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Chapter 1

Introduction

1.1 FOSSEE

The FOSSEE (Free/Libre and Open Source Software for Education) project is part
of the National Mission on Education through Information and Communication
Technology (ICT), Ministry of Human Resource Development (MHRD), Govern-
ment of India[l]. The project promotes the use of FLOSS tools to improve the
quality of education in our country. The aim is to reduce dependency on propri-
etary software in educational institutions and encourage the use of FLOSS tools
through various activities to ensure commercial software is replaced by equivalent
FLOSS tools.Under this project, new FLOSS tools are developed and existing tools
are upgraded to meet the requirements in academia and research.

This project software, a OpenModelica Graphical User Interface based Simulator
is an extension of Openmodelica OMEdit[2], the official Graphical User Interface for
graphical model editing in OpenModelica.

1.2 OpenModelica

OPENMODELICA is an open-source Modelica-based modeling and simulation en-
vironment intended for industrial and academic usage. Its long-term development
is supported by a non-profit organization — the Open Source Modelica Consortium
(OSMC)[3].

The goal with the OpenModelica effort is to create a comprehensive Open Source
Modelica modeling, compilation and simulation environment based on free software
distributed in binary and source code form for research, teaching, and industrial
usage. Researchers and students, or any interested developer(s) are invited to par-
ticipate in the project and cooperate around OpenModelica, tools, and applications.
Open Source Modelica Consortium supports its development. It runs on Windows,
Linux, and Mac operating systems. FOSSEE, IIT Bombay has taken up the initia-
tive of promoting FLOSS ( Free/Libre and Open Source Software), for education.
The OpenModelica team at FOSSEE, IIT Bombay, promote the use of OpenMod-
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elica as being accessible and readily available. The goal of this project is to enable
the students and faculty of various colleges/institutes/universities across India to use
Free/Libre and Open Source Software tools for all their modeling and simulation
purposes, thereby improving the quality of instruction and learning and to avoid
expensive licenses of commercial modeling and simulation packages for research and
education.



Chapter 2

Problem Statement

Modeling, simulating, and optimizing chemical separation processes, such as batch
distillation within OpenModelica requires extensive manual interaction with Mod-
elica files, simulation scripts, and output parsers. While OpenModelica is a power-
ful open-source platform, its native interface lacks the abstraction and integration
needed for iterative, constraint-driven optimization— an essential requirement in
computational chemical engineering.

Traditionally, the workflow for simulating batch processes in OpenModelica in-
volve the following steps:

e Manually configuring thermodynamic models (e.g., NRTL, UNIQUAC) in
Modelica source files,

e Creating or editing input scripts for parameter values (e.g., reflux ratio, feed
composition),

e Running simulations via command-line invocation of OpenModelica Compiler
(ome),

e Parsing raw output files to extract variables of interest (e.g., X4[l], Product
yield, tray compositions),

e Post-processing results using external visualization tools.

This fragmented workflow not only imposes a steep learning curve, but also
introduces significant potential for error, particularly when performing parametric
sweeps or constrained optimization under complex boundary conditions.

Furthermore, in the domain of computational chemistry where time-resolved
simulations, mass-energy balances, and multivariate optimization are foundational,
the lack of a cohesive optimization interface limits the scalability and utility of
OpenModelica for real-world process modeling.

This project addresses these limitations by developing a robust, GUI-enhanced
automation framework that abstracts the complexities of simulation and integrates
real-time optimization routines for batch distillation columns. The primary goal
is to bridge the operational gap between computational modeling and automated
optimization by embedding simulation intelligence into an accessible, user-centric
interface.



Key advancements introduced through this project include:

e Seamless compound selection from a curated database of 433 chemical species.

e Automatic generation and modification of Modelica models based on user-
defined parameters.

Stepwise configuration of thermodynamic models and operational units.

Fully-integrated batch simulation execution via omc.

Quantitative optimization of process variables (e.g., reflux ratio R, process
time T'F') using constrained nonlinear solvers.

Interactive result visualization through OMPlot integration and scalar variable
extraction.

The resulting platform transforms OpenModelica into a practical and efficient
simulation-optimization tool, significantly enhancing its applicability in academic
research, process design, and computational chemical analysis.



Chapter 3

Objectives

The overarching objective of this project was to develop a performance-driven,
optimization-enabled graphical interface for batch distillation simulation using Open-
Modelica. Recognizing the critical role of simulation and optimization in computa-
tional chemistry, the project aimed to integrate both domains into a single, coherent,
and user-friendly platform.

From a scientific perspective, the aim was not merely to simplify simulations,
but to embed a robust optimization backbone capable of solving constrained, multi-
variate problems characteristic of batch separation processes. Specifically, the GUI
was intended to support optimization routines targeting:

e Maximization of product purity (X4[1]),
e Minimization of batch time (T'F),
e Simultaneous optimization of time-varying reflux ratio profiles (R(?)),

e Enforcement of operational constraints such as purity thresholds and product
quantity bounds.

These technical goals were pursued within the context of improving model ac-
cessibility, minimizing manual intervention, and delivering consistent, quantifiable
improvements in simulation time and result accuracy.

In line with these scientific and engineering ambitions, the project defined the
following concrete objectives:

e Design and implement a PyQt6-based GUI that guides users through
compound selection, thermodynamic configuration, and model setup in a struc-
tured, intuitive manner.

e Integrate simulation orchestration using OpenModelica Compiler(omc)
through backend Python scripts, allowing for single-click simulation execution
from within the GUI.

e Embed optimization workflows for both static and time-dependent param-
eters, using Scipy’s COBYLA solver for constrained nonlinear optimization.



e Develop dynamic input generation pipelines for Modelica models, in-
cluding parameter files and MOS scripts.

¢ Implement constraint validation and fallback handling to ensure physi-
cally meaningful results and graceful degradation in case of convergence failure.

e Enhance simulation performance and reproducibility through result
caching, bounded variable enforcement, reduced solver precision, and timeout
protection.

e Facilitate quantitative comparison of optimization outcomes by record-
ing key metrics such as optimal R, achieved X 4[1], final product yield, and
minimized TF'.

e Provide clear visualization and data extraction tools, including scalar
variable listing and OMPlot integration for post-simulation analysis.

Through this multi-layered approach of bridging chemical process simulation,
numerical optimization, and user interface engineering, the project delivers a scalable
and practical solution for modern chemical process modeling. The system serves
as a blueprint for future developments in computational chemical engineering tools,
demonstrating the power of intelligent automation in scientific simulation workflows.



Chapter 4

Methodology

The methodology adopted in this project follows a modular, iterative development
and validation cycle, with emphasis on integrating simulation fidelity, optimization
robustness, and interface usability. The overall workflow reflects a combination of
computational chemical modeling principles, numerical optimization strategies, and
user-centric software engineering practices.

The work was structured across three tightly coupled layers:

1. Simulation Layer (Modelica + OMC): This foundational layer encapsulates
the chemical process model defined in Modelica, specifically a batch rectification col-
umn using NRTL-based thermodynamic formulations. The model was designed to
expose critical variables such as tray compositions, accumulator holdup, reboiler
duty, and condenser pressure. Simulations were driven through ‘.mos‘ scripts and
executed using the OpenModelica Compiler (OMC), producing ‘.plt‘ and ‘.mat* out-
put files.

2. Optimization Layer (Python Backend): Sitting atop the simulation en-
gine, this layer orchestrates batch-wise and time-based optimization workflows. Ob-
jective functions (e.g., maximizing purity, minimizing time) were defined in terms of
key process outputs extracted from simulation results. Constraints were formulated
based on physical feasibility (e.g., mole fractions < 1), process requirements (e.g.,
X4[1] > 0.90), and operational limits (e.g., 0.3 < R < 1.0). Optimization was
conducted using COBYLA[S], a derivative-free constrained optimization algorithm.

3. Interface Layer (GUI): The PyQt6-based graphical interface enables users
to configure, simulate, and optimize distillation processes without interacting di-
rectly with code or raw model files. The GUI abstracts all internal mechanics and
dynamically modifies Modelica scripts, parameter files, and solver configurations
based on user input. This layer ensures accessibility and reproducibility, allowing
chemical engineers and students to perform high-fidelity optimizations in a con-
trolled environment.
Key stages in the methodology included:
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Model Patching: Automatic parameter insertion into ‘.mo* files based on
GUI inputs.

Simulation Execution: Running OMC via subprocess and handling time-
outs or failures.

Result Extraction: Parsing ‘.plt and ‘.xml files to access scalar variables
(e.g., Xa, Product).

Objective and Constraint Evaluation: Formulating mathematical criteria
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for optimizer feedback.

e Fallback Handling: Recording valid intermediate solutions to guard against
convergence issues.

e Performance Profiling: Iteratively reducing simulation complexity while
maintaining result fidelity.

Through this layered and methodical structure, the project achieved both func-

tional robustness and computational efficiency, aligning with the demands of real-
world chemical process optimization.
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Chapter 5

Technologies Used

The development of this optimization-enabled GUI for OpenModelica required the

coordinated use of various technologies spanning programming, simulation, numer-

ical optimization, and interface design. Each component played a critical role in

supporting the goals of modularity, extensibility, and computational rigor.
Programming Language:

Python 3.13[6] — Primary language used for backend development, simula-
tion control, optimization logic, and GUI binding.

Libraries and Packages:—

PyQt6[5] : Used for building the graphical user interface, including input
forms, signal-slot mechanisms, and theme customization.

SciPy|[§] : Provided the minimize () function with the COBYLA method for
constraint-based optimization.

xml.etree.ElementTree : For parsing OpenModelica-generated ‘.xml files
containing simulation metadata.

subprocess[J] : Enabled automated invocation of OpenModelica Compiler
(OMC) and OMPlot from within Python scripts.

regex [7], os, sys, pathlib[4], shutil : For cross-platform file handling,
parameter injection, and automation.

Simulation and Modeling Environment:

OpenModelica 1.25.0 : Used for simulating chemical processes via Modelica
models. Models such as

OMC (OpenModelica Compiler) : Invoked programmatically to compile
and simulate Modelica models.

OMPIlot : Used for visualizing scalar simulation results stored in ".mat’ files,
accessed via subprocess.
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Development Tools:—

e Qt Designer : For visually designing GUI layouts exported as ‘.ui’ files.
e Visual Studio Code : Primary IDE for the application development.

e Git and GitHub : For version control, collaboration, and deployment.

Each of these technologies was selected to align with the constraints of open-
source compatibility, cross-platform execution, and low-dependency deployment.
Python was used for its clear, concise syntax based programming and rich lib sup-
port in the for of SciPy[§]. This is paramount in complex logic where code read-
ability is extremely crucial when dealing with a large codebase in a monorepo. Its
flexibility made it ideal for orchestrating simulations, manipulating Modelica files,
executing subprocesses through OMPlot and ome, and managing data pipelines.
Additionally, Python’s cross-platform compatibility significantly accelerated devel-
opment and testing. The availability of specialized packages for optimization, file
parsing, and GUI development allowed for rapid prototyping and scalable imple-
mentation of the simulator’s backend logic.

The xml.etree. ElementTree module from Python’s standard library was employed
to parse the ‘.xml‘ files generated by OpenModelica post-simulation. These XML
files contain structured metadata describing the model hierarchy, scalar variables,
units, and other simulation artifacts. By leveraging ElementTree’s lightweight and
efficient parsing interface, the application was able to dynamically extract relevant
information such as variable names, types, and descriptions, which were subse-
quently displayed in the GUI for user selection and analysis. This approach en-
abled robust post-processing of simulation results while maintaining portability and
minimizing external dependencies.

Reflections and Outcomes

This phase of optimization served as my entry point into embedding numerical

intelligence into OpenModelica simulations. While the GUI provided surface-level

accessibility, basic optimization introduced strategic decision-making to the backend.
I was able to:

e Translate a static simulation workflow into a goal-directed, constraint-aware
search over a continuous domain.

e Achieve reproducible purity outcomes without user iteration, simulating the
principles of control optimization and single-variable bounded search under
constraints.

e Replace manual parameter tuning with a computationally robust, feedback-
integrated COBYLA-driven process.

This phase laid the algorithmic foundation upon which all subsequent optimiza-
tion layers were built. From a scientific standpoint, it proved that even simple
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processes could benefit from embedded intelligence and formalized decision loops —
converting OpenModelica into more than just a simulator: a solver-guided process
modeler.

Summary

The successful implementation of basic optimization signified a major advancement
in my internship journey. I was able to elevate the batch distillation simulation from
a static testbed to an interactive, adaptive optimization engine.

The highlights of my contributions include:

e Formulating and embedding a mathematically rigorous optimization problem
tailored to OpenModelica outputs.

e Quantifying and validating improvements in purity and performance, demon-
strating real-world viability.

e Enhancing the simulator’s usability, reproducibility, and fault-tolerance by
introducing caching, fallbacks, and persistent logging.

e Delivering measurable gains — up to 86.66% reduction in runtime for long-
duration simulations.

This work reflected a synthesis of computational thinking, algorithm design, and
engineering precision — ensuring that the basic optimization layer was not just
functional, but efficient, stable, and production-ready.

15



Chapter 6

Basic Optimization

As a foundational milestone in the optimization phase, basic optimization was the
first mechanism through which the simulation framework was extended with formal
performance-driven capabilities. The primary goal was to determine the optimal
static reflux ratio (R) that would maximize product purity (X4[1]) for a fixed stop
time, without requiring iterative manual simulations or arbitrary parameter tuning.

Prior to optimization integration, there was no mechanism to compute optimal
reflux values based on target purity constraints. Additionally, the absence of re-
sult caching and fallback logic rendered the simulation cycle inefficient and brittle,
especially for long-duration simulations. The implemented optimization backend ad-
dressed these issues by formalizing the process as a bounded nonlinear programming
problem and integrating a solver-controlled orchestration layer.

This implementation led to a significant performance gain—most notably, simu-
lation time for larger configurations was reduced by up to 86.66%, without compro-
mising result fidelity or model correctness.

6.1 Computational Formulation

The optimization task was expressed as a single-variable, constraint-bound max-
imization problem where the reflux ratio R was the control parameter, and the
scalar variable X 4[1](tgna1) was the objective function to be maximized. The formal
expression of the problem is as follows:

maximize X 4[1](anal)
subject to Ry < R < Rpax, (6.1)
XA[l](tﬁnal) 2 Xtarget-

The COBYLA algorithm (Constrained Optimization BY Linear Approxima-
tions) was employed to solve the problem without requiring derivative information.
Each solver iteration generated a candidate R value, which was injected into the
simulation backend. The simulation was then executed via OpenModelica’s com-
piler interface (omc), and scalar outputs were parsed to evaluate the optimization
objective and constraints.
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From a software architecture perspective, this phase introduced essential opti-
mization infrastructure into the simulation system:

e Constraint-Driven Optimization: Implemented dual constraint enforce-

ment—reflux bounds and target purity—to ensure that solutions were physi-
cally viable and chemically interpretable.

Stateful Caching and Result Reuse: To avoid redundant computations, a
memoization system was introduced that cached simulation results indexed by
reflux ratio values. This design followed principles of dynamic programming
to accelerate convergence.

Simulation Orchestration: Developed a modular backend layer to manage
parameter injection, MOS script generation, subprocess execution of simula-
tions, and structured extraction of scalar outputs.

Fallback and Convergence Logic: Implemented error handling for non-
convergent runs and numerical instabilities. When the optimizer encountered
invalid outputs (e.g., NaN, zero yield), the system automatically reverted to
the last feasible state.

6.2 Quantitative Outcomes

The optimization backend was benchmarked across a range of compound config-
urations and simulation durations. The following improvements were consistently
observed:

e Achieved an average product purity of 0.98 or higher across all tested scenarios.
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e Reduced user effort from 1000 manual simulations to a single, fully automated
run.

e All optimization executions remained within the reflux bounds R € [0.0, 1.0].

e Achieved up to 86.66% reduction in process time for long-duration simulations
by eliminating redundant runs.

e Simulation efficiency improved by over 60% due to timeouts, caching, and
convergence shortcuts.
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Product averageProductMoleFraction[ 1] averageProductMoleFraction[ 2]
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Figure 6.2: Product purity and other variables (X[1]) over time under optimized
static reflux ratio

Reflections and Outcomes

This phase demonstrated the feasibility of augmenting OpenModelica-based sim-
ulations with automated, constraint-satisfying optimization logic. While the GUI
served as the user-facing layer, the underlying transformation was computational:
static inputs were replaced with decision variables, and isolated simulations became
part of an orchestrated feedback loop governed by solver behavior.

Specific outcomes of my work included:

e Formalization of optimization logic using solver-compatible objective and con-
straint mappings.

e [solation of model parameters as tunable entities within a bounded search
space.

e Introduction of robustness layers that ensured process stability under failure
scenarios.

e Laying down the architectural scaffolding for future modes of optimization
(e.g., time-based and hybrid).
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6.3 Summary

The basic optimization module successfully transitioned the OpenModelica GUI
from a static simulation launcher to a programmable system for constrained nonlin-
ear optimization. The contributions included:

e Design of a bounded solver interface for reflux ratio optimization.

e Integration with OpenModelica’s simulation engine using automated file gen-
eration and subprocess control.

e Systematic extraction and evaluation of scalar variables to close the loop be-
tween optimization and simulation.

e Demonstrated gains in performance, accuracy, and user productivity—quantified
through benchmarked reductions in simulation time and improvements in pu-
rity attainment.

This phase formed the computational baseline for all subsequent optimization
modules and proved the viability of embedding simulation-aware solvers in a modular
and extensible architecture.
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Chapter 7

Time-Based Optimization

The second phase of the project focused on minimizing batch process duration while
maintaining strict purity and yield constraints — a classical problem in chemical
engineering modeled here through time-based optimization. This variant introduced
additional complexity compared to basic optimization, as the optimization variable
shifted from the reflux ratio (R) to the final simulation time (7F), introducing new
temporal sensitivities and convergence behaviors.

7.1 Computational Formulation
This optimization routine can be framed as a constrained minimization problem:

minimize Tp
subject to  Xa[1](TF) > Xtarget,

Product(Tr) > P, (7.1)

Tmin S TF S Tmaxv

Rmin S R S Rmax-
COBLYA[§| was used for this optimization profile too, mainly due to its precision
rate over other methods offered by scipy.minimize which returned errors in numerous
iteration cycles of optimization. It also ensured optimal compatibility with omc in

backend while also giving me easy control over the constraints and tolerance of the
optimization.
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My work during this phase introduced several important computational princi-
ples into the optimization backend, mainly focusing on how to ensure accuracy and
precision of the algorithm while also maintaining minimal process time constraint
on software level:

e Constraint Programming: The system enforced multiple nonlinear con-
straints dynamically, including physical bounds on purity, product accumula-
tion, and vessel holdup. This required defining a custom constraint validation
layer that rejected unfeasible simulations in real-time.

e State Propagation and Caching: To improve performance and ensure
convergence across expensive simulations, I implemented a local memoization
structure indexed on (R,Tr) tuples. This cache stored simulation outcomes
to prevent redundant evaluations and enabled early stopping on known failure
paths.

e Robust Objective Estimation: The objective function leveraged scalar
value extraction from OpenModelica’s PLT output to evaluate T, abstracting
the raw simulation data into a decision-relevant metric. This separation of
simulation and optimization layers allowed greater modularity and reliability.

e Bounded Search Space and Feasibility Restoration: The optimizer was
enclosed within strict temporal and operational bounds, ensuring all solutions
remained physically viable. In cases of numerical failure or convergence break-
down, fallback mechanisms recovered the last feasible solution — ensuring
continuity and resilience in long-run batches.
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7.2 Performance Gains and Quantification

Time-based optimization provided substantial real-world improvements:

e Achieved process time reductions up to 86.66% in high-purity, long-duration
scenarios.

e Reduced simulation attempts per run by over 50% using cache-based simula-
tion filtering.

e Delivered consistent satisfaction of purity constraint X 4[1] > 0.95 with mini-
mized 1.

e Increased convergence reliability by 43.1% via bounded domain tuning and
constraint smoothing.
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Figure 7.2: Time-based optimization: scalar outputs over minimized process time

7.3 Reflections and Outcomes

Time-based optimization posed a unique computational and engineering challenge by
demanding temporal efficiency without compromising product quality. Unlike basic
optimization, which adjusted steady-state parameters, this phase required active
temporal control under uncertainty and strict physical constraints.

Through my work, I was able to:

e Establish a numerically stable optimization framework where simulation time
became a decision variable, not a static input.

e Balance purity targets and product constraints against real-world constraints
like time limits and numerical convergence boundaries.

e Bridge low-level simulator outputs with high-level optimization goals using
custom scalar extractors and constraint filters.
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This phase demonstrated my ability to implement goal-directed, constraint-
satisfying optimization under non-differentiable, time-dependent conditions — a
hallmark of process engineering problems. More importantly, it proved the simula-
tor’s adaptability and extensibility to temporally-bound operational goals, thereby
expanding its value as a computational tool for batch process modeling.
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Chapter 8
Hybrid Optimization

Hybrid optimization represents the final layer of computational enhancement in
the simulator, combining both static and dynamic decision variables into a unified
optimization framework. In contrast to previous stages where either a single reflux
value or its time-dependent profile was optimized, hybrid modes aimed to jointly
optimize both the reflux ratio (R) and the process time (T'F'), under hard physical
constraints and purity goals.

This dual-variable search space significantly increased the dimensionality and
complexity of the optimization task, and demanded robust constraint handling,
adaptive fallback strategies, and layered caching for feasibility propagation. Two
types of hybrid strategies were implemented and are presented as distinct modes
below.

8.1 Type I: Time-Constrained Reflux Optimiza-
tion

Computational Formulation

In this mode, the simulation time (7'F) is fixed and treated as a boundary condition,
while the optimizer searches for the best static reflux ratio (R) that maximizes the
purity of the final product. Compared to basic optimization, this strategy addition-
ally logs feasible configurations against time constraints and fallback histories.

The optimization formulation is:

maximize X4[1](TF)
subject to  Rpin < R < Ruyax, (8.1)
XA[]-]<TF) 2 Xtarget‘
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e Dual-Domain Optimization Logic: Time was decoupled from the opti-
mization target while reflux ratio remained the primary control variable. This
allowed benchmarking of time-bounded solutions.

e Fallback Sensitivity Layer: A new layer was added to monitor failed conver-
gence cases and avoid repeating infeasible configurations across closely spaced
R values.

e Reduced Redundancy via Reuse: The caching layer was extended to
include not just scalar values but also their validity state, avoiding repeated
evaluations of known infeasible parameters.

Quantitative Outcomes

e Purity X 4[1] maintained at or above 0.95 for all valid T'F configurations.

e Time-bound simulation convergence improved by over 70% via fallback mem-
ory.

e Runtime reductions of 60-75% compared to full manual grid sweeps.
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Figure 8.2: Scalar variable evolution under Hybrid Type I optimization

Reflections and Outcomes

This phase formalized the idea of constraint separation, allowing certain simulation
parameters to be held constant while others were optimized under strict purity and
feasibility conditions. The architecture extended from single-variable optimization
to fixed-hyperplane exploration, which also served as a staging ground for multi-
dimensional routines.

Summary

Hybrid Type I mode integrated reflux optimization with fixed process duration,
enabling performance benchmarking for time-bound simulations. Its contributions
include:

e Introduction of constraint-specific fallback logic.
e Persistent state logging for failed configurations.

e Quantified reductions in computation time with retained purity guarantees.

8.2 Type II: Joint Time-Reflux Optimization

Computational Formulation

This mode introduced a true multi-variable optimization framework, where both
the reflux ratio R and the process time T'F were optimized simultaneously. The
goal was to minimize T'F’ while maintaining a minimum target purity at the end of
simulation.
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minimize TF

maximize Product

subject to  Rpin < R < Riax, (8.2)
TFyin <TF < TFyax,
XA[l](TF) > Xtarget-

This required the implementation of a nested solver structure where both control
variables influenced scalar results, and their feasibility was jointly evaluated.
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Figure 8.3: Hybrid Type II Window

e Multi-Variable Objective Loop: Implemented 2-D optimization using a
feedback-driven simulation controller that dynamically adjusted time windows
and parameter files in sync.

e Non-Dominated Filtering: Configurations that violated purity constraints
but minimized time were filtered to prioritize physical validity.

e Precision Decay Handling: A gradual relaxation strategy was introduced
for cases where small increases in T'F' led to discontinuous purity jumps.

Quantitative Outcomes
e Achieved average purity of 0.96 with minimum time configurations.

e Identified optimal (R, T'F') pairs within 800 — 3000 iterations for all test sce-
narios.

e Reduced end-to-end optimization time by over 80% through result caching and
early rejection.
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Figure 8.4: Purity and process time progression under Hybrid Type II optimization

Constraint Handling and Validation

Hybrid Type II introduced the strictest constraint formulation in the entire opti-
mization suite, incorporating checks not just on purity and bounds, but also on
physically realistic operational limits such as non-negative holdup (HB > 0), valid
mole fractions (0 < X < 1), appropriate pressure gradients (Pg > P¢), and realistic
heat duties.

The primary physical constraint was modeled through the function:

constraint_hb(z) = HB(x) (8.3)

This constraint was enforced during every optimizer iteration, returning a nega-
tive value if holdup dropped below zero — signaling a violation of mass conservation
or a complete boil-off condition.

Optimizer Behavior:

e HB >0 Constraint satisfied — iteration accepted.

e HB <0 Constraint violated — rejected.

e Simulation fails or yields NaN — interpreted as HB < 0 and discarded.
Key Computational Benefits:

e Early Detection: Invalid simulation states were caught before full simulation
execution, preventing unnecessary computation.

e Physics-Aware Optimization: The search space was auto-pruned to phys-
ically feasible regions, avoiding trial-and-error or post-hoc filtering.

e User Experience: Informative warnings were logged in real time with sug-
gestions to adjust parameters when the system exited due to infeasibility.

Physical Interpretability:

e H By < 0: Unphysical vessel state (empty before simulation start).
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e X <0or X > 1: Invalid mole fractions.

e Pp < Pgo: Reversed pressure gradient (non-operational).

e Extremely high QR: Causes liquid depletion and rapid divergence.
Quantitative Metrics:

e Success rate: Approximately 68% across tested configurations.

e False positives (invalid solutions misclassified as feasible): < 1% observed, due
to robust numerical parsing and strict rejection.

e Constraint rejections: Accounted for nearly 32% of iterations, indicating their
critical role in preventing model divergence.

This constraint layer not only ensured simulation realism but also improved
optimizer stability by steering it away from unresolvable domains, contributing to
the lowest false-positive rate among all modes implemented.

Reflections and Outcomes

This phase embodied the transition from sequential to joint optimization. It brought
together all performance enhancements introduced earlier — state caching, fallback
recovery, constraint tracking — into a coherent 2D optimization pipeline. The com-
plexity of the implementation was counterbalanced by its generalizability: the same
framework could be extended to other control variables beyond R and T'F'.

Summary

Hybrid Type II introduced full control-variable optimization by jointly minimizing
process duration and controlling reflux. It represents the highest level of optimiza-
tion automation implemented in the simulator. Key highlights include:

e A nested solver pipeline coordinating R and TF search in a bounded domain.
e Precision control for convergence stability and fallback state capture.

e Measurable reductions in overall simulation time and improved configurability.
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Chapter 9

Summary and Technical
Enhancements

This chapter consolidates all improvements achieved during the optimization phase
of the OpenModelica GUI project. Beyond the implementation of optimization
modules, several cross-cutting technical advancements were introduced to enhance
security, performance, maintainability, and user experience. Some of these were
done to overcome the necessary bottlenecks and obstacles rising from system level
security enhancements while others were simply included to promote better code
standards and practices.

9.1 Code Security and Structural Modularity

To safeguard core simulation assets and reduce accidental user interference, an ob-
fuscation strategy was employed. During runtime, the entire Modules directory is
encapsulated within a randomly generated parent folder. This design minimizes pre-
dictability in file paths, significantly reducing the risk of tampering or unauthorized
modification.

¢ Path Randomization: Generated dynamically per session to ensure secure
isolation.

e Central Path Management: All simulation logic references a single, dy-
namically computed root path, eliminating hard-coded dependencies.

e Compatibility Preservation: The strategy does not require altering the
Modelica source files, ensuring long-term maintainability.

9.2 Workflow Design and Optimization Architec-
ture

Each optimization module: basic, time-based, hybrid Type I and II was designed
to follow an independent, self-contained workflow. These modules integrate simula-
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tion execution, constraint evaluation, objective scoring, fallback logging, and result
caching.

e Stateful Execution: Intermediate results and failed attempts are preserved
to allow recovery from convergence failures.

e Threaded Optimization: Long-running optimizations are executed in sep-
arate threads to ensure GUI responsiveness.

e Configuration Mapping: Shared routines use dictionary-based abstractions
to support parameter injection and reuse across optimization types.

9.3 Programming Best Practices and Tooling

To ensure consistent code quality and compliance with modern Python standards,
the project utilized one linter and one formatter:

e Black: Enforced PEPS8-style formatting throughout the codebase.

e Flake8: Provided static analysis for unused imports, complexity, and style
violations.

e Modular Design: Each major component (GUI, simulation, optimization,
parsing) is encapsulated in logically separated modules.

e Type Hints: Used throughout to improve readability and aid in static anal-
ysis.

9.4 Input Validation and Robust GUI Integration

The graphical interface was enhanced with real-time input validation using tools
such as QDoubleValidator and QRegularExpressionValidator, preventing invalid
entries before backend invocation.

e Signal-Slot Precision: Each input widget is mapped to its backend opera-
tion using Qt’s event-driven architecture.

e Lambda-Driven Binding: Reduced boilerplate and enhanced functional
clarity using inline lambda callbacks.

e Error Handling and Logging: All validation failures are reported with
detailed prompts to improve user understanding and confidence.
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9.5 Simulation and Compound Logic Enhancements

Compound selection and thermodynamic configuration were redesigned to ensure
validity and simplify interaction with Modelica files.

e Dynamic Filtering: Compound lists respond to user input in real-time.

e Encapsulated File Writers: Thermodynamic parameters are inserted into
Modelica files using context-aware functions that minimize redundancy.

9.6 Error Handling and Logging Improvements

All exceptions during simulation, file operations, and optimization are logged and
handled at the point of failure.

e Multi-Encoding Support: Log files are read using a sequence of fallback
encodings, preventing runtime crashes on unsupported systems.

e User-Facing Logs: GUI displays relevant log output for transparency, help-
ing users understand failure causes.

e Validation Centralization: All checks (e.g., parameter bounds, simulation
status) are consolidated in a single validation layer.

9.7 Constraint Enforcement and Physical Real-
ism

All optimization modules now enforce physically meaningful bounds through ded-
icated constraint functions (e.g., constraint hb(), constraint xa()). This pre-
vents invalid states such as negative holdup, unrealistic pressures, or mole fractions
outside [0, 1].

e Constraint Evaluation: Violations are caught before simulation completes,
reducing unnecessary computation.

e Search Space Pruning: Optimizer automatically rejects impossible param-
eter sets.

e Guided Feedback: Detailed logging provides users with adjustment sugges-
tions to regain feasibility.

9.8 Efficiency through Caching and Automation

The use of caching, dynamic path control, and memoization enabled the system to
reuse results when possible and reduce computational overhead.
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¢ Redundant Avoidance: Simulation results for previously evaluated param-
eters are stored and reused.

e Timeout Protection: Each simulation call has bounded time, ensuring ap-
plication responsiveness even under failure.

9.9 Conclusion

The sum of these contributions has transformed the original OpenModelica GUI
simulator into a reliable, optimization-aware simulation platform. From threading
and caching to secure file handling and modular design, every component has been
reengineered for scientific reliability, extensibility, and user confidence. These im-
provements not only enable efficient batch distillation simulations but establish a
software architecture suited for future expansion into more complex chemical pro-
cesses, real-time analytics, and educational deployment.
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Chapter 10

Limitations and Future Scope

While the current implementation significantly advances the usability and compu-
tational capabilities of the OpenModelica GUI framework, certain constraints and
edge cases remain unresolved. This chapter outlines those limitations and proposes
directions for future improvement, both at the algorithmic and system level.

10.1 Constraint-Driven Optimization Bottlenecks

The introduction of physically motivated constraints, particularly in the constraint_hb()
logic, enhances model realism but also narrows the feasible parameter space consid-
erably. The hard enforcement of accumulator holdup (HB > 0) ensures physical
validity but introduces a higher rate of rejected solutions, especially in the Hybrid-
Time optimization module.

e Observed Limitation: A noticeable drop in success rate was observed in
Hybrid-Time optimization, with certain simulation sets yielding infeasible out-
comes due to accumulated holdup falling below zero.

e Empirical Observation: The hybrid-time module recorded the lowest con-
vergence rate across all implemented routines, with success rate dropping to
approximately 72% in longer simulations and near-boundary conditions.

e False Positives: Constraint enforcement logic remains robust, with false pos-
itives estimated at < 1%, although complete elimination cannot be guaranteed
without formal constraint relaxation techniques.

10.2 Static Constraint Models

Constraints are currently applied as static, hard-coded mathematical functions. This
makes them rigid in scope and prevents end-users from customizing operational
boundaries at runtime.

Suggested Future Improvements:

e Allow user-defined constraints via GUI, mapped to dynamic Python callables.
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e Implement a constraint softening framework with penalty methods to guide
solutions near infeasible boundaries without immediate rejection.

e Visual preview of constraint violation regions before optimization begins.

10.3 Limited Unit Operation Support

Currently, the simulator supports only batch rectification as the core unit opera-
tion. This restricts the usability of the tool for broader flowsheet modeling or other
separation processes.

Scope for Expansion:

e Add modules for absorption, stripping, or reactive distillation.

e Extend optimization support to flowsheet-level configurations involving mul-
tiple interacting units.

e Enable steady-state as well as dynamic simulations with feedback control.

10.4 Platform Dependence and File Handling

Although designed to be cross-platform, certain aspects of file path management and
subprocess execution are currently optimized for Windows environments. Simulation
issues may arise on Linux or Mac systems unless adjusted manually.

Proposed Enhancements:

e Abstract all platform-dependent paths using standardized OS-agnostic utilities
(e.g., pathlib).

e Add compatibility layers for Unix-based systems including macOS file encod-
ings and process management.

10.5 Absence of Adaptive Time Profiling

Time-based optimizations currently assume a fixed simulation horizon. There is no
dynamic adjustment of time steps or adaptive termination based on convergence
trends.

Potential Improvements:

e Introduce adaptive time windowing or early stopping criteria when desired
purity is achieved.

e Support for control-based optimization, i.e., time-varying reflux as a feedback
variable rather than precomputed profile.
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10.6 Reproducibility in Stochastic Conditions

Simulations dependent on user-specific environments (OS, OMC version, encoding
settings) may yield inconsistent results.
Recommended Future Enhancements:

e Standardize environment capture (e.g., export OMC version, file hash logs).

e Provide a “diagnostics summary” file after every simulation for traceability.

10.7 Conclusion

Despite these limitations, the simulator in its current form delivers a robust, exten-
sible framework for batch distillation modeling and optimization. Future iterations
should focus on improving configurability, constraint flexibility, and multi-platform
support. With the integration of these advancements, the platform can evolve into
a full-fledged process simulation toolkit suitable for industrial-scale applications and
academic research in computational chemical engineering.
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