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Chapter 1

Introduction

1.1 FOSSEE

The Free/Libre and Open Source Software for Education (FOSSEE) project, headquartered at

IIT Bombay, is a distinguished initiative dedicated to promoting open-source software in educa-

tion and research. Its core mission is to reduce dependence on proprietary tools by encouraging

the adoption of cost-effective and accessible alternatives.

Through an extensive range of resources, including detailed documentation, structured tutori-

als, hands-on workshops, and training programs, FOSSEE empowers students, educators, and

professionals to integrate open-source solutions into academic and professional work. By fos-

tering a culture of collaboration and inclusivity, the project has significantly contributed to the

democratization of technology, creating new avenues for innovation and lifelong learning.

1.2 eSim

eSim, developed under the FOSSEE project at IIT Bombay, is an advanced open-source Elec-

tronic Design Automation (EDA) platform for circuit design and simulation. It consolidates

multiple open-source packages into a unified environment, enabling efficient schematic cre-

ation, simulation, and analysis.

This platform caters to students, academic institutions, and industry professionals seeking an

affordable alternative to commercial design software. It features schematic creation tools,

SPICE-based simulation, PCB design capabilities, and an extensive component library. A no-

table enhancement is its Subcircuit functionality, which facilitates the construction of complex

designs by integrating smaller, reusable modules. eSim exemplifies FOSSEE’s vision of en-

couraging innovation, knowledge sharing, and accessibility within engineering education and

practice.
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Figure 1.1: eSim-FOSS Software

1.3 NgSpice

NgSpice is a widely adopted open-source simulator based on the SPICE framework, designed

for the analysis of analog, digital, and mixed-signal circuits. It supports a diverse range of com-

ponents, including transistors, diodes, passive elements, transmission lines, and other semicon-

ductor devices.

Figure 1.2: Ngspice

Its capabilities extend from simulating basic logic gates to complex mixed-signal systems. A

comprehensive library of device models is available, sourced from community contributions,

semiconductor manufacturers, and foundries. Circuit descriptions are provided in the form of

netlists, and simulation outputs can be visualized as waveforms or exported for further study,

enabling precise evaluation of circuit performance.

1.4 Makerchip

Makerchip is a versatile platform for digital circuit design, simulation, and debugging, offer-

ing both browser-based and desktop environments. It supports Verilog, SystemVerilog, and

Transaction-Level Verilog, integrating a combination of open-source and proprietary tools to

deliver a comprehensive development experience. Within the eSim ecosystem, Makerchip is

9



Figure 1.3: Makerchip

linked through a Python-based Makerchip-App, enabling seamless access to the Makerchip

IDE. The platform’s intuitive interface, coupled with efficient workflows, simplifies the design

process for beginners while providing advanced features for experienced developers.

While various open-source tools provide valuable individual capabilities, few offer a complete,

integrated EDA solution. eSim addresses this gap by combining schematic creation, simulation,

and PCB design into a single coherent package.
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Chapter 2

Features of eSim

The development of eSim aims to deliver a complete open-source EDA solution for electronics

and electrical engineers. It supports schematic creation, PCB layout design, and simulation of

analog, digital, and mixed-signal circuits. It also offers tools for developing custom models and

components. The principal features include:

Figure 2.1: Dashboard: eSim Software

* Schematic Creation – A user-friendly graphical interface enables quick and precise circuit

drafting. Components from an extensive library can be placed directly onto the schematic,

with comprehensive editing tools for movement, rotation, and labeling.

* Circuit Simulation – SPICE-based simulation allows transient, AC, and DC analyses, offer-

ing insight into circuit behavior across time and frequency domains. An integrated waveform

viewer assists in interpreting results and verifying design accuracy.

* PCB Design – The layout editor provides precise placement of components and routing of

connections. Built-in design rule checks ensure compliance with manufacturing and electri-

cal standards. Gerber file generation is supported for fabrication purposes.

11



* Subcircuit Functionality – Modular design is facilitated through reusable subcircuits, al-

lowing smaller building blocks to be integrated into larger systems. This approach enhances

design efficiency and maintainability.

Figure 2.2: Interface

* Integration of Open-Source Tools – eSim incorporates packages such as KiCad, NgSpice,

and GHDL to provide a complete EDA environment without the cost constraints of propri-

etary software.

12



Chapter 3

Problem Statement

3.1 Motivation and Identified Challenges

FOSSEE eSim is widely used in academic and research settings for designing and simulat-

ing electronic circuits. Despite its utility, it lacked any form of built-in assistance for users,

resulting in several challenges that limited both usability and learning outcomes. Designing

and debugging electronic circuits is inherently complex, requiring precise connections, correct

component values, and a clear understanding of simulation results. Without guidance, users,

particularly students and novices, often resorted to trial-and-error methods, which were time-

consuming, frustrating, and prone to repeated mistakes.

An agentic AI-powered assistant can address this gap by automating error analysis and pro-

viding real-time, intelligent feedback. By leveraging machine learning and natural language

processing (NLP) techniques, such a system can parse error logs, classify error types, and map

them to likely corrective actions. Beyond error detection, it can provide concise and actionable

troubleshooting suggestions tailored to the specific circuit design context, thereby significantly

reducing the manual effort required from users.

3.2 Causes for Developing an Intelligent Offline Assistance

System

Several key factors made the development of a dedicated offline AI support system necessary:

* Absence of Circuit Debugging Support: – Users had no automated way to detect de-

sign errors, incorrect component connections, or simulation issues. Even small mistakes in

schematic design could result in incorrect outputs, but the system provided no mechanisms

to flag or explain these errors.

13



* No Query Resolution or Context-Aware Assistance: – Users could not ask the system

questions such as, “Why is my RC filter not functioning?” or “Which component values
are causing this error?” There was no AI-powered mechanism to interpret queries, analyze

the circuit, and provide actionable guidance

* Manual Troubleshooting Burden: – Every error had to be identified manually, requiring

extensive checking of each connection and component. This repetitive process often discour-

aged users and reduced the educational value of experimentation.

* Lack of Learning Support: – The system did not facilitate understanding or improvement.

Beginners struggled to comprehend why a circuit failed or how to optimize designs, limiting

the software’s potential as a learning tool.

* No Retention of Context or Iterative Guidance: – Users could not build on previous

queries. Each analysis started afresh, preventing iterative learning and increasing the cogni-

tive load for complex designs.

* Limited Multimodal Interaction: – There was no integration of visual circuit analysis,

textual explanations, or voice feedback. Users could not leverage multiple modalities simul-

taneously to understand errors and suggested improvements, which reduced engagement and

comprehension.

* Accessibility and Usability Challenges: – The software did not provide intuitive guidance

or support for users with different levels of expertise. Students, educators, and researchers

had to navigate the platform without structured help, reducing efficiency and user confidence.

3.3 The Need for an Offline Intelligent Solution

These limitations highlighted the necessity for a comprehensive, offline, AI-driven support

system capable of:

* Assisting users in detecting faults and errors in electronic circuits.

* Providing context-aware, actionable guidance for iterative design improvements.

* Supporting multimodal interactions, combining visual diagram analysis, textual explana-

tions, and voice-based assistance.

* Maintaining chat history and caching to retain previous queries, allowing continuous learning

and follow-ups.
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* Enhancing educational outcomes by providing explanations that reinforce circuit theory and

practical design principles.

* Improving user experience and accessibility, making the software intuitive for both beginners

and advanced users.

Figure 3.1: eSim-bot: Architecture Design

The development of this system is crucial in two key areas:

* Design Productivity: – By automating error detection and providing immediate, intelligent

feedback, the assistant minimizes downtime caused by troubleshooting, thereby streamlining

the design and simulation workflow. .

* Learning Support : – By offering interactive explanations and guided assistance, the system

lowers the barrier for beginners, making circuit design more accessible while promoting self-

paced learning.
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Chapter 4

Concepts Theories of RAG

4.1 Introducing Retrieval-Augmented Generation (RAG)

To address the inherent limitations of purely generative AI models, researchers have pro-

posed advanced hybrid approaches, among which Retrieval-Augmented Generation (RAG)

has gained significant prominence. The concept was first formalized in the seminal paper

“Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks” by Lewis et al. (2020),

published by Facebook AI Research.

RAG combines the generative capabilities of large language models (LLMs) with retrieval

mechanisms, thereby enhancing both the accuracy and contextual relevance of generated out-

puts. Unlike traditional generative models, which rely exclusively on static knowledge learned

during training, RAG introduces an intermediate retrieval step. In this process, the model

queries an external knowledge base such as document repositories, curated databases, or the

web before producing a response. This architecture allows the system to incorporate up-to-date

and domain-specific information, making it particularly effective in knowledge-intensive tasks

where factual correctness is essential.

4.2 Key Components

The effectiveness of RAG arises from the seamless interaction of multiple components:

* Retrieval Component: – The retrieval module identifies and ranks documents relevant to

a given query. It employs methods such as document indexing, embedding-based similarity

search, and ranking algorithms to ensure that the most contextually appropriate references

are selected from a corpus.

* Generation Component : – Once relevant information is retrieved, the generative model—typically
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an LLM such as GPT processes the retrieved content alongside the original query to produce

coherent, context-aware responses. This ensures that outputs are both linguistically fluent

and factually grounded.

* Interaction Loop : – RAG often operates in an iterative loop. If the initial retrieval is

insufficient, the generative model may reframe or expand the query, prompting additional

retrieval passes. This feedback loop refines responses and improves answer completeness.

Figure 4.1: LLM application development lifecycle

* Fine-Tuning : – For domain-specific tasks, RAG models are frequently fine-tuned on spe-

cialized datasets. This adaptation enhances accuracy by aligning both retrieval and genera-

tion with the terminology and context of the target application domain.

* Latent Space Representations : – Queries and documents are transformed into vector rep-

resentations in a shared latent space. Similarity metrics in this space allow efficient retrieval

of semantically relevant passages, ensuring that the most appropriate content is provided to

the generative model.

* Attention Mechanisms : – Attention layers are employed in both retrieval and generation

stages. These mechanisms enable the system to focus selectively on the most informative

parts of input documents and queries, improving contextual alignment and reducing irrele-

vant output.
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4.3 Advantages in Question Answering

The RAG framework offers several distinct benefits over conventional generative or retrieval-

only systems, particularly for question answering and knowledge-driven applications:

* Access to Expanded Knowledge Sources: – By incorporating retrieval, RAG can leverage

vast repositories of documents beyond the LLM’s static training data, thereby providing

responses grounded in current and specialized knowledge.

* Contextual Relevance : – Generated responses are enriched with context extracted from

retrieved documents, resulting in more precise and contextually aligned outputs.

* Iterative Refinement : – The interaction loop ensures that incomplete or ambiguous answers

can be refined through repeated retrieval and generation cycles.

* Adaptability to Complex Queries: : – RAG handles multi-faceted or domain-specific

queries more effectively than simple keyword-based retrieval systems.

* Domain Specialization : – Fine-tuning on targeted corpora (e.g., medical, legal, or engi-

neering data) enables RAG to deliver domain-appropriate responses with high reliability.

4.4 RAG Architecture

At a structural level, Retrieval-Augmented Generation integrates two complementary modules

into a unified framework:

* Retrieval Model: – The retrieval model is tasked with locating and ranking relevant infor-

mation from large-scale datasets such as document corpora, knowledge bases, or domain-

specific repositories. It ensures that the generative component operates on the most contex-

tually meaningful data.

* Generation Model : – The generation model, typically a transformer-based LLM, synthe-

sizes the retrieved content into coherent, contextually rich responses. By grounding its out-

puts in retrieved evidence, it avoids common issues of hallucination observed in standalone

generative systems.

4.5 Building the Retrieval System

At a structural level, Retrieval-Augmented Generation integrates two complementary modules

into a unified framework:
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* The retrieval system forms the backbone of any Retrieval-Augmented Generation (RAG)

pipeline. In the context of a chat-to-PDF application, it is responsible for extracting relevant

information from document collections and ensuring that the generative model operates on

precise, contextually relevant data. An effective retrieval system directly impacts both the

accuracy and efficiency of responses, making its design a critical step in system implemen-

tation.

Figure 4.2: Retrieval & Generation Model

4.6 Selecting an Appropriate Retrieval Model

Choosing the right retrieval model is central to the performance of a RAG-enabled system.

Retrieval models determine how queries are interpreted, how documents are ranked, and how

efficiently relevant passages are identified. The choice depends on factors such as corpus size,

query complexity, and application requirements.

Common retrieval approaches include:

* TF–IDF (Term Frequency–Inverse Document Frequency): – A classical model that scores

documents based on term frequency relative to their rarity across the corpus. While simple

and lightweight, it is best suited for smaller or less complex datasets.
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* BM25 : – An enhancement of TF–IDF that incorporates document length normalization and

term saturation. It has become a robust baseline for modern information retrieval tasks.

* Vector Space Models: – These approaches represent documents and queries as vectors

in a high-dimensional space, with similarity measured using metrics such as cosine sim-

ilarity. Methods like Latent Semantic Analysis (LSA) or embedding-based models (e.g.,

Word2Vec) fall into this category.

* Neural Ranking Models : – Transformer-based retrieval models, such as BERT or its vari-

ants, capture deep semantic relationships between queries and documents. These models can

be fine-tuned for domain-specific applications, making them highly effective in specialized

contexts.

* Hybrid Models : – Combining traditional lexical approaches (e.g., BM25) with neural

embedding-based methods can yield balanced performance, leveraging the precision of keyword-

based retrieval with the adaptability of semantic search.

4.7 Key Considerations:

* Domain and Corpus Size: – Smaller, domain-specific collections may perform adequately

with traditional methods, while large or diverse corpora often benefit from neural or hybrid

approaches.

* Scalability: – The model must sustain consistent retrieval performance as the number of

documents grows.

* Resource Requirements: – TNeural models, while more accurate, demand greater compu-

tational resources, which must be weighed against efficiency and cost
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Chapter 5

Vector Embeddings for RAG

5.1 Embeddings and Vector Databases for RAG Retrieval

Beyond the choice of retrieval model, modern retrieval systems increasingly rely on vector

embeddings and vector databases to achieve high-quality and scalable information access. Em-

beddings transform textual content into numerical vectors in a high-dimensional space, while

vector databases enable efficient similarity search over these embeddings. Together, they form

the foundation of semantic retrieval in RAG architectures.

5.2 Vector Embeddings: An Overview

Vector embeddings represent words, sentences, or entire documents as dense numerical vec-

tors, where geometric relationships capture semantic similarity. In this representation, related

concepts occupy nearby positions in the vector space, while unrelated concepts are farther apart.

5.2.1 Types of Embeddings:

* Word Embeddings (e.g., Word2Vec, GloVe) – Map individual words into vector space,

preserving semantic relationships (e.g., “king” and “queen” are positioned closely).

* Document Embeddings (e.g., Doc2Vec, BERT-based encoders) – Encode longer texts such

as paragraphs or full documents. Documents with similar themes produce embeddings that

are proximal in the vector space.
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5.3 Role of Vector Databases in Retrieval

While embeddings provide a semantic representation of data, vector databases or similarity

search engines enable their efficient storage, indexing, and retrieval. These databases are op-

timized for large-scale similarity search, which is crucial for real-world deployments of RAG

systems.

5.3.1 Advantages of Vector Databases in RAG::

* Efficient Similarity Search: – Indexing methods such as Approximate Nearest Neigh-

bor (ANN) allow fast retrieval of semantically similar vectors, even in datasets containing

millions of documents.

* Scalability: – Designed to handle large and growing corpora while maintaining low-latency

search performance.

* Flexible Similarity Metrics:: – Support for multiple similarity measures (e.g., cosine sim-

ilarity, Euclidean distance, Jaccard index) allows fine-tuning relevance ranking to the appli-

cation domain.

* Integration with Retrieval Models: – Vector databases can act as the first stage in retrieval

pipelines, quickly narrowing down candidate documents for deeper ranking using neural

models.

Figure 5.1: Vector Embeddings
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5.3.2 Popular Vector Databases

* Several open-source and commercial vector databases are widely adopted in industry and

research, including Qdrant, Weaviate, Pinecone, pgvector, Milvus, and Chroma. Selection

should balance scalability, latency, cost-efficiency, and ecosystem integration, as this choice

has long-term implications for the retrieval system’s maintainability.
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Chapter 6

Data Extraction & Ingestion

6.1 RAG Data Ingestion Pipeline

Before a Chat-to-PDF application can effectively retrieve information from a vector database,

it is necessary to preprocess raw PDF documents into a structured and searchable form. This

preprocessing stage transforms unstructured content into clean, normalized, and indexed data,

enabling precise and efficient retrieval. It can be compared to creating a well-organized library

catalog without such preparation, even the most advanced retrieval models struggle to locate

relevant information consistently. Although the focus here is on PDF documents due to their

prevalence across industries, the methods described are broadly applicable to other file formats

as well.

6.1.1 PDF Text Extraction

The first step in building the ingestion pipeline is extracting raw text from PDF files. Since

PDFs may contain selectable text as well as embedded images, careful handling is required.

6.1.2 Key Steps in Text Extraction:

* Text Extraction Libraries: –such as PyPDF2, pdfminer.six, or pdf2txt can programmati-

cally extract textual data from PDFs.

* Handling Scanned PDFs : – For documents that only contain images, Optical Character

Recognition (OCR) tools such as Tesseract convert images into machine-readable text.
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6.2 Handling Multi-Page Context:

PDFs typically span multiple pages, and retrieval performance depends on preserving logical

continuity rather than treating pages as isolated fragments.

6.2.1 Strategies for Preserving Context:

* Logical Segmentation: – Divide the text into coherent units such as paragraphs, sections,

or chapters, instead of page-level splits.

* Metadata Extraction : – Capture information such as document titles, authors, section

headers, creation dates, and page numbers. This metadata provides valuable cues for index-

ing and improves retrieval accuracy.

6.3 Text Cleanup and Normalization:

Raw text from PDFs frequently contains artifacts that degrade retrieval quality. Normalization

ensures that the text is standardized before being transformed into embeddings.

6.3.1 Key Normalization Processes:

* Whitespace and Punctuation Correction: – Remove unnecessary whitespace, excessive

line breaks, and irregular punctuation.

* Formatting Removal : – Eliminate irrelevant formatting such as font styles, colors, and

sizes, which do not add semantic value.

* Spellchecking and Error Correction : – Identify and fix spelling errors, particularly those

introduced during OCR conversion.

* Unicode Normalization : – Standardize character encodings to maintain consistency and

avoid mismatches in downstream models.
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Chapter 7

Generation Workflow

7.1 Steps in the Generation Workflow

The process of generating a response in RAG involves a series of systematic steps, beginning

with the user query and concluding with the final generated output.

Step 1: Query Embedding:
The user’s query is embedded using the same embedding model employed dur-

ing document preprocessing. This ensures consistency between query and doc-

ument representations.

Step 2: Retrieval from Vector Database:
The query embedding is passed to the vector database, which performs simi-

larity search to retrieve the top-k most relevant documents. These documents

form the context for response generation.

Step 3: Prompt Construction:
A prompt is created that integrates both the user’s query and the retrieved con-

text. The prompt serves as the structured input for the language model.

Step 4: Invocation of the LLM:
The constructed prompt is sent to the Large Language Model (LLM), which
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processes the query in the context of the retrieved documents..

Step 5: Response Delivery:
The generated response is returned by the LLM and presented to the user

through the application interface.

Figure 7.1: Data Processing Pipeline

7.2 Impact of Text Splitting on Retrieval Augmented Gener-

ation (RAG) Quality:

Text can be split at different granularities, most commonly at the character level

or the token level. Each approach offers advantages and trade-offs that can sig-

nificantly influence system performance.

Advantages: –

Splitting text by character provides fine-grained context preservation. Each

character becomes a unit of processing, which allows the model to retain subtle

details that may otherwise be lost. This is particularly valuable for highly tech-

nical documents where even minor distinctions can change meaning.

Challenges: –

Character-level splitting often produces extremely long sequences, especially

27



for PDF documents containing dense paragraphs or complex sections. Such se-

quences can exceed the maximum token limits of most LLMs, which typically

range between 4,000 and 32,000 tokens.

To address this, truncation or omission of content becomes necessary, resulting

in potential loss of context. Additionally, longer sequences increase inference

time, leading to slower responses and higher computational costs.

7.3 Splitting by Token:

Advantages: –

Token-level splitting offers a balanced approach. By treating each token (a

meaningful unit such as a word or sub-word) as the basis for splitting, the sys-

tem ensures that the input stays within the model’s token limit. This method

supports efficient processing, scalability across documents of varying lengths,

and improved user experience through faster responses.

Challenges: –

The limitation of token-level splitting is that it may not capture extremely fine-

grained nuances that character-level processing preserves. In scenarios requir-

ing high precision, subtle contextual details may be overlooked.

7.4 Impact of Metadata in the Vector Database on Retrieval

Augmented Generation (RAG):

Beyond text splitting, the inclusion of metadata within the vector database plays

a pivotal role in enhancing the precision and relevance of retrieval. Metadata

provides contextual signals about documents, enabling both the retrieval and

generation components of the RAG system to deliver responses that are more

accurate, traceable, and user-friendly.
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Contextual Clues
Metadata serves as an additional layer of context that guides retrieval. Common

metadata fields include:

* Document Title: – Provides a high-level overview of the content.

* Author: – Offers perspective on credibility and expertise.

* Keywords or Tags: – Highlight the primary themes of the document.

* Publication Date: – Supplies temporal context, which is critical when de-

termining relevance.

* Document Type: – Distinguishes between research papers, manuals, arti-

cles, or technical notes.

7.5 Improved Document Retrieval

The integration of metadata significantly improves retrieval accuracy.

* Relevance Ranking: – Documents can be ranked based on metadata matches,

ensuring that the most contextually appropriate documents are prioritized.

* Filtering: – Metadata enables the system to exclude irrelevant documents at

an early stage, reducing computational overhead.

* Enhanced Query Understanding: – Metadata provides additional dimen-

sions for interpreting user intent. For example, when metadata includes pub-

lication date, the system can retrieve documents relevant to a specific time-

frame.

7.6 Contextual Response Generation

Metadata does not only improve retrieval but also strengthens the generation

phase.
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* Context Integration: – Metadata can be directly incorporated into responses,

such as including the publication year when summarizing a document.

* Customization: – The response style and tone can be adjusted based on

metadata, such as adapting to an author’s perspective or domain.

* Enhanced Summarization: – When metadata specifies document type, the

system can tailor the level of detail in summaries. For example, research

papers can be summarized by highlighting contributions and results, while

manuals can be condensed into step-by-step guidance.

7.7 Optimal Chunk Size for Efficient Retrieval

A critical design consideration in RAG systems is determining the chunk size

the size of text passages extracted from source documents for indexing and re-

trieval. Chunk size directly affects both efficiency and performance.

Balancing Context and Efficiency
The chosen chunk size must balance providing sufficient context for generating

meaningful responses with ensuring efficient retrieval and processing.

* Smaller Chunk Sizes: –

– Provide more granular chunks, which may improve the relevance of re-

trieved passages.

– Important context may be distributed across multiple chunks, particu-

larly if the similarity-top-k parameter is low (e.g., k=2).

– Lead to a larger number of chunks overall, which increases memory us-

age and processing time.
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* Larger Chunk Sizes: –

– Improve performance by reducing the total number of chunks to be in-

dexed and retrieved.

– However, they may reduce precision by introducing irrelevant context

within the retrieved passage.

Figure 7.2: Chunking Process
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Chapter 8

RAG Performance

8.1 Evaluating RAG Performance

A natural question arises: How do we measure whether the chosen chunk size

and pipeline design are effective?

The answer lies in defining evaluation metrics and applying appropriate tools

to assess performance. One useful framework is the LlamaIndex Response

Evaluation module, which includes:

* Faithfulness Evaluator:
Determines whether the response introduces fabricated information and ver-

ifies alignment with the retrieved source nodes.

* Relevancy Evaluator:
Assesses whether the response directly addresses the query and whether the

retrieved information collectively supports the user’s request.

* Retrieval Chunks vs. Synthesis Chunks:
An important optimization technique in Retrieval Augmented Generation

(RAG) systems is the decoupling of retrieval chunks from synthesis chunks.

The intuition is that the optimal representation of text for retrieval does not

always align with the requirements for response generation.

32



Figure 8.1: Process Workflow: RAG

For example, a text passage might include all the details needed by a language

model to generate a comprehensive answer, but the same passage could also

contain filler phrases, redundant wording, or conversational elements that di-

lute the embedding representation. As a result, such a chunk may be harder

to retrieve when a relevant query is issued.

Figure 8.2: Process Workflow: Chunking
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Chapter 9

eSim RAGBot - Components &
Architecture

9.1 Component Details:

* File Watcher: – A background process that monitors KiCad project files

and NgSPICE outputs, detecting changes like netlist updates or new error

logs. It triggers downstream modules automatically, keeping the AI assistant

synchronized with user modifications.

* Data Extractor: – Parses netlists to reconstruct circuit topology and inter-

prets NgSPICE logs by classifying warnings, errors, and convergence issues.

Converts raw outputs into structured, machine-readable inputs for RAG and

Qwen 1.8B.

* OpenCV Visual Observer : – Analyzes schematic images to detect uncon-

nected nodes, misplaced components, or graphical inconsistencies. This vi-

sual safeguard catches design flaws (e.g., misaligned wires) that textual pars-

ing alone may miss.

* Retrieval-Augmented Generation (RAG) : – Acts as an intelligent search

engine, retrieving semantically relevant knowledge (manuals, datasheets, best

practices) using FAISS/ChromaDB. Ensures retrieved references align with

user context for technically accurate responses.
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* Prompt Composer: – Organizes netlist data, error logs, and retrieved doc-

uments into structured, context-aware prompts. This reduces ambiguity, im-

proves LLM alignment with engineering practices, and enhances response

quality.

* Qwen 1.8B with Ollama Inference: – The reasoning core, optimized for

offline use on standard hardware. Balances strong reasoning with efficiency,

enabling local deployment without reliance on cloud infrastructure.

* Response Handler: – Formats model outputs into actionable insights—UI

feedback or terminal responses. Delivers corrections, error explanations, and

parameter tuning suggestions in a user-friendly manner.

9.2 Workflow and Operational Flow:

* User Design Stage: – The process begins when a circuit is created or modi-

fied in tools like KiCad. Simulation outputs may be generated using NgSPICE.

* File Monitoring and Change Detection: – A File Watcher module contin-

uously monitors project directories. Each update, such as schematic edits or

simulation runs, triggers the assistant pipeline.

* Data Extraction and Parsing : – The Data Extractor parses netlists and

error logs. Netlist parsing reconstructs the circuit’s logical structure, while

log parsing identifies errors, warnings, and anomalies.

* Optional Visual Schematic Analysis: – Using OpenCV, schematics can be

analyzed at the image level to detect missing components, broken connec-

tions, or symbol misplacements. This step complements textual parsing for

greater accuracy.

* Knowledge Retrieval (RAG): – The RAG engine performs semantic searches

using vector databases such as FAISS or ChromaDB, querying a knowledge

base containing datasheets, reference manuals, and error resolution guides.
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* Prompt Composition – The Prompt Composer aggregates extracted circuit

data and retrieved references into structured prompts, ensuring precise input

for the LLM.

* Local LLM Reasoning with Qwen 1.8B: – The core reasoning engine is

Qwen 1.8B, an open-source model optimized for efficient reasoning and tech-

nical assistance. Running locally via Ollama inference, the model provides

explanations, debugging advice, and design suggestions without requiring in-

ternet connectivity. Its lightweight nature ensures reduced hardware resource

consumption compared to larger-scale LLMs while still delivering accurate,

context-specific outputs.

* Prompt Composition – The Prompt Composer aggregates extracted circuit

data and retrieved references into structured prompts, ensuring precise input

for the LLM.

* Response Handling and Delivery – The Response Handler formats AI-

generated insights into structured, user-friendly outputs through the interface

or terminal. Advice is provided as actionable steps, facilitating efficient de-

bugging and design improvement.
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Figure 9.1: UserFlow Diagram
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Chapter 10

Memory Utilization in Retrieval and
Indexing

10.1 Embedding Storage Overhead:

Every document or text passage in a Retrieval-Augmented Generation (RAG)

system must be represented as an embedding, which is essentially a high-

dimensional numerical vector. For most modern embedding models, dimen-

sions range between 768 and 1536. At 32-bit floating-point precision, a single

1536-dimensional embedding requires approximately 6 KB of memory. While

this seems manageable, when scaled to a corpus containing millions of chunks,

the cumulative memory requirement quickly becomes substantial. For instance,

1 million embeddings would require nearly 6 GB of raw memory, and this does

not account for additional memory overhead from indexing structures, meta-

data storage, and database management layers.

Storing embeddings in RAM is the fastest option, but it directly impacts the

system’s memory ceiling. To address this, many systems adopt quantization

techniques, where embeddings are stored in reduced precision formats such as

8-bitintegers or 16-bit floats. This reduces memory consumption significantly

while introducing only a marginal loss in retrieval accuracy. Another solution

involves disk-backed vector databases with cache-aware indexing. This ap-
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proach reduces immediate RAM pressure but increases retrieval latency since

disk I/O operations are slower than RAM lookups.

10.2 Vector Index RAM Footprint:

While raw embeddings occupy substantial memory, the indexing structure used

for retrieval often requires even more. Approximate Nearest Neighbor (ANN)
algorithms such as Hierarchical Navigable Small World (HNSW) graphs are

popular due to their high accuracy and low retrieval latency. However, each

node in an HNSW index stores multiple connectivity edges, usually propor-

tional to a parameter M (e.g., 16 or 32). This means that the memory require-

ment scales as O(N * M), where N is the number of embeddings.

For instance, with 1 million vectors and M=16, the graph structure alone may

add another 6 - 12 GB of RAM overhead, doubling or tripling total memory

usage compared to storing raw embeddings alone. While the trade-off provides

faster retrieval times (by reducing the number of vectors searched per query),

it introduces significant system strain. This overhead becomes particularly no-

ticeable when running on systems with limited RAM capacity, where paging or

memory swapping can degrade performance.

10.3 Retrieval Time and Latency

10.3.1 Embedding Search Latency

In the absence of specialized indexing, a brute-force retrieval strategy requires

computing the cosine similarity or Euclidean distance between a query embed-

ding and every stored embedding. The time complexity of this approach is

O(N), where N is the size of the dataset. For large datasets (millions of vec-

tors), retrieval latency may exceed several seconds, making brute-force search

impractical for interactive systems.
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ANN algorithms solve this by reducing search complexity to near-logarithmic

time. Structures like HNSW can typically return top-k nearest neighbors within

10–50 milliseconds, even when searching across millions of embeddings. The

actual retrieval latency depends on hardware specifications such as CPU cache

size, RAM bandwidth, and the efficiency of vectorized similarity computations

(e.g., AVX-512 on CPUs or CUDA kernels on GPUs).

10.3.2 Hybrid Search Latency

In practice, retrieval often combines vector similarity search with metadata-

based filtering. For example, a query might first filter documents by author,

time period, or domain before performing ANN search. While this adds a sec-

ondary lookup step, it narrows down the candidate pool, reducing unnecessary

computations during vector search.

This hybrid approach typically introduces an additional 5–15 milliseconds of

overhead due to metadata indexing and filtering. However, it prevents irrelevant

chunks from reaching the LLM, reducing token load during synthesis and im-

proving overall system responsiveness. Thus, although hybrid search consumes

more CPU cycles upfront, it saves memory and computation downstream.

10.3.3 Context Size and Memory Scaling

The memory requirements of transformer models such as Qwen scale non-

linearly with the length of the input context. Each token in the input sequence

is represented in a key-value cache for the attention mechanism. As the context

length grows, memory usage increases quadratically due to the self-attention

operation, where each token attends to all previous tokens.

For example, increasing the context size from 512 tokens to 2048 tokens mul-
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tiplies the RAM requirement for attention computation by 16×. This scaling

impacts both RAM (for CPU-based inference) and GPU VRAM (for GPU-

based inference). If the available system memory is insufficient, inference will

either fail with an out-of-memory (OOM) error or degrade severely due to pag-

ing. Therefore, system designers must carefully balance retrieval depth, chunk

size, and context length against available hardware resources.
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Chapter 11

Trade-Offs Between Retrieval Precision &
System Performance with Hallucinations

11.1 Small vs. Large Chunks:

The decision of chunk size directly impacts both retrieval accuracy and system

efficiency.

* Small retrieval chunks : – produce more embeddings, which increases

RAM consumption and index size. However, retrieval becomes more pre-

cise because the system can isolate relevant content more effectively. The

downside is higher memory load and slightly slower indexing operations.

* Large synthesis chunks : – reduce the number of embeddings, lowering

RAM usage and index size. However, they decrease retrieval granularity,

which can cause irrelevant information to be pulled into the context window.

Larger chunks also increase the token load for the LLM, consuming more

VRAM during inference and lengthening response times.
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11.2 Managing Hallucinations

11.2.1 Use of Retrieval-Augmented Generation (RAG) to Anchor Responses

The primary mechanism to reduce hallucinations in the system is RAG itself.

By combining a local knowledge base with the generative capabilities of Qwen

1.8B, the system ensures that responses are anchored in verified and structured

sources:

* Knowledge Sources: – FOSSEE eSim manuals, reports, GitHub issues, aca-

demic PDFs, and other curated documentation.

* Vector Retrieval : – Relevant information is retrieved from these sources

using FAISS embeddings, ensuring that the AI model generates responses

based on actual data rather than free speculation.

* Context Integration : – The system leverages chat history and previous

analyses to ensure follow-up queries remain consistent with prior verified in-

formation.

11.2.2 Multi-Modal Cross-Verification

Hallucinations are further reduced through cross-modal verification:

* Visual Verification: – Circuit diagrams analyzed via OpenCV provide struc-

tural and component-level evidence. If a user asks, “Why is my circuit not

working?”, the model cannot simply guess; it is guided by the actual detected

layout and component connections.

* Textual Verification : – Any advice or suggestions are cross-checked against

PDFs, manuals, and previous simulation reports before being included in the

output.

43



* Voice Queries: – Spoken input is transcribed into text and processed through

the same multimodal pipeline, so the AI cannot generate ungrounded re-

sponses from speech alone.

11.2.3 Localized Knowledge Base with Controlled Scope

By operating fully offline, the system avoids the unpredictability of external,

real-time sources:

* Curated Dataset: – Only verified, structured data is used, reducing the risk

of introducing incorrect or fabricated information.

* Bounded Context: – The AI is restricted to the dataset, ensuring recommen-

dations are always within the scope of supported circuit theory, component

libraries, and known simulation behavior.

11.2.4 Context-Aware Response Generation

The system maintains chat history and caching, which helps prevent hallucina-

tions in iterative troubleshooting:

* Follow-up queries are interpreted in relation to previous diagrams, analyses,

and explanations.

* Repetitive or similar queries can rely on cached outputs, which have already

been verified, minimizing the chance of inconsistent or fabricated answers.

11.2.5 Error Handling and Verification Prompts

Additional safeguards include:

* Confidence Thresholds:: – The AI can flag responses that may be uncertain,

prompting the user to verify before applying changes.
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* Clarification Prompts: – When a query is ambiguous or incomplete, the bot

can request more information instead of generating potentially hallucinated

advice.

* Structured Output: – Formatting recommendations in clear, step-by-step

instructions reduces interpretive errors.

Figure 11.1: Backend Flow Process

11.3 Context Window Optimization for Qwen 1.8

The Qwen 1.8B model is deployed locally via Ollama, which provides a lightweight

runtime for model inference. In FP16 precision, Qwen 1.8B requires 5- 6 GB
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of VRAM, which is infeasible for many consumer-grade GPUs. Instead, quan-

tized deployments (INT8 or INT4) reduce the footprint to 2–3 GB, enabling

inference on CPUs or mid-tier GPUs (e.g., 8 GB VRAM cards). Transformer

memory usage grows with the square of the context length (O(n²)) due to the

attention mechanism. For example:

* 512 tokens → baseline memory cost

* 1024 tokens → 4× memory cost

* 2048 tokens → 16× memory cost

11.3.1 Disk-Backed Storage with Caching

Storing the entire embedding index in RAM is not feasible on devices with

limited memory. To address this, the architecture employs disk-backed vector

databases with cache-aware retrieval layers.

* Hot embeddings: – Frequently queried embeddings are cached in RAM for

low-latency access.

* Cold embeddings: – Less frequently accessed vectors are fetched from disk

with a minimal latency penalty (typically +5–15 ms)

11.3.2 Quantized Local Inference

The Qwen 1.8B model is executed in quantized form through Ollama inference.

This enables deployment on consumer-grade hardware:

* FP16 mode: –5̃–6 GB RAM/VRAM

* INT8 quantization: – 3 GB RAM/VRAM

* INT4 quantization: – 2 GB RAM/VRAM
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Chapter 12

Use of Knowledge Retrieval & Context
Awareness Using Agentic RAG

12.1 Access to Comprehensive Design Knowledge with Agen-

tic RAG

In eSim circuit design, Agentic RAG enables the bot to retrieve highly relevant

technical knowledge from a local database, including component datasheets,

design formulas, and historical circuit layouts. For example, when designing a

low-pass filter, the agent can pull formulas for cutoff frequency, select suitable

resistor and capacitor values, and ensure alignment with design requirements.

This makes guidance precise, context-aware, and immediately usable for cir-

cuit simulation and analysis.

12.2 Autonomous Design Assistance Using Agentic RAG

12.2.1 Intelligent Decision-Making Enabled by Agentic RAG

Agentic RAG allows the bot to autonomously evaluate multiple design options

and choose optimal configurations. For example, when selecting a transistor

for amplification, the agent can analyze candidate components, calculate bias-

ing resistances, and recommend the most suitable option. This reduces manual
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trial-and-error and ensures designs adhere to both theoretical and practical re-

quirements.

12.2.2 Automated Troubleshooting Using Agentic RAG

When a circuit fails in simulation, Agentic RAG can detect the root cause, such

as incorrect component ratings or miswirings, and propose corrective actions.

By leveraging historical design patterns and generative reasoning, the bot can

explain the error and suggest precise modifications, accelerating debugging and

improving circuit reliability.

12.3 Efficiency and Scalability Using Agentic RAG

12.3.1 Leveraging Prior Knowledge with Agentic RAG

The system improves efficiency by reusing previously retrieved knowledge and

design patterns, minimizing redundant calculations and accelerating analysis.

12.3.2 Handling Complex Designs Through Agentic RAG

For more complex circuits, Agentic RAG enables the bot to integrate multiple

sources of knowledge, analyze interactions among components, and propose

optimizations. Modular knowledge bases support scalability, allowing the bot

to incorporate new components, updated rules, and advanced design techniques

over time.
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Chapter 13

Use of OpenCV in Circuit Diagram
Analysis for eSim-RAGbot

13.1 Visual Component Recognition Using OpenCV

13.1.1 Detection of Circuit Components

OpenCV serves as the primary tool for detecting individual electronic compo-

nents within circuit diagrams. Using advanced image processing techniques

like edge detection, contour mapping, template matching, and thresholding, the

system can accurately identify components such as resistors, capacitors, in-

ductors, diodes, transistors, and integrated circuits (ICs). This detection is not

limited to clean software-generated schematics but also extends to hand-drawn

diagrams, which may include irregular lines, varying shapes, and inconsistent

spacing. By converting raw image data into a structured set of components,

the offline bot can understand what elements are present in the circuit, which is

essential for further reasoning and analysis.

13.1.2 Structural Layout Analysis

Beyond identifying individual components, OpenCV performs structural lay-

out analysis, which interprets how components are connected within the cir-

cuit. This involves detecting nodes, wires, junctions, and the relative position-

ing of elements to reconstruct the logical connectivity. The agent can deter-
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mine whether components are in series or parallel, detect missing or floating

connections, and flag potential layout errors that may affect simulation results.

By transforming the visual information into a machine-readable representation,

OpenCV provides a foundation for the RAG system to reason about the circuit’s

functional behavior and compliance with design rules.

13.2 Multimodal Integration with RAG

13.2.1 Combining Visual and Textual Knowledge

The structured output from OpenCV is integrated with the RAG system to form

a multimodal understanding of the circuit. Here, the detected components and

their spatial relationships are mapped to component metadata and technical

specifications stored in the knowledge base, such as voltage ratings, pin config-

urations, or typical usage patterns.

Simultaneously, the system retrieves relevant textual information about circuit

design rules, theoretical calculations, and prior design examples. By combining

these two modalities—visual data from diagrams and textual knowledge from

prior designs—the agent can generate highly accurate, context-aware recom-

mendations for the circuit, ensuring that both theoretical and practical consid-
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erations are addressed.

13.2.2 Multimodal Decision Making

With the multimodal input, the agent can make informed decisions about circuit

design and troubleshooting. For instance, if OpenCV detects a resistor with in-

correct placement or a missing connection, the system can cross-reference prior

knowledge and suggest the correct configuration.

Similarly, it can propose optimized component values for capacitors, transis-

tors, or voltage regulators, considering both theoretical calculations and prac-

tical constraints. The integration allows the bot to predict potential simulation

outcomes in eSim more accurately, because it considers both the visual layout

of the circuit and the design principles governing its operation.

13.3 Offline Functionality and Local Processing

13.3.1 Local Diagram Processing

OpenCV enables the offline processing of circuit diagrams, meaning that all

image recognition and analysis are performed locally on the user’s machine.

This provides multiple advantages: faster processing speed since there is no

network latency, enhanced privacy as sensitive circuit designs never leave the

local environment, and independence from internet connectivity.

This is especially valuable in secure or restricted environments where cloud-

based AI tools cannot be used. Offline processing ensures that the system re-

mains fully operational in real-time, regardless of network availability.

13.3.2 Integration with Qwen 1.8B via Ollama

The structured output from OpenCV is passed to Qwen 1.8B running locally

via Ollama, which acts as the generative reasoning component. The model in-

terprets the visual representation, integrates it with retrieved knowledge from
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the local database, and generates context-aware insights, suggestions, and op-

timizations. This creates a multimodal pipeline, where the visual circuit dia-

gram, retrieved technical knowledge, and generative reasoning work together

to produce actionable guidance for simulation and design in eSim all performed

entirely offline.

13.3.3 Use Cases Enabled by OpenCV Multimodal Analysis

* Automated Troubleshooting: – By analyzing the diagram visually and com-

bining it with prior knowledge, the system can detect misconnected compo-

nents, missing nodes, or incorrect orientations and suggest specific fixes for

the user.

* Design Optimization: – The integration allows the agent to recommend op-

timized component values or circuit adjustments based on prior examples,

theoretical calculations, and detected layout features, improving overall cir-

cuit performance.

* Learning and Guidance: – The multimodal approach provides rich educa-

tional insights, where the agent explains how the visual layout corresponds to

theoretical rules, helping users understand why certain configurations work

or fail.

* Complex Circuit Handling: – For large-scale circuits with multiple sub-

modules or interdependent components, the system can analyze connections,

detect errors, and suggest improvements by leveraging both visual and tex-

tual knowledge, ensuring that even highly complex designs are interpretable

offline.
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Chapter 14

Functionality of the Offline eSim Bot
Using Agentic RAG for Circuit Queries

14.1 Query Understanding and Context Extraction

14.1.1 Natural Language Interpretation

When a user types a query such as “what is wrong with the circuit?” or “sug-

gest improvements”, the offline bot uses Qwen 1.8B via Ollama to process and

understand the input. The model interprets:

* The intent of the query (error detection, improvement suggestion, or opti-

mization)

* The context of the circuit (based on previously uploaded diagram and de-

tected components)

* Any constraints mentioned implicitly or explicitly (e.g., voltage limits, com-

ponent ratings)

14.1.2 Multimodal Context Integration

The bot integrates information from multiple sources to provide context-aware

analysis:

* Visual Input from OpenCV: – Remove unnecessary whitespace, excessive

line breaks, and irregular punctuation.
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* Retrieved Knowledge from RAG: – Relevant circuit design rules, prior de-

signs, and theoretical principles are retrieved from the local knowledge base.

* User Query Context: – Qwen 1.8B interprets the query to focus either on

error detection or optimization suggestions.

The combination of visual and textual knowledge allows the bot to reason

effectively about the circuit.

14.2 Error Detection Workflow

14.2.1 Identifying Faults via Multimodal Analysis

To answer “what is wrong with the circuit?”, the bot performs a step-by-step

error detection process:

* Compares detected connections from OpenCV against standard circuit rules

and retrieved examples.

* Checks for incorrect or missing components, miswiring, or violations of de-

sign rules.

* Flags potential functional issues such as overcurrent, short circuits, or voltage

mismatches.

14.2.2 Generative Explanation of Errors

Once faults are identified, the agent generates detailed explanations:

* describes the nature of each error (e.g., “R3 is connected in parallel instead

of series, which may cause incorrect voltage division”)

* Explains why the error affects circuit behavior

* Spellchecking and Error Correction : – Identify and fix spelling errors,

particularly those introduced during OCR conversion.
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* Suggests corrective actions based on prior designs or standard design prac-

tices.

14.3 Circuit Improvement Recommendations

14.3.1 Component-Level Optimization

When responding to “suggest improvements”, the bot analyzes both the current

design and known best practices:

* Adjusts resistor, capacitor, or inductor values to optimize performance met-

rics (voltage, current, frequency response).

* Suggests alternative components with better ratings or efficiency..

* Recommends reconfiguration of components for stability, noise reduction, or

power optimization.

14.3.2 Structural and Functional Enhancements

The bot also suggests layout or structural improvements:

* Detects unnecessary loops, redundant components, or bottlenecks in signal

paths.

* Recommends rearranging series/parallel connections for better performance.

* Advises on modular design improvements for scalability in larger circuits.
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Chapter 15

Offline Multimodal Processing &
Execution Validation of Multimodal
Agentic RAG

15.1 Fully Offline Functionality

All processing including visual analysis, knowledge retrieval, and generative

reasoning occurs locally without internet access. This ensures:

* High speed and low latency responses to user queries.

* Independence from cloud or external resources.

* Secure handling of sensitive circuit designs.

15.1.1 Multimodal Pipeline Integration

The workflow combines multiple modalities seamlessly:

* OpenCV detects and structures the circuit diagram.

* RAG retrieves relevant textual knowledge and prior design patterns.

* Qwen 1.8B interprets the user query, reasons about potential faults or opti-

mizations, and generates explanations and recommendations.
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* The system outputs actionable guidance and improvement suggestions to the

user in natural language.

15.2 Usability Testing

15.2.1 Test Design

Usability testing was conducted with a diverse set of users to ensure the offline

eSim bot powered by Agentic RAG and OpenCV meets real-world expecta-

tions. The participants included undergraduate engineering students, faculty

members from electronics departments, industry professionals familiar with

electronic design automation (EDA) tools, and first-time eSim users.

This wide spectrum allowed evaluation of both technical accuracy and user-

friendliness, from novices who rely heavily on guidance to experts who test

system efficiency and advanced functionalities.

15.2.2 Testing Methodology

The testing methodology incorporated task-based usability scenarios, where

users interacted with the bot by uploading circuit diagrams and querying the

system with prompts like “what is wrong with this circuit?” or “suggest im-

provements.” Key metrics included time-to-completion for tasks, error rate

analysis when following suggestions from the bot, and user satisfaction sur-

veys assessing clarity of instructions and confidence in results.

A/B testing compared the previous help systems with the multimodal Agentic

RAG integration, while a comparative analysis of local versus Flask-based chat-

bot implementations evaluated performance, privacy, and scalability in both of-

fline and partially networked contexts.
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Figure 15.1: Offline RAG AI System Workflow for Circuit Analysis

15.3 Chatbot Performance Results

15.3.1 Local Implementation Performance

* The offline bot leveraging Qwen 1.8B via Ollama processed both textual

queries and OpenCV-generated visual inputs with an average response time

of 0.5 seconds.

* Response accuracy was high at 92%, demonstrating effective multimodal rea-

soning and retrieval of circuit knowledge without requiring network connec-

tivity.

* Consistent memory usage ( 50MB) and independence from network resources

highlighted the efficiency and reliability of offline processing.
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15.3.2 Flask-based Implementation Performance

* With partial online deployment, response times averaged 1.2 seconds due to

network latency, but accuracy improved slightly to 95%.

* The system successfully handled concurrent requests, showcasing scalability

while still integrating OpenCV-based circuit analysis and RAG knowledge

retrieval.

* Server resource utilization averaged 200MB during peak loads, indicating

trade-offs between scalability and resource efficiency.

15.3.3 Comparative Analysis

* Users noted that local implementation offered speed and privacy, while Flask-

based implementation provided higher accuracy and scalability.

* Markdown formatting, error handling, and overall reliability were consistent

across both implementations.

* User preferences were split: 60% favored Flask for accuracy, 40% preferred

local for fast offline operation.

15.4 Performance Evaluation

15.4.1 System Performance Metrics

The multimodal Agentic RAG system demonstrated excellent performance:

* Responsiveness: All UI components remained smooth and responsive, whether

users submitted textual queries or uploaded circuit diagrams for OpenCV-

based analysis.

* Error Handling: Both local and Flask-based implementations utilized re-

sources efficiently, ensuring minimal impact on overall eSim performance.
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* Load Testing: System errors (e.g., missing files, incorrect diagrams) were

reliably detected and communicated, leveraging both visual detection from

OpenCV and generative reasoning from Qwen 1.8B.

15.5 Qualitative Impact

15.5.1 User Experience Enhancement

The multimodal Agentic RAG integration significantly improved:

* User confidence in navigating and troubleshooting circuits in eSim.

* Learning curve reduction for complex features, as OpenCV diagram analysis

provided immediate visual context.

* Self-service capabilities, reducing dependency on instructors or support staff.

15.5.2 Educational Value

The enhanced help system contributed to educational outcomes:

* Better integration of eSim into electronics curricula, as students could use the

tool to explore and validate circuit designs autonomously.

* Improved self-learning capabilities, with students able to upload diagrams,

identify errors, and implement suggested improvements.

* Enhanced teaching effectiveness for educators, as visual multimodal outputs

from OpenCV and generative guidance from Qwen 1.8B provided rich, in-

teractive learning content.

* Broader adoption in academic institutions, fostering engagement with open-

source EDA tools.
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Chapter 16

Chat History and Caching Mechanisms in
Multimodal Agentic RAG

16.1 Chat History Savings

16.1.1 Mechanism of Chat History Storage

* User Query Text: The exact wording of the user’s question or command is

stored to preserve intent and context for follow-up interactions.

* Relevant Context from OpenCV Visual Analysis: The system saves component-

level details extracted from the uploaded diagram, including detected resis-

tors, capacitors, transistors, connections, and identified errors. This allows

the bot to reference the circuit’s structure without reprocessing the image.

* RAG-Retrieved Knowledge: Any knowledge retrieved from the local database

such as design rules, prior examples, or theoretical calculations is linked to

the query in the history.

* System-Generated Suggestions or Explanations: The bot’s responses,

including recommended improvements or troubleshooting steps, are saved

alongside the query and visual/contextual information.

This mechanism allows the bot to maintain conversational continuity, enabling

users to ask follow-up questions seamlessly. For instance, a user can first ask,
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“what is wrong with this circuit?”, receive detailed feedback, and then fol-

low up with, “suggest improvements”. The bot recalls the previous OpenCV

analysis and RAG context, ensuring the responses are coherent, consistent, and

highly relevant.

16.1.2 Benefits of Chat History Savings

* Context-Aware Responses: By retaining the full conversation and asso-

ciated visual/knowledge context, the system interprets follow-up queries in

relation to prior interactions. This ensures that each response is consistent

and logically connected to the user’s previous questions.

* Reduced Redundant Processing: Re-analyzing the same diagram or re-

retrieving the same knowledge from RAG is unnecessary because the system

references the chat history. This reduces computation time, conserving both

memory and processing resources.

* Improved Learning and Documentation: Users can review prior queries

and solutions, which is especially useful in academic settings for studying,

project documentation, or self-paced learning. Faculty and students benefit

from being able to revisit prior sessions and understand the reasoning behind

design improvements.

16.2 Caching Mechanism

16.2.1 Local Caching of Visual and Knowledge Data

To enhance offline performance and minimize response times, the eSim bot

caches frequently accessed information locally. Cached data includes:

* OpenCV-Processed Diagrams: Component layouts, connection mappings,

and detected errors from previously analyzed diagrams are stored in struc-

tured form.
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* Frequently Retrieved RAG Knowledge: Standard circuit components, com-

mon troubleshooting patterns, and prior example circuits are cached for quick

retrieval.

* Generated Explanations from Qwen 1.8B: Solutions or suggestions gener-

ated during prior sessions, especially for common circuit issues, are retained

to avoid repeated generative computations.

16.3 Integration with RAG and OpenCV

The caching system works as follows:

* Cache Lookup: When a new query is submitted, the system first checks

whether the corresponding OpenCV-processed diagram or relevant RAG knowl-

edge already exists in the cache.

* Cache Retrieval: If a match is found, the bot retrieves cached outputs in-

stead of reprocessing the diagram or re-querying the knowledge base. This

drastically reduces latency for repeated queries.

* Fresh Analysis if Needed:If new components or novel circuit configurations

are detected, OpenCV performs fresh image analysis, and RAG retrieves any

additional required knowledge.

* Cache Update:Newly processed results, including visual data and generated

explanations, are then stored in the cache for future reference.

16.4 Impact on User Experience and Performance

16.4.1 Improved Responsiveness

The combination of chat history and local caching enables average response

times as low as 2.5 seconds for previously analyzed circuits. Users experi-

ence immediate improvements in query handling, particularly for repeated trou-
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bleshooting or iterative design workflows, where diagrams and queries often

build upon prior analysis.

16.4.2 Context Retention and Accuracy

By storing both visual and textual context, chat history ensures that the bot can

retain reasoning across multiple queries. Cached RAG knowledge reinforces

response accuracy, allowing the system to maintain high precision for repeated

or similar circuits. Usability testing showed that this combination reduced time-

to-answer by up to 60%, enhancing user efficiency.

Figure 16.1: Agentic Analysis

16.4.3 Educational and Workflow Benefits

* For Students: Prior queries and solutions can be reviewed to strengthen

understanding of circuit theory and design principles.

* For Faculty: Enables monitoring of student interactions and provides ready

reference for teaching complex concepts.

* For Designers Accelerates iterative workflows, as the bot recalls prior anal-

yses and suggestions, eliminating the need to re-run OpenCV or RAG pro-

cesses for circuits previously examined.
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Chapter 17

Dataset Used for Multimodal Agentic
RAG in eSim

17.1 Overview of Dataset Sources

The dataset that powers the offline Agentic RAG system in eSim is multi-source

and multimodal, designed to support both retrieval-based reasoning and gener-

ative responses. By combining visual, textual, and community knowledge, the

system can provide accurate, context-aware, and practical guidance for circuit

analysis and troubleshooting. The sources include:

17.1.1 Official eSim Manuals and Guides

* The dataset incorporates PDF manuals containing step-by-step instructions,

theoretical explanations, circuit examples, and troubleshooting tips, covering

a wide range of circuit design scenarios.

* The manuals are structured into sections that describe component usage, sim-

ulation setups, measurement techniques, and advanced analysis methodolo-

gies, allowing users to consult them for both beginner and advanced tasks.

* These documents form the core knowledge base of the offline system, en-

abling the bot to retrieve authoritative guidance when responding to queries.

For example, the bot can reference the manuals to provide accurate instruc-
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tions on configuring AC analysis or selecting suitable component values.

17.1.2 GitHub Issues and Community Discussions

* This dataset includes records of bugs, feature requests, and user-reported is-

sues from eSim’s GitHub repository.

* Each issue typically contains a detailed problem description, potential workarounds,

and developer responses, offering insights into real-world circuit design chal-

lenges.

* The bot leverages this dataset for error detection, troubleshooting guidance,

and practical problem-solving, allowing it to provide solutions informed by

community experience, not just theoretical knowledge.

17.1.3 User-Generated eSim Reports and Logs

* Offline simulation reports, exported logs, and project-specific circuit analysis

files are included to capture real-world usage patterns.

* These reports contain circuit parameters, simulation results, component be-

haviors, and design choices, which the RAG system can reference to generate

data-driven suggestions.

* By analyzing these reports, the bot can detect recurring errors, suggest op-

timizations, and provide performance insights based on patterns observed in

prior simulations.

17.1.4 Academic and Educational Resources

* The dataset also includes PDFs of lecture notes, open-source electronics tu-

torials, and circuit design guides to provide additional theoretical grounding.

* These resources serve as supplementary material, enriching the explanations

generated by the bot with educational context, making it useful for students,
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educators, and self-learners

17.2 Processing and Structuring of the Dataset

17.2.1 PDF Manual Processing

* PDF manuals are parsed using advanced text extraction tools that convert

content into searchable, structured text, while preserving section hierarchies,

headings, and diagrams.

* This structured representation allows the RAG system to quickly retrieve

precise information in response to user queries, such as “what is the rec-

ommended resistor value for this filter?” or “how to set up AC analysis in

eSim?”

* By indexing both textual content and diagrams, the system can correlate theo-

retical knowledge with practical circuit design examples, enhancing accuracy

and relevance.

17.2.2 GitHub Issues Processing

* GitHub issues are scraped and preprocessed to remove irrelevant information,

formatting noise, and redundant content.

* Each issue is categorized by type bug, feature request, troubleshooting to

enable fast retrieval of relevant examples.

* This allows the bot to provide real-world troubleshooting examples and rec-

ommendations, giving users practical solutions based on previous user-reported

issues.

17.2.3 eSim Reports and Logs

* Offline simulation files and logs are parsed to extract critical data including

circuit parameters, measured results, anomalies, and error messages.
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* These findings are linked to specific components and simulation setups, en-

abling the bot to generate context-aware suggestions for correcting errors or

improving circuit performance.

* The reports also help the system identify recurring patterns in user designs,

which can inform generative improvements suggested by Qwen 1.8B.

17.2.4 Data Integration for Multimodal Retrieval

* All datasets including manuals, GitHub issues, and simulation reports are

indexed and integrated into a local, offline knowledge base.

* When a user uploads a circuit diagram, OpenCV extracts the visual infor-

mation, and the RAG system retrieves relevant textual knowledge from the

integrated dataset.

* For example, if a user queries, “what is wrong with this circuit?”, the bot

cross-references:

- Official manual guidelines for best practices and theoretical rules

- Similar GitHub issues reported by other users for practical troubleshooting

- Previously saved simulation reports or logs for observed performance data

- Academic explanations for theoretical validation and educational support

* This multimodal integration ensures that responses are accurate, practical,

and contextually relevant, improving usability, learning outcomes, and trou-

bleshooting efficiency.

17.3 Benefits of Using a Multimodal, Multi-Source Dataset

* Comprehensive Knowledge Coverage: By combining theoretical content,

practical community insights, and real-world simulation data, the system pro-

vides end-to-end guidance for circuit design and analysis.
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* Error Handling: GitHub issues and eSim reports allow the bot to sug-

gest real-world solutions and preventive measures, going beyond textbook

answers.

* Educational Value: Manuals, lecture notes, and academic PDFs provide

rich theoretical explanations, supporting learning and teaching for students

and instructors.

* Context-Aware Multimodal Retrieval: Integration with OpenCV visual

analysis allows the system to link circuit layouts with textual knowledge,

enabling precise, accurate, and efficient responses even in fully offline sce-

narios.
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Chapter 18

Voice Command Support for
eSim-RAGbot

18.1 Mechanism of Voice Interaction

18.1.1 Voice Input Processing

* The offline eSim bot enables users to interact using natural spoken language,

removing the need for typing queries and allowing a more intuitive and hands-

free experience.

* The system uses an open-source speech recognition library, which captures

audio input from the user and accurately converts spoken words into text that

can be processed by the Qwen 1.8B model.

* This allows users to submit queries such as “what is wrong with my cir-

cuit?” or “suggest improvements for this resistor network” and have them

interpreted in real time, even while working on a physical circuit setup

* Once transcribed, the spoken input enters the same multimodal analysis pipeline

as typed queries:

* OpenCV visual analysis processes uploaded circuit diagrams to detect com-

ponents, connections, and errors.
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* RAG retrieval searches manuals, GitHub issues, and eSim reports for rele-

vant knowledge.

* Qwen 1.8B reasoning generates detailed explanations, suggestions, or trou-

bleshooting guidance.

* By integrating voice input into this pipeline, the system ensures that all spo-

ken queries benefit from the same high-quality multimodal reasoning and

contextual accuracy.

18.1.2 Voice Output Generation

* After generating a response, Qwen 1.8B output is converted into spoken

replies using an open-source text-to-speech (TTS) library, providing imme-

diate auditory feedback to the user.

* The bot can narrate detailed instructions, troubleshooting steps, component

suggestions, or theoretical explanations, giving a truly interactive, hands-free

experience.

* Voice feedback is context-sensitive, meaning it can describe general con-

cepts, such as “check your voltage source connections”, or provide component-

specific recommendations, like “replace resistor R3 with a 10k resistor for

correct voltage division”.

* This dynamic narration ensures that the system communicates technical in-

formation clearly, complementing textual and visual outputs.

18.2 Benefits of Voice Support

* Accessibility Enhancement: Users with mobility impairments or those who

are multitasking (e.g., working on circuit hardware) can interact without us-

ing a keyboard, making the system more inclusive and flexible.
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* Improved Workflow Efficiency: Engineers and students can submit queries

while actively building or debugging circuits, maintaining a continuous work-

flow without interrupting physical tasks.

* Multimodal Interaction: Voice support integrates seamlessly with OpenCV

visual analysis and textual RAG outputs, creating a fully multimodal user ex-

perience that combines spoken language, textual reasoning, and visual circuit

insights.

* Educational Value: Students and instructors benefit from auditory rein-

forcement, listening to explanations while simultaneously analyzing or mod-

ifying circuits. This multi-sensory approach improves comprehension, reten-

tion, and practical understanding of electronic principles.

18.3 Integration with Existing Offline Pipeline

* Voice input is first transcribed into text, ensuring it can be processed by the

same Qwen 1.8B + RAG + OpenCV pipeline used for typed queries.

* Generated responses are stored in the chat history and cached for future ref-

erence, so follow-up queries maintain context and continuity.

* Voice output is synchronized with textual logging, allowing the user to re-

ceive immediate spoken feedback while retaining a written record of expla-

nations and suggestions for later review.

* The offline implementation ensures fast response times, privacy, and relia-

bility, consistent with other multimodal features such as diagram analysis,

knowledge retrieval, and generative reasoning.

* By integrating voice support into the offline pipeline, the system maintains

high performance and usability even in environments without internet access,

which is critical for lab or classroom scenarios.
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18.4 Impact on User Experience

* Users can interact naturally and intuitively, making circuit analysis more en-

gaging and reducing the learning curve for complex troubleshooting tasks.

* Voice interaction reduces the need for repeated keyboard input, which makes

iterative circuit debugging and improvement faster and more seamless.

* The combination of voice, visual, and textual modalities creates a holistic

multimodal system, enabling users to receive comprehensive guidance in

multiple formats simultaneously.

* For educational use, this integration promotes active learning, allowing stu-

dents to follow spoken instructions while observing circuit diagrams and

reading contextual explanations, leading to better conceptual understanding

and retention.

* Overall, voice support enhances user engagement, accessibility, and work-

flow efficiency,

18.5 Quality Assurance and Testing Strategy

* Usability testing involved a diverse group of users, including undergraduate

students, faculty members, industry professionals, and first-time users of the

system. This ensured feedback was collected from users with different levels

of experience and expectations.

* Testing focused on task completion and efficiency, measuring how long users

took to perform typical operations and whether they could complete them

successfully.

* Error analysis tracked mistakes or difficulties encountered during tasks, help-

ing identify areas where the system needed improvement.
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* User satisfaction was evaluated through surveys and direct feedback to un-

derstand how intuitive and helpful the system felt to users.

* Comparative testing of different implementations ensured that the system

provided a consistent, reliable, and effective user experience across scenar-

ios.

18.6 Performance Optimization

* The system was optimized to respond quickly, even when handling complex

queries or multiple operations simultaneously.

* Memory management strategies ensured the system could process multiple

tasks without slowing down or crashing.

* Automatic cleanup processes removed unnecessary temporary data to main-

tain smooth operation over time.

* System design focused on efficiency under load, ensuring that performance

remained stable when users accessed multiple features or explored detailed

troubleshooting scenarios.

* Optimization also aimed to improve overall reliability, reducing delays and

maintaining consistent response quality throughout extended use.

18.7 Communication Architecture

* The system is designed for immediate, seamless interaction, allowing users

to receive responses without noticeable delay.

* Operations are thread-safe, ensuring that multiple tasks or queries can be

handled simultaneously without conflicts or interruptions.
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* The architecture includes robust error handling, so that if a problem occurs

during processing, the system can recover gracefully and provide clear feed-

back to the user.

* This setup ensures that users experience smooth and uninterrupted interac-

tion, even in demanding use cases.

18.8 Advanced Features

* Responses are structured and readable, making complex information easier

to understand and follow.

* Context awareness allows the system to remember prior interactions and

follow-up questions, providing answers that are consistent with previous guid-

ance.

* Error handling mechanisms guide users when input is incomplete, unclear,

or unexpected, ensuring that queries are addressed effectively.

* Visual feedback, such as processing indicators, informs users that their queries

are being handled and keeps the interaction transparent.

* The system supports multiple simultaneous interactions, ensuring that several

users can access features at the same time without performance degradation.

18.9 Knowledge Base Structure

* The knowledge base contains extensive information, including explanations

of system features, workflow guidance, and practical instructions.

* Includes step-by-step procedures for troubleshooting, helping users resolve

issues systematically.

* Provides error explanations and contextual examples to illustrate common

problems and their solutions.
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* The knowledge is organized to allow users to quickly locate the information

they need, making it easier to complete tasks and understand system func-

tionality.
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Chapter 19

Tech Stacks Libraries

19.1 GUI and Application Framework

* PyQt5: Provides the framework for building the desktop application inter-

face. Used to create windows, layouts, text input fields, buttons, dialogs, and

labels. Essential for designing a user-friendly environment where users can

input queries, upload circuit diagrams, and view chatbot responses.

* QTimer / QThread / pyqtSignal: Manage asynchronous tasks and back-

ground processing to keep the GUI responsive. For example, these are used

to handle long-running tasks like circuit image analysis or RAG retrieval

without freezing the interface, and to send signals between threads for real-

time updates.

19.2 Image and Computer Vision Processing

* OpenCV (cv2): Core library for analyzing uploaded circuit diagrams. Per-

forms tasks such as component detection, wire tracing, contour analysis, and

image transformations, which are essential for extracting visual information

from circuits.

* Pillow (PIL): Used for image handling and manipulation, such as convert-

ing formats, resizing, cropping, and preparing images for OCR or computer

vision processing.
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* pyautogui / ImageGrab: Capture screenshots or select portions of the screen

for analysis. Useful when users need to quickly capture circuits from other

software or tools for analysis by the bot.

* pytesseract: OCR engine that extracts text from circuit diagrams, such as

component labels, values, or annotations, enabling the system to combine

visual and textual information.

* NumPy: Handles numerical operations on image arrays, such as matrix ma-

nipulations, filtering, thresholding, and other image preprocessing tasks re-

quired by OpenCV and OCR workflows.

19.3 Voice Input and Output

* Speech Recognition (sr): Allows the bot to convert spoken user queries

into text, enabling hands-free interaction. Useful for engineers or students

working with circuits who cannot type continuously.

* pyttsx3 : Converts text responses into audible speech, providing spoken

guidance and feedback to users. Ensures that responses from the bot are

accessible in a multimodal format.

19.4 Large Language Model and RAG

* Ollama: – Platform for running the Qwen 2.5B model locally, providing

context-aware generative responses to user queries without requiring internet

access.

* LangChain Community Libraries: – Platform for running the Qwen 2.5B

model locally, providing context-aware generative responses to user queries

without requiring internet access.

* HuggingFaceEmbeddings: Converts textual knowledge from manuals,

reports, and FAQs into vector embeddings for similarity-based retrieval.
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* FAISS: High-performance vector database used to store embeddings and

perform fast nearest-neighbor searches, enabling the RAG pipeline to quickly

find relevant knowledge.

* TextLoader / UnstructuredPDFLoader: Load and parse knowledge sources

like PDFs or text files, extracting information to feed into the RAG system.

* RecursiveCharacterTextSplitter: Splits large documents into smaller,

manageable chunks for indexing, improving retrieval efficiency and rel-

evance of responses.

19.5 Utility and System Libraries

* os / pathlib / time / datetime / re / base64: Core Python libraries for file

handling, directory management, timing operations, path management, text

processing, and encoding/decoding data. Crucial for managing user uploads,

storing cached results, and organizing local datasets.

* json: Stores structured data such as chat history, cached knowledge, and

configuration settings for persistent offline operation.

* typing: Provides type hints to improve code readability, maintainability, and

reduce errors in complex function definitions.
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Chapter 20

Future Enhancements

20.1 Multimodal Analysis Enhancements

* Deep Learning-Based Circuit Recognition: Improve component detection

and wire tracing in uploaded circuit diagrams using advanced CV models.

* Hand-Drawn Circuit Recognition:Enable recognition of hand-drawn cir-

cuits for educational purposes.

* Interactive Diagram Annotation: Allow users to highlight or label com-

ponents and receive updated suggestions in real time.

20.2 Knowledge Base Expansion

* Dynamic Import of FOSSEE eSim Resources: Automatically update man-

uals, tutorials, and reports in the knowledge base.

* Community Knowledge Integration: Include relevant GitHub issues and

user-shared projects to enhance troubleshooting guidance.

* Contextual Learning: Track prior user interactions to provide follow-up

suggestions based on historical queries.
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20.3 RAG and LLM Improvements

* Hybrid Retrieval Models: Combine Qwen 1.8B with domain-specific em-

beddings to improve accuracy in circuit recommendations.

* Predictive Component Suggestions: Suggest optimal component values or

alternative configurations based on patterns from previous circuits.

* Explainable Recommendations: Provide reasoning behind suggested im-

provements to enhance educational understanding.

20.4 Voice and Multimodal Interaction

* Bidirectional Voice Interaction: Support natural dialogues with clarifica-

tions and follow-ups.

* Multimodal Responses: Combine text, voice, and diagram annotations for

richer feedback.

20.5 User Experience Enhancements

* Interactive Tutorials and Guided Simulations: Step-by-step instructions

with live feedback on diagrams.

* Context-Aware Recommendations:Use session history to provide coherent

follow-ups for iterative circuit design.

* Customizable UI: Adjust layouts, themes, or response formats for better

usability.

20.6 Performance and Offline Efficiency

* Optimized Caching: Store processed diagrams, embeddings, and prior re-

sponses to reduce computation time.
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* Parallel Processing: Allow multiple circuit analyses or queries simultane-

ously for faster workflow.

* Lightweight Model Variants: Use optimized LLMs to maintain offline func-

tionality on lower-resource systems.

20.7 Educational and Research Features

* Automated Report Generation: Generate structured reports including de-

tected errors, suggested improvements, and analysis.

* Assessment Tools: Quizzes or guided exercises to reinforce learning in an

educational environment.
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Prototype Demo

Figure 20.1: Home Page

Figure 20.2: External Image Uploader
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Figure 20.3: Audio Support

Figure 20.4: Chat History
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Figure 20.5: Chat Export: External Save

Figure 20.6: test.cir Schematic Debugging
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Figure 20.7: test.cir Schematic Analysis

Figure 20.8: OnPrompt Debugging with Image Analysis Support
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Figure 20.9: Analysed Answer for Schematic Editor

Figure 20.10: Ngspice Error Log
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Figure 20.11: Error Log Analysis

Figure 20.12: Ally is Thinking
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Final Remarks

This fellowship project has been an invaluable opportunity for me to explore

the intersection of open-source EDA tools, AI-driven assistance, and multi-

modal interaction. Working on the offline multimodal Agentic RAG system

for eSim allowed me to enhance the usability and accessibility of the software

while gaining hands-on experience with modern technologies such as computer

vision, retrieval-augmented generation, and voice-enabled interfaces.

Throughout this project, I have learned a great deal about designing and im-

plementing a responsive, context-aware, and versatile support system. Integrat-

ing LLMs, knowledge retrieval frameworks, and offline processing pipelines

has deepened my understanding of both software architecture and AI-driven

educational tools. This experience also highlighted the importance of iterative

development, user-centered design, and careful planning in delivering practical

and effective solutions.

Working on this project has given me insight into the broader potential of open-

source educational software and how thoughtful enhancements can improve

user engagement, learning outcomes, and accessibility. While I am proud of

the improvements achieved for eSim users, I also recognize that this work lays

a foundation for future exploration, refinement, and expansion. It has inspired

me to continue contributing to making educational tools more intuitive, effec-

tive, and accessible.
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I hope that the work I have completed during this fellowship not only bene-

fits eSim users immediately but also serves as a model for similar initiatives in

other open-source educational projects. This experience has been both profes-

sionally enriching and personally rewarding, and I am grateful for the opportu-

nity to learn, experiment, and grow through it.
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