
FOSSEE Summer Internship Report
On

Development of Website version for Osdag

Submitted by

Abhijith Sogal V

3rd Year B.Tech Student, Department of Civil

National Institute of Technology Karnataka, Surathkal

Under the Guidance of

Prof. Siddhartha Ghosh

Department of Civil Engineering

Indian Institute of Technology Bombay

Mentors:

Ajmal Babu M S

Parth Karia

Ajinkya Dahale

July 27, 2025

Acknowledgments

• I express my sincere gratitude to all those who supported me throughout this fel-

lowship. This journey would not have been possible without the guidance and

encouragement of many individuals, and I am deeply thankful for the opportunity

to contribute to this project.

• Project staff in the Osdag team, Ajmal Babu M. S., Ajinkya Dahale, and Parth

Karia,

• Osdag Principal Investigator (PI) Prof. Siddhartha Ghosh, Department of Civil

Engineering at IIT Bombay

• FOSSEE PI Prof. Kannan M. Moudgalya, FOSSEE Project Investigator, Depart-

ment of Chemical Engineering, IIT Bombay

• FOSSEE Managers Usha Viswanathan and Vineeta Parmar and their entire team

• Acknowledge the support from the National Mission on Education through In-

formation and Communication Technology (ICT), Ministry of Education (MoE),

Government of India, for their role in facilitating this project

• I would also like to thank my colleagues and fellow interns for the collaborative

spirit and for making this a memorable and enriching experience

1

Contents

1 Introduction 5

1.1 National Mission in Education through ICT 5

1.1.1 ICT Initiatives of MoE . 6

1.2 FOSSEE Project . 7

1.2.1 Projects and Activities . 7

1.2.2 Fellowships . 7

1.3 Osdag Software . 8

1.3.1 Osdag GUI . 9

1.3.2 Features . 9

2 Screening Task 10

2.1 Problem Statement . 10

2.2 Tasks Done . 10

3 Internship Task 1: Design Module Web Integration 13

3.1 Task 1: Problem Statement . 13

3.2 Task 1: Tasks Done . 13

3.3 Task 1: Code Overview . 14

3.3.1 Frontend (React JS) . 14

3.3.2 Backend (Django) . 15

3.3.3 Logic Explanation . 15

3.4 Task 1: Documentation . 16

3.4.1 Deprecation of Legacy Design Structure 16

4 Internship Task 2: UI Redesign and Figma Integration 17

4.1 Task 2: Problem Statement . 17

4.2 Task 2: Tasks Done . 17

4.3 Task 2: Initial Design Proposal and Subsequent Updates 18

4.4 Task 2: Design Philosophy . 18

4.5 Task 2: Results and Learnings . 19

2

5 Internship Task 3: Refactoring Frontend for Modular Architecture 21

5.1 Task 3: Problem Statement . 21

5.1.1 Solution: Modular Configuration-Based Architecture 21

5.1.2 Old Frontend Folder Structure (Before Refactor) 22

5.1.3 New Frontend Folder Structure (After Refactor) 22

5.1.4 Shared Folder . 23

5.1.5 Component Example: Tension Member – Bolted to End 23

5.1.6 Output Dock Example . 23

5.1.7 Benefits of the Refactoring . 24

5.1.8 Drawbacks of Old Structure . 24

5.1.9 How to Add a New Design Module (Frontend) 24

5.1.10 Conclusion . 27

6 Internship Task 4: Backend Enhancements and Feature Additions 28

6.1 Task 4: Problem Statement . 28

6.1.1 Key Backend Improvements . 28

6.1.2 Issue: Base64 Encrypted Passwords (Old Implementation) 29

6.1.3 Improved Password Handling (Hashed) 29

6.1.4 Removed Cookie-Based Session Per Module 30

6.1.5 Validations for Auth APIs . 30

6.1.6 New Feature: Recent Modules and Projects 30

6.1.7 New Feature: Guest Mode . 31

6.1.8 Authentication System Architecture (JWT + Guest Mode) 31

6.1.9 Visual Flow of Backend Refactor 34

6.1.10 Conclusion . 34

7 Internship Task 5: Linux Setup Documentation 35

7.1 Task 5: Problem Statement . 35

7.2 Task 5: Tasks Done . 35

7.3 Task 5: Installation Overview . 36

7.4 Task 5: Detailed Installation Steps . 36

7.4.1 1. Update System Packages . 36

7.4.2 2. Install Essential Build Tools 36

3

7.4.3 3. Install Git . 36

7.4.4 4. Install Miniconda . 36

7.4.5 5. Clone Osdag-Web Repository 37

7.4.6 6. Create and Activate Conda Environment 37

7.4.7 7. Install Python Dependencies 37

7.4.8 8. Install Additional Packages . 37

7.4.9 9. Install TeX Live . 37

7.4.10 10. Install FreeCAD . 37

7.4.11 11. Install PostgreSQL . 37

7.4.12 12. Create PostgreSQL User and Database 38

7.4.13 13. Configure Django Database Settings 38

7.4.14 14. Update Database Credentials in Scripts 38

7.4.15 15. Fix Typing Imports in modulef inder.py 39

7.4.16 16. Switch to Development Branch (if needed) 39

7.4.17 17. Run Database Setup Scripts and Migrations 39

7.4.18 18. Install Node.js and npm . 39

7.4.19 19. Install Frontend Dependencies 39

7.4.20 20. Run Django Backend Server 39

7.4.21 21. Run Frontend Development Server 40

7.4.22 22. (Optional) Install pgAdmin 40

7.5 Common Errors and Fixes . 41

7.6 Summary . 41

8 Conclusions 42

8.1 Tasks Accomplished . 42

8.2 Skills Developed . 43

A Appendix 45

A.1 Work Reports . 45

Bibliography 49

4

Chapter 1

Introduction

1.1 National Mission in Education through ICT

The National Mission on Education through ICT (NMEICT) is a scheme under the

Department of Higher Education, Ministry of Education, Government of India. It aims

to leverage the potential of ICT to enhance teaching and learning in Higher Education

Institutions in an anytime-anywhere mode.

The mission aligns with the three cardinal principles of the Education Policy—access,

equity, and quality—by:

• Providing connectivity and affordable access devices for learners and institutions.

• Generating high-quality e-content free of cost.

NMEICT seeks to bridge the digital divide by empowering learners and teachers in

urban and rural areas, fostering inclusivity in the knowledge economy. Key focus areas

include:

• Development of e-learning pedagogies and virtual laboratories.

• Online testing, certification, and mentorship through accessible platforms like EduSAT

and DTH.

• Training and empowering teachers to adopt ICT-based teaching methods.

For further details, visit the official website: www.nmeict.ac.in.

5

https://www.nmeict.ac.in
https://www.nmeict.ac.in

1.1.1 ICT Initiatives of MoE

The Ministry of Education (MoE) has launched several ICT initiatives aimed at students,

researchers, and institutions. The table below summarizes the key details:

No. Resource For Students/Researchers For Institutions

Audio-Video e-content

1 SWAYAM Earn credit via online courses Develop and host courses; accept
credits

2 SWAYAMPRABHA Access 24x7 TV programs Enable SWAYAMPRABHA
viewing facilities

Digital Content Access

3 National Digital Li-
brary

Access e-content in multiple dis-
ciplines

List e-content; form NDL Clubs

4 e-PG Pathshala Access free books and e-content Host e-books

5 Shodhganga Access Indian research theses List institutional theses

6 e-ShodhSindhu Access full-text e-resources Access e-resources for institu-
tions

Hands-on Learning

7 e-Yantra Hands-on embedded systems
training

Create e-Yantra labs with IIT
Bombay

8 FOSSEE Volunteer for open-source soft-
ware

Run labs with open-source soft-
ware

9 Spoken Tutorial Learn IT skills via tutorials Provide self-learning IT content

10 Virtual Labs Perform online experiments Develop curriculum-based exper-
iments

E-Governance

11 SAMARTH ERP Manage student lifecycle digi-
tally

Enable institutional e-
governance

Tracking and Research Tools

12 VIDWAN Register and access experts Monitor faculty research out-
comes

13 Shodh Shuddhi Ensure plagiarism-free work Improve research quality and
reputation

14 Academic Bank of
Credits

Store and transfer credits Facilitate credit redemption

Table 1.1: Summary of ICT Initiatives by the Ministry of Education

6

1.2 FOSSEE Project

The FOSSEE (Free/Libre and Open Source Software for Education) project promotes

the use of FLOSS tools in academia and research. It is part of the National Mission on

Education through Information and Communication Technology (NMEICT), Ministry of

Education (MoE), Government of India.

1.2.1 Projects and Activities

The FOSSEE Project supports the use of various FLOSS tools to enhance education and

research. Key activities include:

• Textbook Companion: Porting solved examples from textbooks using FLOSS.

• Lab Migration: Facilitating the migration of proprietary labs to FLOSS alterna-

tives.

• Niche Software Activities: Specialized activities to promote niche software tools.

• Forums: Providing a collaborative space for users.

• Workshops and Conferences: Organizing events to train and inform users.

1.2.2 Fellowships

FOSSEE offers various internship and fellowship opportunities for students:

• Winter Internship

• Summer Fellowship

• Semester-Long Internship

Students from any degree and academic stage can apply for these internships. Se-

lection is based on the completion of screening tasks involving programming, scientific

computing, or data collection that benefit the FLOSS community. These tasks are de-

signed to be completed within a week.

For more details, visit the official FOSSEE website.

7

https://fossee.in
https://fossee.in

Figure 1.1: FOSSEE Projects and Activities

1.3 Osdag Software

Osdag (Open steel design and graphics) is a cross-platform, free/libre and open-source

software designed for the detailing and design of steel structures based on the Indian

Standard IS 800:2007. It allows users to design steel connections, members, and systems

through an interactive graphical user interface (GUI) and provides 3D visualizations of

designed components. The software enables easy export of CAD models to drafting

tools for construction/fabrication drawings, with optimized designs following industry

best practices [1, 2, 3]. Built on Python and several Python-based FLOSS tools (e.g.,

PyQt and PythonOCC), Osdag is licensed under the GNU Lesser General Public License

(LGPL) Version 3.

8

1.3.1 Osdag GUI

The Osdag GUI is designed to be user-friendly and interactive. It consists of

• Input Dock: Collects and validates user inputs.

• Output Dock: Displays design results after validation.

• CAD Window: Displays the 3D CAD model, where users can pan, zoom, and

rotate the design.

• Message Log: Shows errors, warnings, and suggestions based on design checks.

Figure 1.2: Osdag GUI

1.3.2 Features

• CAD Model: The 3D CAD model is color-coded and can be saved in multiple

formats such as IGS, STL, and STEP.

• Design Preferences: Customizes the design process, with advanced users able to

set preferences for bolts, welds, and detailing.

• Design Report: Creates a detailed report in PDF format, summarizing all checks,

calculations, and design details, including any discrepancies.

For more details, visit the official Osdag website.

9

https://osdag.fossee.in

Chapter 2

Screening Task

2.1 Problem Statement

Applicants were tasked with contributing to the web app development of Osdag. The

objective was to replicate one of the structural steel connection modules from the desktop

version into a cloud-based web app. This required setting up Osdag-on-cloud locally,

creating a responsive UI using React, implementing RESTful APIs with Django, and

ensuring seamless frontend-backend integration.

2.2 Tasks Done

• Setup and Deployment: Cloned and configured the Osdag-on-cloud repository

successfully on a local environment. Verified that the development server ran with-

out issues and allowed full-stack development.

• Module Selected: Implemented the “Beam-to-column connections (end plate)”

module. The functionality and logic were aligned with Osdag’s desktop version but

adapted for the web platform.

• Frontend Development:

– Built using React with a clean component structure under folders like ‘Input-

Dock‘, ‘OutputDock‘, and ‘Visualization‘.

– The UI includes collapsible sections for user inputs (forces, sections, bolts,

etc.) and output panels for design status and capacity.

10

– Integrated both 2D and 3D visualization using Three.js, allowing users to

switch views.

– Form submission was connected to the backend via Axios and displayed real-

time results.

• Backend Development:

– Implemented two endpoints using Django REST Framework:

∗ ‘POST /beam-to-beam/create/‘ to accept input and return calculated out-

put.

∗ ‘GET /beam-to-beam/all/‘ to retrieve all previous submissions.

– Used class-based views (‘CreateAPIView‘ and ‘ListAPIView‘) for clean logic

separation.

– Although no structural design computation was performed, the API returned

dummy outputs derived from input values to simulate real-world scenarios.

These included bending and shear capacities, bolt utilization, plate dimensions,

and pass/fail status.

• Integration: The frontend consumed the API using ‘submitInputForm.js‘. On

submission, user inputs were sent to the backend and the calculated results were

rendered dynamically in the output dock and 3D visualization.

• Code Structure: Maintained a clean and modular file structure separating logic,

components, pages, and utilities.

11

• Demonstration: A video walkthrough of the working module, UI interactions,

and visualization is available at:

https://www.youtube.com/watch?v=Ml4Zn9sAhgA

• Code Repository: Full project source code is available at:

https://github.com/sogalabhi/osdag-task

• Documentation:

– Methodology: Started with setting up the Osdag base, planned the UI/UX

based on the desktop logic, then mapped API endpoints, and used Three.js

for visualization.

– Challenges: Aligning frontend data flow with Django serializers, setting up

Three.js inside React with live props, and designing realistic dummy outputs.

– References: Django REST Framework docs, React and Three.js tutorials,

Osdag desktop codebase.

12

https://www.youtube.com/watch?v=Ml4Zn9sAhgA
https://github.com/sogalabhi/osdag-task

Chapter 3

Internship Task 1: Design Module Web

Integration

3.1 Task 1: Problem Statement

The goal of this task was to migrate an existing design module for Tension Member

– Bolted to End, originally implemented in Python for Osdag Desktop, to a full-stack

web application. The web-based solution uses React for the frontend and Django for the

backend. It should allow users to:

• Enter structural input parameters via a web form.

• Trigger backend computations from the browser.

• Display CAD output and download the design report.

3.2 Task 1: Tasks Done

This work involved:

• Creating Django REST API endpoints for design logic.

• Developing a responsive React interface for data entry and results viewing.

• Managing API requests/responses using Axios and Redux.

• Implementing CAD and PDF report generation after design computation.

13

• Maintaining strict JSON-based communication across the stack.

• Integrating and rebasing contributions from other branches.

3.3 Task 1: Code Overview

3.3.1 Frontend (React JS)

The React frontend collects form data and communicates with the Django backend.

Listing 3.1: Triggering Design API Call

import { useDispatch } from ’react -redux’;

const handleSubmit = async () => {

const payload = {

module_id: "tension_member_bolted",

inputs: {

member_section: "ISA 100 x100x8",

length: 1500,

bolt_dia: 20,

num_bolts: 4,

}

};

const response = await fetch(’http ://127.0.0.1:8000/ calculate -

output/tension_member_bolted/’, {

method: ’POST’,

headers: {’Content -Type’: ’application/json’},

body: JSON.stringify(payload),

});

const data = await response.json();

dispatch(setDesignResult(data));

};

14

Key Features

• Asynchronous fetch for form submission.

• Payload includes module ID and structured input.

• Redux stores the result globally for display or further use.

3.3.2 Backend (Django)

The Django backend acts as the computation engine, parsing input, computing results,

and returning design data.

Listing 3.2: Django API View

from rest_framework.decorators import api_view

from rest_framework.response import Response

@api_view ([’POST’])

def calculate_output(request , module_id):

data = request.data[’inputs ’]

section = data[’member_section ’]

length = data[’length ’]

bolt_dia = data[’bolt_dia ’]

bolts = data[’num_bolts ’]

result = run_design(section , length , bolt_dia , bolts)

return Response(result)

Other API Endpoints

• /design/cad/ — triggers CAD drawing generation and returns an image.

• /generate-report/ — compiles PDF report with design result and metadata.

3.3.3 Logic Explanation

• API views are handled using Django REST Framework.

15

• Form input is validated and passed to the computation logic.

• CAD/PDF generation functions are invoked after a successful design run.

3.4 Task 1: Documentation

3.4.1 Deprecation of Legacy Design Structure

The original Osdag module for Tension Member – Bolted to End was implemented

entirely in Python for a monolithic desktop application. This tightly coupled structure,

while sufficient for desktop use, lacked modularity, reusability, and support for web-based

workflows.

16

Chapter 4

Internship Task 2: UI Redesign and

Figma Integration

4.1 Task 2: Problem Statement

The objective of this task was to redesign the user interface of Osdag’s Beam-to-Beam

Cover Plate Bolted Connection module for the web version. The existing desktop interface

was outdated, non-responsive, and not optimized for modern usability or cross-device

access. The goal was to create a fresh, scalable, and intuitive design in Figma that could

later be implemented in code.

4.2 Task 2: Tasks Done

This task included the following key activities:

• Analyzing the legacy desktop UI of the Beam-to-Beam Bolted Connection module.

• Identifying usability pain points, layout limitations, and inconsistencies.

• Designing a modern, responsive version of the UI in Figma.

• Maintaining backward compatibility in user workflow while introducing modern UX

principles.

• Preparing visual assets and references for future frontend implementation.

17

4.3 Task 2: Initial Design Proposal and Subsequent

Updates

The Figma designs shown below reflect the initial UI redesign proposal completed collab-

oratively by myself and Suhail, with valuable guidance and suggestions from our mentor

Parth. These initial designs successfully modernized the UI with improved responsive-

ness, accessibility, and visual clarity.

Note: Following team feedback, we subsequently updated several aspects of the UI —

including navigation structure, dock behavior, and color themes — to better align with

user needs and overall application consistency. These refinements enhanced usability and

developer integration, and will be covered in later documentation.

4.4 Task 2: Design Philosophy

Our goal was to modernize the user experience while preserving the familiarity and effi-

ciency that existing users expect. We focused on delivering a responsive, intuitive, and

flexible UI built on clean visual principles.

• Legacy-Friendly: We retained the structural layout and core workflows of the

original interface to ensure a smooth transition for existing users. Familiarity was

prioritized to minimize friction.

• Consistent Brand Identity: A soft green tint — part of Osdag’s legacy palette

— was subtly reintroduced across both light and dark modes to maintain visual

continuity and brand recognition.

• Device-Agnostic Design: The interface is fully responsive, with mobile-friendly

features like accordion docks and adaptive layouts that offer a seamless experience

across screen sizes.

• Power-User Efficiency: Advanced users can leverage keyboard shortcuts, mov-

able/resizable docks, and a command-style navbar for quick actions, aligning with

modern productivity standards.

18

• Modern Component System: Inspired by frameworks like shadcn/ui, the de-

sign uses clean cards, interactive toggles, and accessible inputs that make the in-

terface feel fresh without overwhelming the user.

4.5 Task 2: Results and Learnings

The initial Figma design, built from scratch, offers a robust visual framework that:

• Maintains user familiarity while modernizing the interaction flow.

• Improves clarity and responsiveness across devices.

• Provides a strong foundation for future development of Osdag Web.

The design was validated by comparing side-by-side screenshots of the desktop and

web interface for the same module. Improvements were measurable in usability, layout

balance, and user feedback.

Figure 4.1: Left: Old Landing Page, Right: Initial Redesigned Web Landing Page

Figure 4.2: Left: Old Module Page, Right: Initial Redesigned Module Page

Finalised UI

19

20

Chapter 5

Internship Task 3: Refactoring Fron-

tend for Modular Architecture

5.1 Task 3: Problem Statement

The original frontend of the Osdag web application was developed with hardcoded logic

per module, leading to:

• Redundant code across modules with nearly 2000 lines per module.

• Poor scalability and maintainability.

• Slow onboarding for new developers.

• High coupling between UI, data logic, and design-specific behavior.

5.1.1 Solution: Modular Configuration-Based Architecture

Me, along with help from Faran and Raghav, redesigned the frontend structure to follow

a modular and reusable approach. Key changes included:

• Separation of logic, configuration, and UI into reusable components.

• Centralized control through shared folder: components, API, utils, and context.

• Module-specific files now contain only their config and optional custom UI.

• Resulted in smaller and more manageable codebases of 300 lines per module.

21

5.1.2 Old Frontend Folder Structure (Before Refactor)

Each module had its own folder with nearly all logic, input handling, and output dock in

one place.

Listing 5.1: Old Structure

src/components/

beamBeamEndPlate/

InputDock.jsx

OutputDock.jsx

EngineeringModule.jsx

...

beamToColumnEndPlate/

...

...

5.1.3 New Frontend Folder Structure (After Refactor)

Listing 5.2: New Modular Structure

src/

modules/

boltedToEnd/

BoltedToEnd.jsx

BoltedToEndOutputDock.jsx

beamBeamEndPlate/

...

configs/

boltedToEndConfig.js

boltedToEndOutputConfig.js

...

shared/

components/

EngineeringModule.jsx

BaseOutputDock.jsx

22

context/

api/

utils/

5.1.4 Shared Folder

The ‘shared/‘ directory introduced in the new structure holds:

• Reusable UI: Like EngineeringModule.jsx, BaseOutputDock.jsx.

• API functions: Common fetch and post logic.

• Context: For shared state (e.g., output, theme, selected section).

• Utils: Like number formatting, image selectors, etc.

5.1.5 Component Example: Tension Member – Bolted to End

Listing 5.3: Module Component

<EngineeringModule

moduleConfig ={ boltedToEndConfig}

OutputDockComponent ={ BoltedToEndOutputDock}

menuItems ={ menuItems}

title="Tension Member Bolted Design"

/>

5.1.6 Output Dock Example

Listing 5.4: Output Dock with Shared Component

<BaseOutputDock

output ={ output}

outputConfig ={ boltedToEndOutputConfig}

title="Output Dock"

/>

23

5.1.7 Benefits of the Refactoring

• Reduced Boilerplate: From 2000+ lines to 300 lines per module.

• Faster Development: New modules can be added just by defining config.

• Improved Maintainability: Logic lives in reusable components.

• Team Scalability: Easier for new developers to contribute.

• Centralized UI/Logic: Promotes DRY (Don’t Repeat Yourself) principle.

5.1.8 Drawbacks of Old Structure

• Duplication: Same logic repeated across modules.

• Inflexible: Any design change had to be replicated across all files.

• Complexity: Difficult to onboard or debug due to large unstructured files.

• UI/Logic Coupling: Mixed UI rendering and state logic in one file.

5.1.9 How to Add a New Design Module (Frontend)

To create a new design module (e.g., Tension Member Welded), follow these structured

steps to ensure compatibility with the modular architecture:

Step 1: Create a Folder for the Module

Listing 5.5: Create Module Directory

src/modules/tensionWelded/

Step 2: Create Configuration Files

Inside the configs/ directory, add:

• tensionWeldedConfig.js – Define route metadata, default input values, form sec-

tions, and modal configurations. Also implement:

– buildSubmissionParams() – Prepares the backend payload.

24

– getSectionImage(), getDynamicSectionList() – For dynamic UI behavior.

• tensionWeldedOutputConfig.js – Define the report layout, modals, and dock

sections.

Step 3: Implement Output Dock Component

Use the shared BaseOutputDock to create:

Listing 5.6: Output Dock Creation

<BaseOutputDock

output ={ output}

outputConfig ={ tensionWeldedOutputConfig}

title="Output Dock"

/>

Save as TensionWeldedOutputDock.jsx under your module folder.

Step 4: Create Module Component

Use the shared EngineeringModule:

Listing 5.7: Engineering Module Usage

<EngineeringModule

moduleConfig ={ tensionWeldedConfig}

OutputDockComponent ={ TensionWeldedOutputDock}

menuItems ={ menuItems}

title="Tension Member Welded Design"

/>

Save as TensionWelded.jsx inside the new module’s folder.

Step 5: Register the Module Route

In src/App.jsx, import your new module and register a route like so:

Listing 5.8: Route Registration

<Route path="/tension -welded" element={< TensionWelded />} />

25

Step 6: Add to UI Module Selection

Update the module listing under:

Listing 5.9: Add to Modules UI

src/homepage/components/ModulesCardLayout.jsx

Add your module to the MODULE ROUTES array so that it’s selectable from the UI.

Best Practices

• Naming: Use consistent lowerCamelCase or kebab-case naming conventions.

• Reuse Components: Avoid duplicating UI; extend shared logic as needed.

• Testing: Test module selection, form interactions, and output report.

• Documentation: Keep internal notes or config comments to guide future teams.

Example: Tension Member – Bolted to End

Module Component:

<EngineeringModule

moduleConfig ={ boltedToEndConfig}

OutputDockComponent ={ BoltedToEndOutputDock}

menuItems ={ menuItems}

title="Tension Member Bolted Design"

/>

Output Dock Component:

<BaseOutputDock

output ={ output}

outputConfig ={ boltedToEndOutputConfig}

title="Output Dock"

/>

Config Responsibilities:

• defaultInputs – Initial form values.

26

• inputSections – Layout of grouped UI fields.

• modalConfig, modalTypes – For report dialogs.

• modalData – Dynamic data associated with modals.

• buildSubmissionParams() – Backend payload generator.

Summary of Required Steps

1. Create module folder under src/modules/

2. Create config and output config files under src/configs/

3. Implement output dock using BaseOutputDock

4. Define main component using EngineeringModule

5. Register the route in App.jsx

6. Add module to selection UI

5.1.10 Conclusion

This refactoring improved performance, code readability, and reusability. Now, adding

new design modules is fast, structured, and mostly configuration-driven — a major fron-

tend optimization step before starting backend refactors in the next task.

27

Chapter 6

Internship Task 4: Backend Enhance-

ments and Feature Additions

6.1 Task 4: Problem Statement

The original backend had several security and user experience shortcomings:

• Insecure Authentication: Passwords were encoded using Base64, which is re-

versible and unsafe.

• Session Handling: Module sessions were tied to a browser cookie, restricting users

to a single module per browser session.

• Feature Gaps: No support for features like recent modules, recent projects, or a

guest mode.

• Unvalidated Auth Flows: Signup, login, and forgot-password flows lacked proper

validation or error handling.

6.1.1 Key Backend Improvements

I refactored the backend to enhance security, flexibility, and feature support. Main im-

provements include:

• Secure Password Storage: Replaced Base64-encoded password logic with Django’s

default, robust password hashing and salting.

28

• Session Decoupling: Removed legacy per-module cookie-based sessions to sup-

port multi-tab and multi-module interaction.

• Feature Additions:

– Recent Modules: Tracks most recently used design modules.

– Recent Projects: Lists projects interacted with in the last N days.

– Guest Mode: Allows creating designs without logging in (stored in temp workspace).

• Auth Flow Validation: Rewrote and validated all user authentication flows in-

cluding login, signup, and password reset.

6.1.2 Issue: Base64 Encrypted Passwords (Old Implementa-

tion)

Originally, passwords were temp-stored in the DB using Base64 — an encoding format

that is not secure.

• Reversible: Anyone with the encoded string can decode it.

• Not hashed: Does not prevent database leaks from revealing actual passwords.

• No salting: Identical passwords result in same encoded value.

6.1.3 Improved Password Handling (Hashed)

Leveraged Django’s built-in create user() method which uses:

• PBKDF2 (Password-Based Key Derivation Function 2)

• Random salt per user

• Iterative hashing (default in Django)

Improved Signup Logic (Using Hashed Password)

29

Listing 6.1: Secure User Signup Using Django

Create Django user with hashed password

user = User.objects.create_user(

username=username ,

email=email ,

password=password # Hashing + salting is done internally

)

user.save()

No custom hashing code needed — Django handles password security internally, mak-

ing the system more resilient against attacks.

6.1.4 Removed Cookie-Based Session Per Module

Previously, backend logic tied the active module to a direct cookie session:

• Caused issues when opening multiple module pages.

• Only one cookie per browser – tabs overwrite each other.

Removed this logic to make the frontend stateless and module-agnostic. Each module

now loads independently and communicates securely via JWT authentication and internal

state.

6.1.5 Validations for Auth APIs

All user-facing auth endpoints were restructured and validated:

• Signup: Duplicate email/username check, strong password rules, input trimming.

• Login: Valid credentials check, JWT issuance, locked out on multiple failures.

• Forgot Password: Added email verification, token-based reset flows.

6.1.6 New Feature: Recent Modules and Projects

Tracks project and module activity through user metadata. Implemented:

• /api/recent/modules/: Returns an array of recent modules used.

30

• /api/recent/projects/: Fetches last accessed project names and IDs.

• Integrated on homepage and dashboard for authenticated users.

6.1.7 New Feature: Guest Mode

For first-time or infrequent users, a Guest Mode was added:

• Skips login/signup screen.

• Stores input temporarily via local/session storage.

• Projects are discarded on page reload unless saved.

Listing 6.2: Frontend Check for Guest Access

if (userMode === ’guest ’) {

saveToLocalStorage(inputValues);

} else {

postToBackend(inputValues , userToken);

}

6.1.8 Authentication System Architecture (JWT+Guest Mode)

The refactored authentication system now supports both secure JWT token-based login

for regular users and isolated sessionless guest usage.

1. JWT Token Authentication (Regular Users)

Login and Signup:

• On successful login or signup, the backend returns:

– an access token (stored in localStorage under "access" or "access token")

– optionally, a refresh token

• These replace legacy cookie-based sessions.

Token Validation:

31

• On app startup, tokens are validated using jwt decode.

• If the JWT is valid, the user’s session is rehydrated from token claims.

• If expired or malformed, the user is logged out, and all tokens are cleared.

Authenticated Requests:

• API requests are sent with access tokens:

Listing 6.3: Sending JWT in Headers

fetch("/api/protected/", {

method: "GET",

headers: {

Authorization: ‘Bearer ${access_token}‘

}

})

Logout:

• Clears all JWT tokens and related user info from localStorage.

2. Guest Authentication Mode

Guest Login Flow:

• When a user selects “Guest Mode,” a random email and password are generated.

• The userLogin() function is called with isGuest=true.

• On success, the following keys are stored:

Listing 6.4: Guest LocalStorage Data

{

"userType": "guest",

"username": "guest_3958",

"email": "guest_3958@osdag.com"

}

Guest Characteristics:

32

• No JWT token is stored or required.

• Projects are stored temporarily in browser memory and cleared on refresh unless

manually saved.

• Limited access: guest users cannot fetch saved projects or collaborate.

3. Utility Functions and Files

Location of Core Logic:

• src/utils/auth.js — Handles:

– setTokens(), getAccessToken(), isTokenValid()

– isGuestUser(), checkAutoLogin(), logoutUser()

• src/context/UserState.jsx — Sets auth context and state updates.

• src/hooks/useAuth.js—Provides isAuthenticated(), isGuestUser(), logout().

• LoginPage.jsx and SignupPage.jsx — Calls auth utilities and handles UI states.

Check Authentication Status:

Listing 6.5: Handling Auth State via Context

import { isAuthenticated , isGuestUser , getAccessToken } from "../

utils/auth";

if (isGuestUser ()) {

// Apply guest -specific logic

} else if (isAuthenticated ()) {

const token = getAccessToken ();

// Use token = Bearer <JWT >

}

4. Auto Login and Context Hooks

checkAutoLogin():

• Called on app load.

33

• Detects stored JWT tokens or guest session.

• Populates global UserContext.

UserContext/Hook Behavior:

• Shared across all routes and components.

• Unified interface for both guest and logged-in users.

5. Summary: Guest vs JWT Comparison

Feature JWT User Guest User
Authentication JWT Token ”userType”: ”guest” in localStorage
Data Persistence Server-side (DB) Browser only (temporary)
Multi-tab Access
API Access Full (with token) Limited (no token)
Login Required Yes No

Table 6.1: Feature Comparison Between JWT and Guest Users

6.1.9 Visual Flow of Backend Refactor

• User Flow Refactored: Login → JWT → Dashboard → Module

• Sessions Refactored: Removed cookie binding. Stateless frontend driven by JWT.

• Password Storage Upgraded: Base64 → PBKDF2 with Salt (Django Default)

6.1.10 Conclusion

This backend refactor resolved security vulnerabilities, enabled true module modularity,

and unlocked features missing in the original Osdag Cloud version. With strong authen-

tication and support for multi-tab use and guest access, this paves the way for a scalable

web-based design tool.

34

Chapter 7

Internship Task 5: Linux Setup Doc-

umentation

7.1 Task 5: Problem Statement

Setting up Osdag-Web on a fresh Ubuntu/Linux system involved many complex steps

across dependencies, environment configuration, and database setup. The lack of a uni-

fied, clear installation guide caused onboarding difficulties for new developers and users

alike. The goal was to create a comprehensive Linux setup document that streamlines

this process.

7.2 Task 5: Tasks Done

The primary activities in this task included:

• Collecting and organizing all prerequisite software and system-level dependencies.

• Writing step-by-step instructions for installing Miniconda, Node.js, PostgreSQL,

FreeCAD, and other tools.

• Documenting database setup and Django backend configuration precisely.

• Providing commands to clone the Osdag-Web repository and install frontend de-

pendencies.

• Adding a troubleshooting guide with common errors and solutions.

35

• Testing the entire setup process alongside intern colleague Pramila to ensure accu-

racy and effectiveness.

7.3 Task 5: Installation Overview

The documentation covers over 20 distinct steps, from system updates and package in-

stallation to database role creation and environment activation, enabling a reproducible

and error-minimized Osdag-Web setup on Ubuntu 20.04 or 22.04.

7.4 Task 5: Detailed Installation Steps

7.4.1 1. Update System Packages

sudo apt update

sudo apt upgrade -y

7.4.2 2. Install Essential Build Tools

sudo apt install -y build -essential cmake

7.4.3 3. Install Git

sudo apt install -y git

7.4.4 4. Install Miniconda

wget https :// repo.anaconda.com/miniconda/Miniconda3 -latest -Linux -

x86_64.sh

bash Miniconda3 -latest -Linux -x86_64.sh

Follow on -screen prompts and restart terminal afterward

36

7.4.5 5. Clone Osdag-Web Repository

git clone https :// github.com/osdag -admin/Osdag -web.git

cd Osdag -web

7.4.6 6. Create and Activate Conda Environment

conda create -n osdag -env python =3.9 -y

conda activate osdag -env

7.4.7 7. Install Python Dependencies

pip install -r requirements.txt

7.4.8 8. Install Additional Packages

conda install -c conda -forge pythonocc -core pylatex -y

pip install psycopg2 -binary django numpy pandas matplotlib

7.4.9 9. Install TeX Live

sudo apt install -y texlive -latex -extra

7.4.10 10. Install FreeCAD

sudo apt install -y snapd

sudo snap install freecad

7.4.11 11. Install PostgreSQL

sudo apt install -y postgresql postgresql -contrib

sudo systemctl start postgresql

sudo systemctl enable postgresql

37

7.4.12 12. Create PostgreSQL User and Database

sudo -u postgres psql

At the psql prompt:

CREATE ROLE osdagdeveloper PASSWORD ’password ’ SUPERUSER CREATEDB

CREATEROLE INHERIT REPLICATION LOGIN;

CREATE DATABASE "postgres_Intg_osdag" WITH OWNER osdagdeveloper;

\q

7.4.13 13. Configure Django Database Settings

Edit osdagapi/settings.pywith :

DATABASES = {

’default ’: {

’ENGINE ’: ’django.db.backends.postgresql ’,

’NAME’: ’postgres_Intg_osdag ’,

’USER’: ’osdagdeveloper ’,

’PASSWORD ’: ’password ’,

’HOST’: ’localhost ’,

’PORT’: ’5432’,

}

}

7.4.14 14. Update Database Credentials in Scripts

For scripts like populatedatabase.py, verifyDBconnectionsettings :

conn = psycopg2.connect(

dbname=’postgres_Intg_osdag ’,

user=’osdagdeveloper ’,

password=’password ’,

host=’localhost ’,

port =5432

)

38

7.4.15 15. Fix Typing Imports in modulef inder.py

Modify imports to:

from typing import Dict , Any , List

from typing_extensions import Protocol as _Protocol

7.4.16 16. Switch to Development Branch (if needed)

git checkout develop

7.4.17 17. Run Database Setup Scripts and Migrations

python populate_database.py

python update_sequences.py

python manage.py migrate

7.4.18 18. Install Node.js and npm

sudo apt install -y nodejs npm

7.4.19 19. Install Frontend Dependencies

cd osdagclient

npm install

cd ..

7.4.20 20. Run Django Backend Server

python manage.py runserver 8000

39

7.4.21 21. Run Frontend Development Server

cd osdagclient

npm run dev

Open http://localhost:5173/ in your browser to access the application.

7.4.22 22. (Optional) Install pgAdmin

sudo apt install -y pgadmin4

pgadmin4

40

7.5 Common Errors and Fixes

Error Message Probable Cause Solution

psycopg2.OperationalError:

FATAL: password

authentication failed

Incorrect DB

credentials

Double-check

username/password in

Django and scripts

ModuleNotFoundError:

No module named ...

Missing Python packages Install missing package

with pip install or conda

install

ERROR: Could not build

wheels for ...

Missing build tools Confirm build-essential

and cmake installed

django.db.utils.OperationalError:

FATAL: database ...

does not exist

DB not created or

incorrect DB name

Verify DB name and

existence in PostgreSQL

Permission denied when

running scripts

Insufficient file

execution permission

Use chmod +x or sudo

pip: command not found pip not installed or in

conda env

Run conda install pip

ImportError: cannot

import name ’ Protocol’

Typing import issue Fix import statements in

module finder.py as above

pgAdmin4 fails to

launch

Missing dependencies or

broken install

Use sudo apt --fix-broken

install and reinstall

pgAdmin4

npm: command not found Node.js/npm not

installed

Install Node.js/npm as

above

7.6 Summary

This comprehensive Linux setup documentation was tested thoroughly with my

intern colleague Pramila, and worked well without issues. It now serves as

a reliable resource to streamline Osdag-Web installation and setup on Ubuntu

systems.

41

Chapter 8

Conclusions

8.1 Tasks Accomplished

During the internship, the following core tasks were successfully completed:

• Task 1: Design Module Web Integration | Migrated the Tension Member {

Bolted to End design module from desktop Python to a full-stack web application

using React and Django, enabling responsive UI, backend API computation,

and CAD/PDF output generation.

• Task 2: UI Redesign and Figma Integration | Redesigned the Beam-to-Beam

Cover Plate Bolted Connection module’s UI for the web, implementing modern,

responsive, and consistent design principles using Figma, while maintaining

legacy workflows for user familiarity.

• Task 3: Refactoring Frontend for Modular Architecture | Re-architected

the frontend codebase to a modular, configuration-driven structure. This

reduced code duplication, improved maintainability, and enabled rapid

addition of new modules.

• Task 4: Backend Enhancements and Feature Additions | Secured authentication

by replacing Base64 password encoding with Django’s hashed password system,

removed legacy cookie-based sessions for better multi-tab support, introduced

guest mode, recent modules/projects features, and validated authentication

flows.

42

• Task 5: Linux Setup Documentation | Created a comprehensive, detailed

step-by-step guide for setting up Osdag-Web on Ubuntu/Linux platforms,

covering system dependencies, environment setup, database configuration,

and running frontend/backend servers, accompanied by troubleshooting tips

and tested with colleague Pramila.

8.2 Skills Developed

Throughout this fellowship, a broad range of technical and professional skills

were gained and honed:

• Full-Stack Web Development: Hands-on experience building React frontends

integrated with Django REST backends, mastering asynchronous API communication

and state management with Redux.

• UI/UX Design Principles: Learned to design and implement responsive,

accessible, and user-centric interfaces with tools like Figma and modern

component libraries, balancing legacy compatibility with new design trends.

• Modular Software Architecture: Applied software engineering best practices

by refactoring legacy code into modular, configuration-driven components

promoting reusability, scalability, and ease of maintenance.

• Secure Backend Practices: Implemented security improvements such as password

hashing, JWT authentication, session management enhancements, and rigorous

input validation.

• System Administration and Deployment: Gained proficiency in Linux system

setup, dependency management with Conda and Node.js, PostgreSQL database

configuration, and launch of production-like environments.

• Collaboration and Documentation: Developed strong collaboration skills

by working alongside team members, and produced high-quality technical

documentation and guides aiding knowledge sharing and onboarding.

43

• Problem Solving and Debugging: Tackled diverse challenges including cross-technology

integration, API design, frontend-backend synchronization, and environment

troubleshooting.

These experiences have significantly enhanced both my technical capabilities

and professional approach, preparing me to contribute effectively to web applications

and modular software projects in the future.

44

Chapter A

Appendix

A.1 Work Reports

45

Internship Work Report

Name: Sogal Abhi
Project: Osdag
Internship: FOSSEE Winter Fellowship 2024

DATE DAY TASK Hours
Worked

15-May-2025 Thursday Orientation, Git policy, and Campus overview 5

16-May-2025 Friday Set up editable version of Osdag; Started working
on UI/UX revamp in Figma

5

17-May-2025 Saturday Completed UI/UX design for the module in Figma 6

19-May-2025 Monday Polished UI/UX designs; Set up Osdag-web and
installed dependencies

6

20-May-2025 Tuesday Resolved setup issues and configured Django back-
end locally

6

21-May-2025 Wednesday Implemented base routing and basic module layout
UI

6

22-May-2025 Thursday Refactored Osdag frontend for modular design in-
tegration

7

23-May-2025 Friday Reduced UI boilerplate by using dynamic render
components

6

26-May-2025 Monday Added support for shared JSON config to render
all input fields

6

27-May-2025 Tuesday Debugged UI component rendering from schema 7

28-May-2025 Wednesday Completed input parsing and preview image link-
ing

6

29-May-2025 Thursday Hooked backend computation logic to new UI form 7

30-May-2025 Friday Implemented result viewer and download buttons
for reports

6

02-Jun-2025 Monday Created component for step-based navigation
within UI

5

03-Jun-2025 Tuesday Designed the loading modal in Figma; Set up
generic structure for design modules

6

04-Jun-2025 Wednesday Created the landing page UI in Figma; Refactored
backend API to match new input schema

6

1

DATE DAY TASK Hours
Worked

05-Jun-2025 Thursday Added support for prefilled input config in fron-
tend

5

06-Jun-2025 Friday Added state management across UI steps (Redux
alternative)

6

09-Jun-2025 Monday Created component to view .dxf output and test
render logic

6

10-Jun-2025 Tuesday Adjusted CSS and spacing to ensure responsive
layout

5

11-Jun-2025 Wednesday Implemented file upload + validation for input
params

7

12-Jun-2025 Thursday Created hook for dynamic computation result
loading

6

13-Jun-2025 Friday Updated form UX for error hints and placeholders 6

16-Jun-2025 Monday On Leave 0

17-Jun-2025 Tuesday On Leave 0

18-Jun-2025 Wednesday On Leave 0

19-Jun-2025 Thursday Created table layout for output values and sum-
mary

5

20-Jun-2025 Friday Added collapsible card views for inputs and results 6

23-Jun-2025 Monday Added download .csv and .pdf export features 6

24-Jun-2025 Tuesday Reviewed with mentor, resolved API edge cases 5

25-Jun-2025 Wednesday Applied feedback and completed ‘Tension Member
– Bolted to End‘ module

7

26-Jun-2025 Thursday Wrote unit tests and checked integration with de-
ployment version

6

27-Jun-2025 Friday Added loading indicators and retry mechanism for
backend calls

6

30-Jun-2025 Monday Updated routing config to support multi-design
switching

5

01-Jul-2025 Tuesday Final round of UI polish and logic restructuring 6

02-Jul-2025 Wednesday Demo session with mentor and applied final round
feedback

6

03-Jul-2025 Thursday Documented code changes and updated README 6

04-Jul-2025 Friday Final walkthrough of new module and comparison
with legacy UI

6

2

DATE DAY TASK Hours
Worked

07-Jul-2025 Monday Committed final changes, tagged release candidate
version

5

08-Jul-2025 Tuesday Assisted in preparing presentation for FOSSEE
showcase

6

09-Jul-2025 Wednesday Conducted peer review and prepared brief report
for submission

6

10-Jul-2025 Thursday Backup of frontend configs and notes for new con-
tributors

5

11-Jul-2025 Friday Validated deployment setup and resolved minor
bugs

6

14-Jul-2025 Monday Helped onboard junior interns and explained mod-
ule codebase

6

15-Jul-2025 Tuesday Created short video walkthrough of UI interactions 6

16-Jul-2025 Wednesday Shared internship experience and sent final sign-off
to mentor

4

17-Jul-2025 Thursday No new tasks (Wrap-up and formal completion) 2

18-Jul-2025 Friday Final documentation and project handover com-
pleted

4

3

Bibliography

[1] Siddhartha Ghosh, Danish Ansari, Ajmal Babu Mahasrankintakam,

Dharma Teja Nuli, Reshma Konjari, M. Swathi, and Subhrajit Dutta.

Osdag: A Software for Structural Steel Design Using IS 800:2007. In

Sondipon Adhikari, Anjan Dutta, and Satyabrata Choudhury, editors,

Advances in Structural Technologies, volume 81 of Lecture Notes

in Civil Engineering, pages 219--231, Singapore, 2021. Springer

Singapore.

[2] FOSSEE Project. FOSSEE News - January 2018, vol 1 issue 3. Accessed:

2024-12-05.

[3] FOSSEE Project. Osdag website. Accessed: 2024-12-05.

49

	Introduction
	National Mission in Education through ICT
	ICT Initiatives of MoE

	FOSSEE Project
	Projects and Activities
	Fellowships

	Osdag Software
	Osdag GUI
	Features

	Screening Task
	Problem Statement
	Tasks Done

	Internship Task 1: Design Module Web Integration
	Task 1: Problem Statement
	Task 1: Tasks Done
	Task 1: Code Overview
	Frontend (React JS)
	Backend (Django)
	Logic Explanation

	Task 1: Documentation
	Deprecation of Legacy Design Structure

	Internship Task 2: UI Redesign and Figma Integration
	Task 2: Problem Statement
	Task 2: Tasks Done
	Task 2: Initial Design Proposal and Subsequent Updates
	Task 2: Design Philosophy
	Task 2: Results and Learnings

	Internship Task 3: Refactoring Frontend for Modular Architecture
	Task 3: Problem Statement
	Solution: Modular Configuration-Based Architecture
	Old Frontend Folder Structure (Before Refactor)
	New Frontend Folder Structure (After Refactor)
	Shared Folder
	Component Example: Tension Member – Bolted to End
	Output Dock Example
	Benefits of the Refactoring
	Drawbacks of Old Structure
	How to Add a New Design Module (Frontend)
	Conclusion

	Internship Task 4: Backend Enhancements and Feature Additions
	Task 4: Problem Statement
	Key Backend Improvements
	Issue: Base64 Encrypted Passwords (Old Implementation)
	Improved Password Handling (Hashed)
	Removed Cookie-Based Session Per Module
	Validations for Auth APIs
	New Feature: Recent Modules and Projects
	New Feature: Guest Mode
	Authentication System Architecture (JWT + Guest Mode)
	Visual Flow of Backend Refactor
	Conclusion

	Internship Task 5: Linux Setup Documentation
	Task 5: Problem Statement
	Task 5: Tasks Done
	Task 5: Installation Overview
	Task 5: Detailed Installation Steps
	1. Update System Packages
	2. Install Essential Build Tools
	3. Install Git
	4. Install Miniconda
	5. Clone Osdag-Web Repository
	6. Create and Activate Conda Environment
	7. Install Python Dependencies
	8. Install Additional Packages
	9. Install TeX Live
	10. Install FreeCAD
	11. Install PostgreSQL
	12. Create PostgreSQL User and Database
	13. Configure Django Database Settings
	14. Update Database Credentials in Scripts
	15. Fix Typing Imports in modulefinder.py
	16. Switch to Development Branch (if needed)
	17. Run Database Setup Scripts and Migrations
	18. Install Node.js and npm
	19. Install Frontend Dependencies
	20. Run Django Backend Server
	21. Run Frontend Development Server
	22. (Optional) Install pgAdmin

	Common Errors and Fixes
	Summary

	Conclusions
	Tasks Accomplished
	Skills Developed

	Appendix
	Work Reports

	Bibliography

