as the last accessed project folder would not be restored upon restarting the
application. Previously, the project path was maintained only as a temporary vari-
able in the backend during runtime. Once eSim was closed, this variable was reset
to None, resulting in a loss of context when the application was reopened.

To address this limitation, a persistent storage mechanism is introduced using
a lightweight configuration file named last project.json. During application closure,
the path of the most recently opened project is written to this file. Upon the next
launch, eSim reads the stored path from last project.json and automatically loads
the corresponding project into the backend. This enhancement restores continuity,
saves time, and improves the overall user experience by eliminating the need to
manually browse and reopen the last project.

3.4 Introducing Snapshot and Timeline Support

The absence of a snapshot or version control feature in eSim made it difficult for
users to manage and recover previous states of individual project files. To overcome
this limitation, a file tracking mechanism was implemented to allow users to manu-
ally save and manage snapshots of important files. This functionality was integrated
directly into the Project Explorer for ease of access.

The mechanism works by enabling users to right-click on any file in the Project
Explorer, where a new ”Snapshot” option appears. Upon selection, the current
state of that file is saved to a separate folder, while its name and the timestamp of
the snapshot are logged and displayed in a newly added ”Timeline” section under
the project panel. The Timeline section includes two main actions: Restore and
Clear. If a file is selected from the timeline, the user can either restore its saved
state overwriting the existing file in the project directory or delete the snapshot
from the separate folder. If no specific file is selected, clicking the buttons performs
the respective operation on all snapshot entries at once. This setup provides a
lightweight version control system that enhances project safety and flexibility during
iterative development.

3.5 Fixing File Sync in Project Explorer

Previously, the Project Explorer in eSim did not reflect file changes made outside
the application in real time. If a user deleted or modified a file directly from the
operating system while the project was open and expanded in eSim, the interface
continued to display outdated file listings until manually refreshed. This created
inconsistencies between the actual project structure and what was shown in the UI.

To address this, a file system monitoring mechanism was introduced to detect

11

external file events. With this enhancement, whenever a file is deleted from the
project directory through the operating system, the Project Explorer widget imme-
diately updates to reflect the change even if the folder is currently expanded in the
GUI. This ensures that the displayed file tree remains consistent with the actual di-
rectory structure, eliminating the need for manual user intervention and improving
the overall responsiveness of the interface.

12

Chapter 4

Implementation Details

4.1 Handling Crash from lint off

To prevent eSim from crashing when the last item is removed from the lint off.txt
list, error handling was added to the backend logic. The system now attempts to
remove the selected entry using a try except block. If the entry does not exist in
the internal list, a warning message is shown to the user instead of terminating the
application. The following code was implemented in src/maker/NgVeri.py.

Figure 4.1: Code to handle exception while removing lint off entry

4.2 Model Removal Logic in NGHDL

To enable model deletion within the NGHDL interface, a backend function was im-
plemented to remove all associated files of a selected model. This includes deleting
the models directory, its XML file, references in the modpath.lst file, and the cor-
responding KiCad symbol. Additionally, a confirmation dialog was added to avoid
accidental deletions, and exception handling was included to manage errors grace-
fully. The following code was implemented in nghdl/src/ngspice ghdl.py.

13

(a) (b)

(c) (d)

Figure 4.2: Code implementation for NGHDL model removal

4.3 Restoring Last Opened Project Folder

To improve user experience and maintain workflow continuity, functionality was
added to automatically reopen the last accessed project folder when eSim is restarted.
Previously, the project path was only stored in memory during runtime. Once the
application was closed, this information was lost, requiring users to manually locate
and open their project again upon each launch.

To address this, a lightweight persistence mechanism was implemented using a
JSON file named last project.json. The path of the last opened project is written
to this file upon project load and read back when eSim starts. This ensures that
the application can immediately reopen the same working directory without user in-
tervention. The following code was implemented in src/configuration/Appconfig.py
and src/frontEnd/Application.py.

14

Figure 4.3: Code to save and retrieve last project path (Appconfig.py)

Figure 4.4: Code to auto-load last opened project on startup (Application.py)

4.4 Snapshot Creation and Timeline Integration

To provide a lightweight version control mechanism in eSim, a snapshot feature was
introduced. This allows users to save the current state of any individual file at a
specific moment, which can later be restored if needed. Users can right-click on any
file in the Project Explorer and select the Snapshot option, which stores a copy of
the file in a separate snapshot folder along with a timestamp. These saved snapshots
are then displayed in a dedicated Timeline section under the Project panel.

15

To support this feature, two parts of the existing codebase were modified. Snap-
shot creation was triggered from the Project Explorer by connecting a context menu
action to the snapshot saving logic. In addition, the main application file was up-
dated to load the snapshot tracking system when a project is opened. The following
code was implemented in src/frontEnd/Application.py and src/frontEnd/Project-
Explorer.py.

Figure 4.5: Snapshots loader logic in Application.py

Figure 4.6: Snapshot trigger on right-click in ProjectExplorer.py

16

The core logic for managing, displaying, restoring, and clearing snapshots is
encapsulated in a new custom file named src/frontEnd/TimeExplorer.py. This file
creates a Timeline widget using PyQt that displays all snapshots in a list along with
their timestamps. It provides Restore and Clear buttons. When a specific file is
selected in the Timeline, the user can either restore it replacing the existing version
in the project directory or delete it from the snapshot folder. If no item is selected,
clicking the buttons allows bulk operations (restoring or deleting all snapshots). This
file handles reading the last opened project from a configuration JSON, parsing and
matching filenames, and ensuring robust error handling throughout the process.

4.5 Real-time File Synchronization in Project Ex-

plorer

Earlier, the Project Explorer in eSim did not automatically update when files were
added, deleted, or modified from the operating system outside the application. This
led to inconsistencies between the actual file system and what was shown in the
GUI, particularly when a project folder remained expanded. Users were required to
manually collapse and expand the folder to reflect the changes, which interrupted
the workflow and introduced confusionespecially in large projects with frequent file
changes.

To solve this, a real-time file synchronization mechanism was implemented. A
file system watcher was integrated into the Project Explorer logic, which moni-
tors the project directory. Whenever any change (e.g., file deletion, creation, or
renaming) occurs outside the eSim interface, the Project Explorer immediately re-
flects the change in the UI even if the folder is currently expanded. This ensures
seamless synchronization between the displayed files and the actual file system,
improving responsiveness and usability. The following code was implemented in sr-
c/frontEnd/ProjectExplorer.py.

Figure 4.7: Code for real-time file synchronization in ProjectExplorer.py

17

Chapter 5

Results and Testing

5.1 Visual Results After Fixes

This section showcases the visual outcomes after resolving each of the identified is-
sues. For every feature or fix implemented, a corresponding screenshot is provided
to demonstrate its effect and validate that the functionality is working as intended.

5.1.1 Resolved Crash from lint off Removal

After implementing exception handling for invalid list removals, eSim now shows a
proper warning message instead of crashing. This ensures smoother user interaction
when managing entries in the lint off.txt file.

Figure 5.1: Warning message shown when trying to remove lint off entry

5.1.2 NGHDL Model Deletion Feature

The NGHDL interface now includes a functional ”Remove Model” button that al-
lows users to permanently delete uploaded models. The screenshot below shows the
confirmation dialog that prevents accidental deletions.

18

Figure 5.2: Confirmation dialog before deleting a model in NGHDL

5.1.3 Last Opened Project Auto-Restore

Previously, eSim did not retain the last accessed project after restarting. Users had
to manually reselect the project folder, and none of the tools could be used until
this step was completed. Now, the last opened project is automatically restored
when eSim starts, allowing users to immediately begin working without manually
selecting the project again.

(a) Previously: Tool unusable until project
is selected (b) Now: Project auto-restored on startup

Figure 5.3: Before and after auto-restoration of last opened project in eSim

19

5.1.4 Snapshot and Timeline Functionality

The Project Explorer now includes a Snapshot option on right-click, and a Time-
line section shows all saved snapshots with timestamps. Users can restore or delete
snapshots easily from this interface.

Figure 5.4: Snapshot and Timeline integration in Project Explorer

5.1.5 Real-time File Synchronization

Any file that is deleted from the OS while the project folder is expanded in eSim
now disappears instantly from the Project Explorer view, reflecting real-time syn-
chronization.

Figure 5.5: Project Explorer updating in real time after external file deletion

5.2 Stability and Functionality Improvements

After resolving each of the identified issues, systematic testing was conducted to en-
sure that the implemented features functioned correctly across typical and edge case
scenarios. This section describes the verification process for each fix and highlights

20

the resulting stability and reliability improvements in eSim.

The fix for the lint off crash was verified by repeatedly adding and removing
entries from the list, including attempting to remove non-existent items and emp-
tying the entire list. It was confirmed that the system no longer crashes during
these operations. Instead, a warning message is shown when an removal attempt is
made. This behavior remained consistent across multiple test sessions, demonstrat-
ing that the issue was fully addressed and that simulation stability is now preserved.

The NGHDLmodel removal functionality was tested by uploading several dummy
models, verifying their presence in the NGHDL model directory, and then removing
them one by one using the new ”Remove Model” button. Each deletion correctly
removed all associated files, including entries in modpath.lst and symbol files. A
confirmation dialog also prevented accidental deletions. The feature was retested
after application restarts to ensure that removed models did not reappear, confirm-
ing that the removal logic works persistently and reliably.

To confirm that the last opened project restoration worked correctly, several
projects were opened, closed, and reopened in different sequences. It was consis-
tently observed that upon restarting eSim, the last accessed project was automat-
ically restored without any user input. Additional tests verified that this feature
works across operating systems and does not interfere with manual project switch-
ing after startup, ensuring robustness in varied usage scenarios.

The snapshot and timeline integration was extensively tested by creating snap-
shots for different files in a project and verifying that each snapshot appeared in
the timeline with the correct timestamp. Snapshots were then individually restored
and cleared to validate both targeted and bulk operations. Edge cases such as
restoring non-existent or corrupted snapshot files were handled gracefully, and the
UI remained responsive throughout the process. This confirmed that the snapshot
system was stable under both normal and unexpected conditions.

Real-time file synchronization was tested by performing file operations (creation,
deletion, renaming) directly from the operating system while the corresponding
project folder was open and expanded in eSim. It was observed that the Project
Explorer updated instantly to reflect these changes without requiring manual re-
fresh. Long test sessions with multiple concurrent file changes confirmed that the
synchronization logic remained accurate and consistent, demonstrating a substantial
improvement in user experience and interface reliability.

5.3 User Experience Enhancements

The features and fixes implemented during the project significantly improved the
overall user experience in eSim. By eliminating crashes, reducing repetitive man-
ual actions, and making the interface more responsive to user behavior, the tool
has become more intuitive and efficient. The auto-restoration of the last opened

21

project ensures that users can immediately resume their work without the interrup-
tion of navigating through directories. Similarly, the integration of the Snapshot
and Timeline feature offers users the flexibility to manage file versions effortlesslyal-
lowing them to experiment with circuit modifications and revert to previous states
when necessary.

Other improvements, such as real-time file synchronization and model deletion
from the NGHDL interface, directly enhance the day to day usability of the platform.
Users can now rely on eSim to accurately reflect changes in their file system without
needing to refresh the interface manually. The addition of confirmation dialogs,
error handling messages, and persistent state management contribute to a more
polished and predictable environment. Overall, these enhancements reduce friction,
save time, and make eSim more accessible to both new and experienced users.

22

Chapter 6

Conclusion and Future Work

6.1 Summary of Contributions

The internship project focused on identifying and resolving key usability and func-
tional issues in the eSim platform. The contributions made during this period
spanned across interface enhancements, backend improvements, persistent state han-
dling, and usability features. Each implemented fix was aimed at improving the
stability, efficiency, and user-friendliness of eSim, ensuring that users could engage
with the tool in a smoother and more intuitive manner.

Among the major contributions was the implementation of error handling in
the lint off.txt file parsing logic, which previously caused simulation crashes. The
NGHDL interface was improved with the addition of a model removal feature,
streamlining the digital simulation workflow. The addition of a persistent mech-
anism to restore the last opened project further enhanced workflow continuity, elim-
inating the need for repetitive project reloading.

Another notable feature was the integration of a Snapshot and Timeline sys-
tem within the Project Explorer. This allowed users to create and restore file level
backups, offering a lightweight version control mechanism without needing external
tools. Lastly, real-time file system synchronization was introduced in the Project
Explorer, ensuring that any file changes made externally were instantly reflected in
the UI. Together, these enhancements represent a significant step forward in the
overall user experience and reliability of eSim.

These contributions not only fixed specific bugs but also added long-term value
to the project by introducing scalable features that align with user needs. The
work has laid a solid foundation for future enhancements and set a precedent for
maintaining usability standards across the platform.

6.2 Key Challenges and Resolutions

During the course of development, several technical and architectural challenges
were encountered. One of the early issues involved diagnosing the crash related to

23

the lint off.txt file. Identifying the point of failure within the simulation backend
and ensuring that invalid entries were handled without disrupting the simulation
flow required a thorough understanding of the codebase and careful use of exception
handling mechanisms.

The implementation of the NGHDL model removal feature involved dealing with
multiple file dependencies, including XML files, KiCad symbols, and directory struc-
tures. Ensuring that all references were properly cleaned up without affecting other
models required precise coordination between frontend prompts and backend file
handling logic. Exception handling and confirmation dialogs were added to ensure
safe execution and improve user control.

Introducing real-time file synchronization was another challenge, as it required
monitoring external file changes without adding performance overhead. The solu-
tion involved integrating file system watchers into the Project Explorer logic in a
way that balanced responsiveness with system resource management. Ensuring that
changes were reflected instantly, especially in expanded folders, required in-depth
testing and debugging.

The Snapshot and Timeline feature posed both design and functional challenges.
Designing an intuitive UI, managing timestamped file versions, and implementing
batch operations like restore and delete all within a limited interface space required
iterative development and testing. Additionally, managing file paths across different
operating systems and ensuring proper formatting in the Timeline required detailed
attention to cross-platform compatibility.

6.3 Recommendations for Future Enhancements

While the implemented features significantly improve eSims usability, several areas
remain open for further enhancement. One recommendation is to extend the Snap-
shot system to support folder level snapshots or project wide state saving. This
would give users the ability to track entire project versions rather than just individ-
ual files.

Another improvement could be the introduction of more advanced error report-
ing and logging mechanisms. Currently, error messages are limited to dialogs or
terminal prints. A unified logging dashboard within the GUI could help users and
developers trace issues more effectively, especially in larger circuits and complex
simulation scenarios.

Enhancing the NGHDL interface to support model versioning and categorization
could also be beneficial. As users increasingly work with multiple models, offering
features like tagging, search, and metadata display could improve model manage-
ment. Integrating visual indicators for unused or orphaned models would further
streamline the workflow.

24

Lastly, accessibility improvements, such as keyboard shortcuts for common tasks,
better tooltip descriptions, and customizable UI themes, could enhance the overall
user experience especially for users working on smaller screens or with accessibility
needs. These additions would make eSim more inclusive and adaptable to various
user contexts.

6.4 Scope for Community Contribution

Given eSim’s open-source nature, there is ample opportunity for continued com-
munity involvement. Contributors can help by identifying bugs, suggesting im-
provements, or directly submitting patches for review. Clear documentation, well-
structured issues, and modular design make it easier for new contributors to onboard
and contribute meaningfully to the project.

There is also scope for building tutorials, guides, and example projects to demon-
strate the new featuresespecially the Snapshot and Timeline system. Community
driven educational content can help new users better understand the tools capabil-
ities and encourage adoption across institutions.

Moreover, contributors with expertise in simulation engines, UI/UX design, or
digital circuit modeling can bring specialized value to the project. Areas like model
optimization, simulation speed-up, and support for additional languages (like Ver-
ilog/SystemVerilog) are open for exploration and would benefit from collaboration
with domain experts.

Encouraging student led development sprints, hackathons, and mentorship pro-
grams could strengthen the contributor base. By promoting active engagement
through open forums, workshops, and issue triaging, eSim can continue to grow as
a robust, community driven EDA tool that supports both education and research.

25

References

• FOSSEE Official Website, 2020. Available at:
https://fossee.in/about

• eSim Official Website, 2020. Available at:
https://esim.fossee.in/

• GitHub FOSSEE eSim Repository, 2020. Available at:
https://github.com/FOSSEE/eSim

• GitHub FOSSEE NGHDL Repository, 2020. Available at:
https://github.com/FOSSEE/nghdl

• Qt Documentation Qt for Python (PyQt5), 2020. Available at:
https://doc.qt.io/qtforpython/

• Python Official Documentation, 2020. Available at:
https://docs.python.org/3/

• KiCad EDA Tool Suite, 2020. Available at:
https://kicad.org/

• GHDL: Open-source VHDL Simulator, 2020. Available at:
https://ghdl.github.io/ghdl/

26

