
FOSSEE Semester Long Internship
Report

On

Osdag on Cloud

Submitted by

Raghav Sharma

Under the Guidance of

Prof. Siddhartha Ghosh

Department of Civil Engineering

Indian Institute of Technology Bombay

Mentors:

Parth Karia

Ajmal Babu M S

Ajinkya Dahale

June 16, 2025

Contents

1 Introduction 4

1.1 What is Osdag? . 4

1.2 Challenges with the Osdag software . 5

1.3 What is Osdag on Cloud? . 5

1.4 Who can use Osdag on Cloud? . 5

2 Screening Task: Osdag Web Module Development 7

2.1 Project Overview . 7

2.1.1 Objective . 7

2.1.2 Significance . 8

2.2 Methodology . 8

2.2.1 Tools & Technologies . 8

2.2.2 Development Workflow . 8

2.3 Implementation Details . 9

2.3.1 Frontend Development (React) 9

2.3.2 3D Visualization (React Three Fiber) 11

2.3.3 Backend Development (Django REST Framework) 12

3 Environment Setup and Initial Debugging 14

3.1 The Challenge: Replicating a Complex Production Stack 15

3.2 The Setup Process: A Methodical Approach 15

3.2.1 Phase 1: Environment and Database Preparation 15

3.2.2 Phase 2: Backend Dependency Installation and Debugging 16

3.2.3 Phase 3: Finalizing Setup and Launching the Application 18

3.3 Code-Level Intervention: Resolving the Protocol ImportError 18

3.3.1 Description of the Script Change 18

3.3.2 Code Modification . 18

3.4 Distilling Experience into Documentation 19

3.4.1 Developer Manual: Troubleshooting Common Installation Errors . 19

4 Internship Task 1: Debugging the End Plate CAD Module 21

1

4.1 Problem Statement . 21

4.2 Tasks Done . 21

4.3 Python Code . 22

4.3.1 Description of the Script . 23

4.3.2 Python Code Snippet . 23

4.3.3 Explanation of the Code . 24

4.4 Documentation . 25

4.4.1 Developer Manual: Debugging Silent Failures 25

5 Internship Task 2: Fixing the Session Management API 27

5.1 Task 2: Problem Statement . 27

5.2 Task 2: Tasks Completed . 27

5.3 Task 2: Python Code . 28

5.3.1 Description of the Script . 28

5.3.2 Refactored Python Code . 29

5.4 Task 2: Developer Documentation . 31

5.4.1 Session API Usage Guide . 32

6 Internship Task 3: Development of the Cover Plate Welded Module 33

6.1 Task 3: Problem Statement . 33

6.2 Task 3: Tasks Done . 33

6.2.1 Frontend Development (React) 34

6.2.2 Backend Development (Django/Python) 34

6.3 Task 3: Python and React Code . 35

6.3.1 Frontend: React Component State and Submission Logic 35

6.3.2 Backend: Core Engineering Logic Snippet 37

6.3.3 Full code . 40

7 Internship Task 4: Development of the Beam-to-Column End Plate

Module 41

7.1 Task 4: Problem Statement . 41

7.2 Task 4: Tasks Done . 41

7.2.1 Frontend Development (React) 42

7.2.2 Backend Development (Django/Python) 42

2

7.3 Task 4: Python and React Code . 44

7.3.1 Frontend: Consolidating and Submitting Complex Input State . . 44

7.3.2 Backend: Robust Output API View with Logging 46

7.3.3 Full code . 49

8 Internship Task 5: Refactoring the modules with a Reusable Module

Architecture 50

8.1 Task 5: Problem Statement . 50

8.2 Task 5: Tasks Done . 51

8.3 Task 5: React Code . 53

8.3.1 Description of the Scripts . 53

8.3.2 React Code Snippets . 54

8.3.3 Explanation of the Code . 56

8.3.4 Full code . 57

8.4 Task 5: Documentation . 57

8.4.1 Developer Manual: Creating a New Frontend Module (Refactored

Architecture) . 57

9 Conclusions 59

9.1 Tasks Accomplished . 59

9.2 Skills Developed . 60

9.2.1 Technical Skills . 60

9.2.2 Professional Skills . 61

A Appendix 62

A.1 Work Reports . 62

Bibliography 66

3

Chapter 1

Introduction

This chapter provides a comprehensive overview of both “Osdag” and its cloud-based

counterpart “Osdag on Cloud,” while also highlighting the distinctions between these

two products. Additionally, it offers a succinct overview of the intended audience for

these solutions.

1.1 What is Osdag?

“Osdag” is a trans-formative exemplar of Free/Libre and Open Source Software (FLOSS),

meticulously crafted to redefine steel structure design. Rooted in Python, this software

embodies collaborative excellence and technical finesse. The integration of PythonOCC,

a 3D CAD modeling framework, elevates “Osdag” beyond the ordinary. By intertwining

code with visual representation, the software offers an immersive platform for users to

engage with and refine their structural concepts.

The “Share alike” policy, advocated by FOSSEE, adds a layer of significance. Beyond

open source principles, it envisions a perpetually evolving software landscape, aligned

with industry and academic needs. In essence, “Osdag” transcends software conventions,

embodying a collaborative journey that empowers engineers, architects, and learners. In

a rapidly changing world, it stands as a beacon of progress, fueled by the ethos of open

source collaboration.

4

1.2 Challenges with the Osdag software

While undoubtedly a valuable tool, the “Osdag” software is not without its challenges.

One prominent obstacle is the time-intensive nature of setting up the desktop application

on local systems, a concern shared by both developers and users. The process can often

be compounded by potential bugs stemming from version disparities or operating system

variations. This complexity can lead to a range of issues during setup. Enterprises into

this backdrop, “Osdag on Cloud” emerges as a promising solution.

1.3 What is Osdag on Cloud?

“Osdag on Cloud” is an innovative approach that circumvents the intricate setup process

altogether, offering a streamlined alternative. By shifting the software’s operations to

the cloud, users and developers can sidestep compatibility issues and operating system

nuances. This forward-looking initiative not only enhances convenience but also empowers

seamless accessibility, ushering in a new era of user experience.

“Osdag on Cloud” represents the cloud-based iteration of Osdag built with React.js

and Django. With this version, users are relieved of the necessity to download the Osdag

desktop application onto their computers. Instead, they can readily harness the complete

spectrum of Osdag features by simply navigating to the website. This streamlined ap-

proach allows users to access the software’s functionalities without any local installations.

Notably, intricate tasks such as computations and report generation, design computa-

tions, etc. are seamlessly handled within the cloud environment, further enhancing user

convenience.

1.4 Who can use Osdag on Cloud?

“Osdag on Cloud” is created for both educational purposes and industry professionals.

As FOSS is currently funded by MHRD, the Osdag team is developing the software in

such a way that it can be used by students during their academics to provide them with

a better insight into the subject. Osdag is designed to be usable by anyone, from novices

to professionals. Its simple user interface makes it more flexible and attractive than other

5

software options. Video tutorials are available to help users get started. You can access

the video tutorials for Osdag here.

6

https://osdag.fossee.in/media/videos

Chapter 2

Screening Task: Osdag Web Module

Development

The screening task served as an initial assessment to demonstrate proficiency in full-stack

development by creating a new module for the Osdag-on-Cloud application. The task was

to build a ”Beam-to-Beam Splice (Cover Plate Bolted)” design module from the ground

up.

2.1 Project Overview

2.1.1 Objective

The primary objective was to develop a fully functional web module that mirrors the

capabilities of the existing desktop version. This required adherence to several key stan-

dards:

• Engineering Standards: All design calculations and checks had to be based on

the Indian Standard IS 800:2007 for steel structures.

• Software Standards: The project was to be developed following Free/Libre and

Open Source Software (FLOSS) practices, licensed under the GNU LGPL v3.

• Technical Architecture: The implementation must use Osdag’s modern web

stack, which consists of a Django backend and a React frontend.

7

2.1.2 Significance

This project is significant as it directly contributes to FOSSEE’s mission of promoting

FLOSS in engineering education. By developing this module, we help bridge the fea-

ture gap between the established desktop version of Osdag and its more accessible web

counterpart, providing a valuable, free design tool for students and engineers across India.

2.2 Methodology

2.2.1 Tools & Technologies

A specific set of open-source tools was used to accomplish the task, as detailed in the

table below.

Table 2.1: Tools and Technologies Used

Category Open-Source Tools
Used

Purpose

Frontend React, Material-UI UI development and creating a
responsive user experience.

Backend Django, Django REST
Framework

API development and handling
design calculations.

3D Visualization Three.js,
@react-three/fiber,
@react-three/drei

Interactive 3D rendering of the
steel connection.

Documentation Markdown, LaTeX Creating technical specifications
and user guides.

2.2.2 Development Workflow

The development process was broken down into four logical steps:

1. UI Development: The first step was to replicate the input and output docks from

the desktop version’s user interface using React and Material-UI components.

2. API Integration: Next, RESTful API endpoints were built using the Django

REST Framework to handle communication between the frontend and backend for

design calculations.

8

3. 3D Visualization: An interactive 3D model was integrated into the UI using

Three.js and the ‘@react-three/fiber‘ library to provide visual feedback to the user.

4. Validation: The module’s logic was tested against more than 15 compliance checks

specified in IS 800:2007 to ensure design accuracy (though implemented with mock

data for the screening task).

2.3 Implementation Details

The implementation is divided into three parts: the React frontend, the Three.js 3D

visualizer, and the Django backend.

2.3.1 Frontend Development (React)

The user interface is handled by a React component named BeamSpliceForm.js. This

component manages the application’s state using the ‘useState‘ hook to store user inputs

for parameters like section size, bending moment, and shear force. On submission, it

uses the ‘axios‘ library to send a POST request containing the form data to the Django

backend API. The response, containing the design results, is then stored in the state and

displayed in the output dock.

Listing 2.1: BeamSpliceForm.js - React Component

import React , { useState } from "react";

import { TextField , MenuItem , Button , Grid , Paper , Typography }

from "@mui/material";

import axios from "axios";

import BeamVisualizer from "./ BeamVisualizer";

const BeamSpliceForm = () => {

const [formData , setFormData] = useState ({

sectionSize: "ISMB 300",

bendingMoment: "",

shearForce: "",

axialForce: "",

flangeThickness: 12,

9

webThickness: 10

});

const [results , setResults] = useState(null);

const handleSubmit = async (e) => {

e.preventDefault ();

try {

const response = await axios.post(’http :// localhost :8000/

api/beam -splice/’, {

section_size: formData.sectionSize ,

bending_moment: parseFloat(formData.bendingMoment),

shear_force: parseFloat(formData.shearForce),

axial_force: parseFloat(formData.axialForce),

// ... other data

});

setResults(response.data);

} catch (error) {

console.error(’Error:’, error.response ?.data);

}

};

return (

// JSX for the form , inputs , and results display

<Paper elevation ={3} sx={{ p: 4 }}>

{/* ... */}

<Button onClick ={ handleSubmit}>Calculate Design </Button >

{/* ... */}

</Paper >

);

};

export default BeamSpliceForm;

10

2.3.2 3D Visualization (React Three Fiber)

For the 3D visualization, a separate component named BeamVisualizer.js was created.

It uses ‘@react-three/fiber‘, a React renderer for Three.js, to create a declarative 3D scene.

The component sets up a Canvas, defines a PerspectiveCamera and OrbitControls for

user interaction, and adds lighting. The beam itself is constructed from simple ‘Box‘

geometries representing the flanges and web. The dimensions of these boxes are passed

down as props from the parent BeamSpliceForm component, allowing the model to update

in real-time based on calculation results.

Listing 2.2: BeamVisualizer.js - 3D Visualization Component

import React from ’react’;

import { Canvas } from ’@react -three/fiber’;

import { OrbitControls , PerspectiveCamera , Box , Text } from ’

@react -three/drei’;

const BeamVisualizer = ({ flangeWidth = 200, webHeight = 300 })

=> {

return (

<Canvas

style ={{ height: ’500px’, background: ’#f8f9fa ’ }}

camera ={{ position: [500, 300, 500], fov: 45 }}

>

<PerspectiveCamera makeDefault position ={[500 , 400, 500]}

/>

<OrbitControls />

<ambientLight intensity ={0.5} />

<pointLight position ={[10, 10, 10]} />

{/* Main Beam (ISMB Section) */}

<group >

{/* Flanges */}

<Box args ={[flangeWidth , 20, 20]} position ={[0, webHeight

/ 2, 0]}>

<meshStandardMaterial color="#3498db" />

11

</Box >

{/* Web */}

<Box args ={[20, webHeight , 20]} position ={[0, 0, 0]}>

<meshStandardMaterial color="#e74c3c" />

</Box >

</group >

{/* Labels */}

<Text position ={[0, webHeight / 2 + 50, 0]} fontSize ={20}

color="black">

Web Height: {webHeight}mm

</Text >

</Canvas >

);

};

export default BeamVisualizer;

2.3.3 Backend Development (Django REST Framework)

The backend follows Django’s Model-View-Template (MVT) architecture.

• Model (models.py): This file defines the database schema using a Django ‘Model‘.

The BeamSpliceBolted class contains fields for all input parameters (e.g., section_size

, bending_moment) and output results (e.g., member_capacity, design_status).

• Serializer (serializers.py): A ‘ModelSerializer‘ is used to convert the complex

data from the Django model into a JSON format that can be easily transmitted

over the API. It also handles validation for incoming data.

• View (views.py): The ‘CreateAPIView‘ handles the incoming POST request from

the frontend. It uses the serializer to validate the data, then calls a ‘perform create‘

method. Inside this method, mock design calculations are performed, and the

results are saved to the database along with the input data. The serializer then

returns the complete object, including the results, in the HTTP response.

12

Listing 2.3: views.py - Django View with Mock Logic

from rest_framework import generics

from .models import BeamSpliceBolted

from .serializers import BeamSpliceSerializer

class BeamSpliceCreateView(generics.CreateAPIView):

queryset = BeamSpliceBolted.objects.all()

serializer_class = BeamSpliceSerializer

def perform_create(self , serializer):

data = serializer.validated_data

Mock design calculations for the screening task

member_capacity = 1725

flange_plate_thickness = max(data.get(’flange_thickness ’,

0), 10)

web_plate_thickness = max(data.get(’web_thickness ’, 0),

8)

design_status = "SAFE"

Save the input data along with the calculated results

serializer.save(

member_capacity=member_capacity ,

flange_plate_thickness=flange_plate_thickness ,

web_plate_thickness=web_plate_thickness ,

design_status=design_status

)

13

Chapter 3

Environment Setup and Initial Debug-

ging

The journey into the Osdag-web project began not with feature development, but with

the fundamental and most critical prerequisite: the setup and configuration of a com-

plete local development environment. This initial phase proved to be a significant and

challenging task in its own right. The Osdag platform is a complex, multi-layered system

composed of a Python-based Django backend, a PostgreSQL database, a Node.js-driven

React frontend, and a highly specialized stack of scientific and Computer-Aided Design

(CAD) libraries.

This chapter provides a comprehensive, narrative account of the methodical process

undertaken to build a functional local instance of the application. It goes beyond a sim-

ple list of commands to discuss the rationale behind each step and, more importantly,

provides a deep-dive into the series of technical hurdles encountered and the debug-

ging strategies employed to resolve them. This detailed record is intended to serve as a

practical guide for future developers, aiming to streamline their onboarding process and

demystify the complexities of the initial project setup.

14

3.1 The Challenge: Replicating a Complex Produc-

tion Stack

The primary objective was to create a local development environment that precisely

mirrored the production server, ensuring that any code developed locally would behave

predictably when deployed. The core challenge lay in successfully integrating several

disparate technologies, each with its own dependencies and configuration requirements:

• Isolated Python Environment: The project requires a specific version of Python

(3.8), and its numerous dependencies must be isolated from other projects on the

system. This was managed using theConda package and environment management

system.

• Relational Database: The application relies on a PostgreSQL database. This

required not just installing the database server but also correctly initializing it with

a dedicated user, a new database instance, and the correct permissions.

• Backend Framework and Dependencies: The Django backend has a long list

of Python packages specified in a requirements.txt file. These include not only

web-related libraries but also scientific packages and CAD library wrappers that

often have complex native dependencies.

• Frontend Toolchain: The client-side application is built in React and requires

Node.js and its package manager, npm, to install dependencies and run the local

development server.

3.2 The Setup Process: A Methodical Approach

The setup was approached systematically, layer by layer, to isolate and resolve issues

effectively.

3.2.1 Phase 1: Environment and Database Preparation

The foundation was laid by preparing the core environment and the database. An isolated

Conda environment named osdag was created to house the project’s specific Python 3.8

15

interpreter and its packages. The official Osdag-web repository was forked on GitHub

and then cloned to a local directory.

Following this, the PostgreSQL server was installed. A secure password was configured

for the administrative postgres user. The crucial next step was to create the application-

specific database and role. Using the psql command-line utility, the following SQL

commands were executed to create a new role named osdagdeveloper and a database

named postgres_Intg_osdag, assigning ownership to the new role. Finally, the Django

project’s settings files (settings.py, populate_database.py, update_sequences.py)

were manually edited to replace the placeholder credentials with the ones just created.

3.2.2 Phase 2: Backend Dependency Installation and Debug-

ging

This phase was the most challenging and required significant troubleshooting. The seem-

ingly straightforward command, pip install -r requirements.txt, triggered a cas-

cade of errors that needed to be diagnosed and resolved one by one.

Hurdle 1: The C++ Compilation Error

The first failure was an error message stating: error: Microsoft Visual C++ 14.0

or greater is required.

• Problem Analysis: This error indicated that a dependency (in this case, pycosat

) was not available as a pre-compiled binary ”wheel” for my system’s architecture.

Therefore, pip was attempting to compile it from its C++ source code, but the

necessary compiler toolchain was not installed on the system.

• Solution: The resolution was to install the official Microsoft C++ Build Tools

from the Visual Studio website. During the installation, care was taken to select the

”C++ build tools” workload and the correct Windows SDK. After a system reboot

to ensure the environment variables were correctly registered, the pip install

command was re-run, and it successfully compiled and installed the package.

16

Hurdle 2: The Missing CAD Library

After installing the base requirements, the next step was to run the database migrations.

This failed immediately with a new error: ModuleNotFoundError: No module named

’OCC’.

• Problem Analysis: OCC refers to OpenCASCADE Technology, a professional-

grade 3D CAD kernel. The Python wrapper for it, pythonocc-core, is a complex

package with many native, non-Python dependencies. It is notoriously difficult to

install with pip alone, as pip does not manage non-Python dependencies.

• Solution: This is a classic use case where the Conda package manager excels.

Conda is designed to manage complex binary dependencies alongside Python pack-

ages. The fix was to use Conda to install the library from the community-maintained

conda-forge channel via the command: conda install -c conda-forge pythonocc

-core. This successfully installed the library and all of its required native compo-

nents.

Hurdle 3: The Python Version Incompatibility

With the CAD library in place, the migration was attempted again, only to be met

with a subtle Python error: ImportError: cannot import name ’ Protocol’ from

’typing’.

• Problem Analysis: This error pointed to a version mismatch between the Python

language itself and a library’s expectations. The _Protocol class, a feature for

static type checking, is not part of the standard typing module in Python 3.8.

A dependency within the project was written against a newer Python version’s

standard library.

• Solution: This issue required a direct code modification. The solution involved two

steps: first, ensuring the typing_extensions package, which provides back-ported

typing features, was up-to-date (pip install --upgrade typing-extensions).

Second, the problematic import statement in the file osdag_api/module_finder.

py had to be manually changed, as detailed in the next section.

17

3.2.3 Phase 3: Finalizing Setup and Launching the Application

With all dependencies installed and code fixes applied, the environment was ready.

The database was seeded using the project-specific scripts (populate_database.py,

update_sequences.py), and the Django migrations (python manage.py migrate) were

finally run to completion. The backend server was launched on port 8000.

Concurrently, the frontend was set up by navigating to the osdagclient directory,

installing all Node.js dependencies with npm install, and launching the React develop-

ment server on port 5173 with npm run dev. Accessing http://localhost:5173/ in a

web browser successfully loaded the Osdag-web application.

3.3 Code-Level Intervention: Resolving the Protocol

ImportError

The ImportError was a critical bug that completely halted the application’s startup.

Fixing it required modifying the project’s source code to use a more backward-compatible

approach.

3.3.1 Description of the Script Change

The file osdag_api/module_finder.py contained an import statement that was only

valid in Python 3.9+. The fix was to avoid importing from the standard typing library

and instead import the equivalent class from the typing_extensions library, aliasing it

to match the name expected by the rest of the code.

3.3.2 Code Modification

The following surgical change was applied to the Python script to resolve the import

error.

Listing 3.1: Fixing the Protocol ImportError in module finder.py

1 #-------------------- Original Failing Code -------------

2

3 # File: osdag_api/module_finder.py

18

4 # This line fails on Python 3.8 because _Protocol is not in the

standard library.

5

6 from typing import Dict , Any , List , _Protocol

7

8 #-------------------- Corrected Code -------------------

9

10 # File: osdag_api/module_finder.py

11 # The import statement is separated for clarity and correctness.

12

13 from typing import Dict , Any , List

14

15 # The equivalent ’Protocol ’ class is imported from the ’

typing_extensions ’

16 # library and aliased as ’_Protocol ’ to ensure the rest of the file

functions

17 # without needing further changes. This is the standard way to handle

such

18 # backward -compatibility issues.

19

20 from typing_extensions import Protocol as _Protocol

21 #-------------------- end code -------------------------

3.4 Distilling Experience into Documentation

This challenging setup process provided a wealth of practical knowledge that was not

fully captured in the existing documentation. To ensure future developers could avoid

these same pitfalls, a new ”Troubleshooting” guide was drafted for the project’s internal

developer manual, converting these hard-earned lessons into an actionable resource.

3.4.1 Developer Manual: Troubleshooting Common Installa-

tion Errors

This guide provides solutions to common errors encountered during the initial setup of

the Osdag-web development environment.

19

Table 3.1: Common Installation Errors and Solutions

Error Message Solution and Rationale
error: Microsoft Visual

C++ 14.0 or greater is

required.

Reason: A package needs to be compiled
from C++ source.
Solution: Install ”Visual Studio Build
Tools”. Ensure the ”Desktop development
with C++” workload is selected. Reboot
the system after installation to update
system PATH.

ModuleNotFoundError: No

module named ’OCC’

Reason: The OpenCASCADE CAD
kernel wrapper has complex binary de-
pendencies that pip cannot manage.
Solution: Use the Conda package man-
ager, which excels at this. Run:
conda install -c conda-forge

pythonocc-core

ModuleNotFoundError: No

module named ’pylatex’

Reason: A dependency for PDF report
generation is missing.
Solution: This is a standard Python
package and can be installed with pip:
pip install pylatex

ImportError: cannot

import name ’ Protocol’

from ’typing’

Reason: The code is using a typing fea-
ture from a newer Python version.
Solution: Ensure backward compatibil-
ity. First, run pip install --upgrade

typing-extensions. Then, modify the
import statement in the specific file caus-
ing the error as detailed in Section 3.1.

20

Chapter 4

Internship Task 1: Debugging the End

Plate CAD Module

4.1 Problem Statement

The first task undertaken was to diagnose and resolve a critical bug within the existing

“End Plate Connection” module of the Osdag-on-Cloud platform. The module exhibited

a perplexing and non-intuitive failure mode: while it successfully processed all user inputs

and returned a complete and accurate set of numerical design calculations in the output

dock, it consistently failed to generate the corresponding 2D and 3D CAD models.

The primary issue was that this failure occurred silently. The backend process would

complete without raising any server-side errors, and the frontend would not display any

warning or error message to the user. This resulted in an incomplete and confusing user

experience, as a key feature of the software was simply missing without explanation,

undermining the tool’s reliability and usability. The objective was to trace the root cause

of this silent failure and implement a permanent fix.

4.2 Tasks Done

The debugging process was methodical, based on the hypothesis that the input data,

while valid for the numerical calculation engine, was being lost or malformed before

reaching the separate CAD generation service. The methodology involved tracing the

data’s entire lifecycle from the moment it was submitted by the user to the final CAD

21

rendering call.

The core of the work involved modifying three key backend files: end plate input.py,

endplate outputView.py (the Django API view), and end plate connection.py (the

core logic module). The following steps were taken:

1. Strategic Logging: To make the silent failure visible, extensive logging was in-

jected into the code. Specifically, print() statements were used to output the

entire input data dictionary at critical hand-off points between functions and mod-

ules. Using the json library to pretty-print the dictionary made it easy to visually

inspect the data for any inconsistencies.

2. Targeted Exception Handling: The existing code used very broad try...except

blocks that suppressed the specific nature of the errors. These were replaced with

narrow, granular try...except blocks wrapped tightly around individual function

calls within the CAD generation pipeline. This was designed to isolate the exact

line of code that was failing.

3. Error Triangulation: By comparing the logged data and the precise location of

the caught exception, the problem was triangulated. The logs showed the data was

correct when leaving the Django view, but the targeted exception handling caught

a KeyError deep within the CAD setup functions.

4. Root Cause Analysis: The KeyError revealed that a downstream function

expected a dictionary key with a different name than what was being supplied

("Bolt.Connectivity" vs. "Connectivity"). This subtle data contract mismatch

was the root cause of the failure.

5. Implementation of Fix: The solution was to harmonize the dictionary keys, en-

suring that the data structure remained consistent across all modules that consume

it.

4.3 Python Code

This section presents the Python code modifications made to the end plate connection.py

file. The changes enhance the module to add robust diagnostic capabilities. The code

22

demonstrates how targeted exception handling can pinpoint silent failures in a complex

application.

4.3.1 Description of the Script

The code snippet below is from the create cad model function. The original function

had a single, large try...except block that made it impossible to know which part of

the CAD generation process was failing. The modifications refactor this into multiple,

specific blocks to isolate failures in three distinct stages:

• Initialization: Creating the main CAD logic object.

• Data Setup: Loading the user’s input data into the CAD object.

• Geometry Rendering: The final call to generate the 2D shapes.

4.3.2 Python Code Snippet

Listing 4.1: Targeted Exception Handling for CAD Generation

1 def create_cad_model(input_values: Dict[str , Any], section: str ,

session: str) -> str:

2 """ Generate the CAD model from input values as a BREP file.

Return file path."""

3 if section not in ("Model", "Beam", "Column", "Plate"):

4 raise InvalidInputTypeError("section", "’Model ’, ’Beam ’,

’Column ’ or ’Plate’")

5

6 module = create_from_input(input_values)

7

8 # --- MODIFICATION 1: Isolate failures in CAD object

initialization ---

9 try:

10 cld = CommonDesignLogic(None , ’’, module.module , module.

mainmodule)

11 print("[DEBUG] CAD logic object created successfully.")

12 except Exception as e:

23

13 print(f’[FATAL_ERROR] Failed during CommonDesignLogic

instantiation: {e}’)

14 return False

15

16 # --- MODIFICATION 2: Isolate failures when setting up CAD

data ---

17 try:

18 scc.setup_for_cad(cld , module)

19 print("[DEBUG] CAD data setup successful.")

20 except Exception as e:

21 print(f’[FATAL_ERROR] Failed during scc.setup_for_cad: {e

}’)

22 return False

23

24 cld.component = section

25

26 # --- MODIFICATION 3: Isolate failures in the final geometry

rendering ---

27 try:

28 model = cld.create2Dcad ()

29 print("[DEBUG] 2D CAD model generated successfully.")

30 except Exception as e:

31 print(f’[FATAL_ERROR] Failed during cld.create2Dcad ()

execution: {e}’)

32 return False

33

34 # (Code to save the file follows)

35 return file_path

4.3.3 Explanation of the Code

• Initialization: Wraps the instantiation of the CommonDesignLogic object. If this

fails, it indicates a problem with the core CAD engine.

• Data Setup: Wraps the setup for cad function where user data is loaded. Failure

24

here (like a KeyError) means data contract mismatch.

• Geometry Rendering: Wraps the final rendering call. Failure here means the

data was valid but causes geometric or computational issues.

4.4 Documentation

A new section for the Osdag Developer Manual was drafted to guide future developers

on how to efficiently diagnose and solve similar silent failures.

4.4.1 Developer Manual: Debugging Silent Failures

When a feature in an Osdag module fails without an obvious error, it is often due to

a “data contract” mismatch between the Django web layer and the core Python logic

module. The following procedure is recommended:

Step 1: Make the Failure Visible with Logging

At every boundary between major components, log the data being transferred.

import json

print("[DEBUG] Data being passed to core module:")

print(json.dumps(request.data , indent =2))

try:

output = core_module.some_function(request.data)

except Exception as e:

print(f"[ERROR] Core module failed with exception: {e}")

Step 2: Use Targeted, Not General, Exception Handling

Avoid wrapping an entire function in a single try...except block.

BAD: General handling hides the real source

try:

initialize_object ()

load_data_into_object ()

render_geometry ()

25

except:

print("Something went wrong.")

GOOD: Targeted handling pinpoints the error

try:

initialize_object ()

except Exception as e:

print(f"Error during initialization: {e}")

try:

load_data_into_object ()

except Exception as e:

print(f"Error loading data: {e}")

try:

render_geometry ()

except Exception as e:

print(f"Error during rendering: {e}")

Following this two-step process helps quickly determine whether the problem lies in

data being sent, received, or processed—turning a silent failure into a solvable bug.

26

Chapter 5

Internship Task 2: Fixing the Session

Management API

5.1 Task 2: Problem Statement

The second major task involved resolving a persistent bug in the platform’s session man-

agement system. The existing API was intended to create a unique session when a user

opened a design module and to track it using a browser cookie. However, the logic for

reliably ending a session was flawed. Specifically, the mechanism to delete the session

from the database and clear the cookie from the user’s browser often failed.

This inconsistency resulted in a poor user experience. After completing work in one

module (e.g., “End Plate Connection”), if a user tried to open another (e.g., “Fin Plate

Connection”), the stale cookie would persist in their browser. The session creation API

would detect this leftover cookie, interpret it as an ongoing session, and refuse to create a

new one. This locked the user out with a misleading “session does not exist” error, often

requiring manual cookie deletion via developer tools. The goal of this task was to redesign

the session API to ensure robust and predictable session handling for all modules.

5.2 Task 2: Tasks Completed

A comprehensive refactoring of both backend logic and frontend behavior was carried out

to achieve a “fail-safe” session lifecycle.

1. Centralized Configuration: The original CreateSession view contained a lengthy

27

chain of if/elif statements to handle each possible module cookie. This was re-

placed with a single Python dictionary, cookie keys, which maps each module id

to its specific cookie key. This centralization makes the code more maintainable and

scalable—adding a new module now only requires adding an entry to this dictionary.

2. Refactored Session Creation: The cumbersome if/elif logic was replaced with

a concise loop over the dictionary values. This checks for the presence of any active

session cookie with just a few lines of code, regardless of the module.

3. Robust Session Deletion Endpoint: The DeleteSession API was redesigned

to accept a module id from the frontend. Using the same centralized dictionary, it

dynamically identifies the appropriate cookie. The endpoint then:

• Deletes the session record from the database by matching the cookie ID.

• Sends an explicit Set-Cookie header to the browser with an expired date,

instructing it to remove the cookie immediately.

This explicit cookie removal was the missing piece in the original design.

4. Frontend Integration: The frontend JavaScript was updated to call the new

deletion endpoint whenever a user closes or navigates away from a design module.

This ensures that no stale cookies linger to block future sessions.

5.3 Task 2: Python Code

The final refactored session api.py defines two API views: CreateSession and DeleteSession.

These ensure a complete and reliable session lifecycle.

5.3.1 Description of the Script

• CreateSession (APIView): Handles requests to start a new session. It first

checks for any active session cookies. If none exist, it generates a unique ID, stores

it in the database, and sets the appropriate cookie.

• DeleteSession (APIView): Handles requests to terminate an active session. It

deletes the corresponding database record and explicitly removes the session cookie

from the user’s browser.

28

5.3.2 Refactored Python Code

Listing 5.1: Refactored Session Management API (session api.py)

1 from django.http import JsonResponse

2 from rest_framework.views import APIView

3 from rest_framework.response import Response

4 from rest_framework import status

5 from django.utils.crypto import get_random_string

6 from django.utils.decorators import method_decorator

7 from django.views.decorators.csrf import csrf_exempt

8 from osdag.models import Design

9 from osdag.serializers import Design_Serializer

10 from osdag_api import developed_modules

11

12 class CreateSession(APIView):

13 def post(self , request):

14 module_id = request.data.get("module_id")

15 if not module_id:

16 return JsonResponse ({"error": "Module ID is required"},

status =400)

17

18 cookie_keys = {

19 "Fin Plate Connection": "fin_plate_connection_session",

20 "End Plate Connection": "end_plate_connection_session",

21 "Cleat Angle Connection": "cleat_angle_connection_session",

22 "Seated Angle Connection": "seated_angle_connection_session

",

23 "Cover Plate Bolted Connection": "

cover_plate_bolted_connection_session",

24 "Beam Beam End Plate Connection": "

beam_beam_end_plate_connection_session",

25 "Cover Plate Welded Connection": "

cover_plate_welded_connection_session",

26 "Beam -to-Column End Plate Connection": "

beam_to_column_end_plate_connection_session",

27 }

28

29 for session_key in cookie_keys.values ():

29

30 if request.COOKIES.get(session_key):

31 return Response ({"status": "set", "message": "An

existing session is active."}, status=status.

HTTP_200_OK)

32

33 if module_id not in developed_modules:

34 return JsonResponse ({"error": "This module is not developed

yet"}, status =501)

35

36 cookie_id = get_random_string(length =32)

37 serializer = Design_Serializer(data={"cookie_id": cookie_id , "

module_id": module_id })

38

39 if serializer.is_valid ():

40 serializer.save()

41 response = JsonResponse ({"status": "created"}, status =201)

42 cookie_key = cookie_keys.get(module_id)

43 response.set_cookie(key=cookie_key , value=cookie_id ,

samesite="None", secure=True)

44 return response

45 else:

46 return JsonResponse(serializer.errors , status =500)

47

48 class DeleteSession(APIView):

49 @method_decorator(csrf_exempt)

50 def dispatch(self , *args , ** kwargs):

51 return super().dispatch (*args , ** kwargs)

52

53 def post(self , request):

54 module_id = request.data.get("module_id")

55 if not module_id:

56 return JsonResponse ({"error": "Module ID is required"},

status =400)

57

58 cookie_keys = {

59 "Fin Plate Connection": "fin_plate_connection_session",

60 "End Plate Connection": "end_plate_connection_session",

61 "Cleat Angle Connection": "cleat_angle_connection_session",

30

62 "Seated Angle Connection": "seated_angle_connection_session

",

63 "Cover Plate Bolted Connection": "

cover_plate_bolted_connection_session",

64 "Beam Beam End Plate Connection": "

beam_beam_end_plate_connection_session",

65 "Cover Plate Welded Connection": "

cover_plate_welded_connection_session",

66 "Beam -to-Column End Plate Connection": "

beam_to_column_end_plate_connection_session",

67 }

68

69 cookie_key = cookie_keys.get(module_id)

70 if not cookie_key:

71 return JsonResponse ({"error": "Invalid module ID"}, status

=400)

72

73 cookie_id = request.COOKIES.get(cookie_key)

74 if not cookie_id:

75 return JsonResponse ({"status": "not_found", "message": "No

active session for this module."}, status =200)

76

77 try:

78 design_session = Design.objects.get(cookie_id=cookie_id)

79 design_session.delete ()

80 except Design.DoesNotExist:

81 pass # Even if not found , we should still clear the cookie

82

83 response = JsonResponse ({"status": "deleted"}, status =200)

84 response.delete_cookie(key=cookie_key , samesite="None")

85 return response

5.4 Task 2: Developer Documentation

Detailed usage instructions were added to the developer manual to ensure the frontend

team correctly integrates with the new session lifecycle.

31

5.4.1 Session API Usage Guide

• POST /api/sessions/create Creates a new session for a specified module. If an

active session exists, it must first be deleted.

• POST /api/sessions/delete Explicitly terminates a session and clears the cookie.

This must be called when a user closes or navigates away from a design module.

Listing 5.2: Example Frontend Usage

const deleteSessionOnModuleClose = async (moduleId) => {

try {

await fetch(’/api/sessions/delete ’, {

method: ’POST’,

headers: { ’Content -Type’: ’application/json’ },

body: JSON.stringify ({ module_id: moduleId }),

credentials: ’include ’

});

console.log(‘Session for ${moduleId} terminated .‘);

} catch (err) {

console.error(’Failed to terminate session:’, err);

}

};

32

Chapter 6

Internship Task 3: Development of

the Cover Plate Welded Module

6.1 Task 3: Problem Statement

The third major internship task was the ground-up development of a new, feature-

complete design module for the Osdag platform: the ”Beam-to-Beam Cover Plate Welded

Connection.” This project was initiated to add a new module in Osdag on cloud. The

core requirement was to create a robust and intuitive module that performs all design cal-

culations in strict accordance with the Indian Standard for steel structures, IS 800:2007.

The scope of this task was comprehensive, covering the full software development

lifecycle. This included designing and implementing the user-facing frontend in React,

developing the backend API and engineering logic in Django and Python, and ensuring

seamless integration into the existing Osdag-on-Cloud infrastructure. The final deliver-

able had to be a reliable, accurate, and user-friendly module.

6.2 Task 3: Tasks Done

The development was systematically divided into frontend and backend workstreams,

which were executed in parallel to ensure efficient progress.

33

6.2.1 Frontend Development (React)

The frontend was crafted to provide an interactive and intuitive user experience, using

React for the component architecture and Ant Design for a consistent UI.

1. UI/UX and Component Architecture: The main user interface was built as

a single React component, CoverPlateWelded.js. This component renders the

classic three-panel Osdag layout: an Input Dock on the left for user-configurable

parameters, a central 3D CAD Viewer, and a Output Dock on the right to

display results. All interactive elements, such as dropdowns (<Select>), text fields

(<Input>), and modals (<Modal>), were implemented using the Ant Design library.

2. State Management and API Integration: All user-driven input values are

managed within the component’s local state using the useState hook. For com-

munication with the backend, a centralized ModuleContext was used. This context

provides shared functions (createSession, createDesign, etc.) that abstract the

underlying fetch API calls, keeping the main component clean and focused on the

UI logic.

3. Interactive 3D Visualization: To provide users with immediate visual feed-

back, an interactive 3D viewer was implemented using @react-three/fiber and

Three.js. When a design is successfully completed, the backend sends the path to a

CAD model file. The frontend then fetches this file and the <Model> component dy-

namically renders it within the scene. The viewer includes custom camera controls,

allowing the user to switch between pre-set views (”Model”, ”Beam”, ”Connector”)

for detailed inspection.

6.2.2 Backend Development (Django/Python)

The backend provides the data, performs the engineering calculations, and generates the

CAD model.

1. Input API View (cover_plate_weld_input.py): This initial API endpoint is

responsible for populating the frontend’s dropdown menus. On page load, the

React component calls this endpoint. The view then queries the Osdag database

34

using Django’s ORM to fetch comprehensive lists of available beam sections (Beams

model), material grades (Material model), and other necessary options, returning

them as a JSON object.

2. Core Engineering Logic (cover_plate_welded_connection.py): This file is

the intellectual core of the module. A dedicated Python class, BeamCoverPlateWeld

, was authored to encapsulate every aspect of the IS 800:2007 design procedure for

this specific connection. This class accepts the validated user input and contains

numerous methods to perform checks, including:

• Calculation of design forces (moment and shear) on the flange and web splices.

• Determination of the required weld size and length based on force demand,

including checks for minimum and maximum permissible weld sizes per IS 800.

• Sizing of the flange and web cover plates to ensure they have sufficient capacity

to resist yielding and rupture failure modes.

• Verification of the main member’s strength at the net section.

• Generation of detailed log messages to inform the user about the design deci-

sions made by the engine.

3. Output API View (cover_plate_weld_output.py): This is the main design

endpoint. It receives the complete input JSON from the frontend, orchestrates the

entire design process by calling the core logic module, saves the transaction (inputs,

outputs, logs) to the database via the Design_Serializer, and returns the final,

comprehensive results to the frontend.

6.3 Task 3: Python and React Code

This section presents annotated code snippets from each major component of the module’s

architecture, providing a clear view of the implementation details.

6.3.1 Frontend: React Component State and Submission Logic

The following snippet from CoverPlateWelded.js shows how user inputs are managed

in the component’s state and how the data is compiled and sent to the backend when the

35

”Design” button is clicked.

Description of the Script

This React code uses the useState hook to hold an object of all input parameters. The

handleSubmit function gathers this state, maps it to the API’s expected key names, and

calls the createDesign function (from context) to trigger the backend calculation.

React Code

Listing 6.1: State Management and API Submission in React
1 // --------------------begin code -------------

2 function CoverPlateWelded () {

3 const [output , setOutput] = useState(null);

4 const [loading , setLoading] = useState(false);

5

6 // Accessing shared functions from ModuleContext

7 const { createDesign } = useContext(ModuleContext);

8

9 // State hook to store all user inputs from the form

10 const [inputs , setInputs] = useState ({

11 flange_plate_preferences: "Outside",

12 flange_plate_thickness: [],

13 connector_material: "E 165 (Fe 290)",

14 web_plate_thickness: [],

15 load_axial: "100",

16 load_moment: "100",

17 load_shear: "100",

18 member_designation: "MB 600",

19 module: "Beam -to -Beam Cover Plate Welded Connection",

20 weld_fab: "Shop Weld",

21 weld_type: "Fillet Weld"

22 });

23

24 // This function is called when the user clicks the "Design" button

25 const handleSubmit = async () => {

26 // Basic validation to ensure required fields are filled

27 if (! inputs.member_designation || !inputs.load_shear) {

28 alert("Please input all the required fields");

29 return;

30 }

31

32 // Construct the JSON payload with keys that match the backend API

33 const api_params = {

34 "Connector.Flange_Plate.Preferences": inputs.flange_plate_preferences ,

35 "Connector.Flange_Plate.Thickness_list": inputs.flange_plate_thickness ,

36 "Connector.Web_Plate.Thickness_List": inputs.web_plate_thickness ,

37 "Load.Axial": inputs.load_axial ,

38 "Load.Moment": inputs.load_moment ,

39 "Load.Shear": inputs.load_shear ,

40 "Member.Designation": inputs.member_designation ,

41 "Module": inputs.module ,

42 "Weld.Fab": inputs.weld_fab ,

43 "Weld.Type": inputs.weld_type ,

44 "Material": inputs.material ,

45 "Member.Material": inputs.member_material ,

46 "Design.Design_Method": "Limit State Design",

47 "Detailing.Gap": "3",

36

48 "Connector.Material": inputs.connector_material ,

49 "Weld.Material_Grade_OverWrite": "410",

50 };

51

52 setLoading(true); // Set loading state for UI feedback

53 // Call the abstracted API function from context

54 createDesign(api_params , "Cover -Plate -Welded -Connection");

55 };

56

57 return (

58 // JSX for rendering the Input Dock with an onClick handler for the button

59 <div className="InputDock">

60 {/* ... many <Select > and <Input > components ... */}

61 <Input type="button" value="Design" onClick ={ handleSubmit} />

62 </div >

63);

64 }

65 // -------------------- end code ---------------

Explanation of the Code

• Line 8-21: The useState hook initializes the component’s state with default values

for every input field on the form.

• Line 24: The handleSubmit function is defined. It will be attached to the ”Design”

button’s onClick event.

• Line 31-48: Inside handleSubmit, a new object api_params is created. This is

crucial as it acts as a translation layer, mapping the component’s state names to

the specific, dot-separated key names required by the Python backend API.

• Line 52: The createDesign function is called. This function, provided by a shared

context, contains the actual fetch call to the backend, sending the api_params

object as a JSON payload.

6.3.2 Backend: Core Engineering Logic Snippet

The snippet below from cover_plate_welded_connection.py shows a representative

method from the BeamCoverPlateWeld class, demonstrating how a specific design calcu-

lation (determining the required weld size) is performed.

Description of the Script

This Python method calculates the required size of the weld connecting the flange cover

plate to the beam flange. It considers the design moment, beam geometry, and material

37

properties to find the force per unit length on the weld, and from that, determines the

required throat thickness and final weld size, checking it against the minimums specified

in IS 800:2007.

Python Code

Listing 6.2: Weld Design Calculation in Core Logic Class

1 #--------------------begin code -------------

2

3 In class BeamCoverPlateWeld:

4

5 def flange_weld_calculation(self):

6 """

7 Calculates the required weld size for the flange plate connection.

8 Based on IS 800:2007 design principles.

9 """

10 # Retrieve pre -calculated values from object state

11 flange_plate_length = self.flange_plate_length_provided

12 beam_depth = self.D

13 beam_flange_thickness = self.T

14

15 # Design force on the flange splice (moment divided by lever arm)

16 flange_splice_force = (self.load_moment * 10**6) / (beam_depth -

beam_flange_thickness) # in N

17

18 # Force per unit length on the weld (total force / total weld length)

19 # Total weld length is 2 times the plate length (for the two

longitudinal welds)

20 force_per_mm = flange_splice_force / (2 * flange_plate_length) # N/mm

21

22 # Required throat thickness (tt) of the weld

23 # Strength of weld = (0.7 * tt * f_u) / (sqrt (3) * gamma_mw)

24 # We equate this to force_per_mm and solve for tt

25 gamma_mw = self.gamma_mw_weld # Partial safety factor for welds (e.g.,

1.25 for shop weld)

26 f_u = self.fu # Ultimate stress of the plate material

27

38

28 required_throat_thickness = (force_per_mm * math.sqrt (3) * gamma_mw) /

(0.7 * f_u)

29

30 # Required weld size (s) = throat thickness / 0.7

31 required_weld_size = required_throat_thickness / 0.7

32

33 # Check against minimum weld size as per IS 800:2007 , Table 21

34 # This depends on the thickness of the thicker part being joined.

35 min_weld_size = self.get_min_weld_size(beam_flange_thickness , self.

flange_plate_thickness_provided)

36

37 # The final provided weld size must be the larger of the required and

the minimum

38 final_weld_size = max(required_weld_size , min_weld_size)

39

40 # Round up to the nearest integer

41 self.flange_weld_size_provided = math.ceil(final_weld_size)

42

43 # Log the decision for the user

44 self.logger.info(f"Required weld size based on force: {

required_weld_size :.2f} mm")

45 self.logger.info(f"Minimum weld size as per IS 800 Table 21: {

min_weld_size} mm")

46 self.logger.info(f"Provided flange weld size: {self.

flange_weld_size_provided} mm (rounded up)")

47

48 #-------------------- end code ---------------

Explanation of the Code

• Line 13: Calculates the axial force experienced by the flange plates due to the

bending moment.

• Line 17: Distributes this total force over the total length of the two welds that

connect the plate to determine the force that each millimeter of weld must resist.

• Line 24: This is the core IS 800 formula, rearranged to solve for the required throat

thickness of the weld based on the force demand and material properties.

39

• Line 27: Converts the required throat thickness to the required nominal weld size

(which is what is specified on drawings).

• Line 31: Calls another method to get the code-mandated minimum weld size,

which is based on the thickness of the steel parts.

• Line 34: The actual weld size to be used is determined by taking the maximum of

what is required by force and what is required by the code minimums. This ensures

all conditions are met.

• Line 40-42: Informative messages are added to a logger. These messages are sent

back to the frontend to be displayed in the ”Logs” panel, providing transparency

to the user.

6.3.3 Full code

The complete frontend and backend source code for this module, including all calculation

methods and API views, is available in the project’s source code repository.

40

Chapter 7

Internship Task 4: Development of

the Beam-to-Column End Plate Mod-

ule

7.1 Task 4: Problem Statement

The fourth major task was the conception and end-to-end development of a highly com-

plex and critical new module: the ”Beam-to-Column End Plate Connection.” This type

of connection is a moment-resisting joint, fundamental to the design of rigid steel frames.

The project’s objective was to create a comprehensive design tool that allows engineers

to design a bolted end plate connection for various structural scenarios, including beam-

to-column flange and beam-to-column web configurations. The module had to perform a

multitude of complex checks for bolts, welds, the end plate itself, and the connected mem-

bers, all in strict compliance with the design procedures outlined in the Indian Standard

IS 800:2007. The final deliverable was to be a robust, accurate, and fully integrated

module within the Osdag-on-Cloud platform.

7.2 Task 4: Tasks Done

The development process was a substantial undertaking, segmented into distinct frontend

and backend workstreams that were developed in tandem.

41

7.2.1 Frontend Development (React)

The frontend was engineered to manage the module’s high degree of complexity while

maintaining an intuitive user experience, using React and the Ant Design component

library.

1. Complex and Conditional UI: The main component, BeamToColumnEndPlate.

js, was designed to be highly dynamic. It features critical conditional inputs, such

as ”Connectivity,” which alters the available member sections, and ”End Plate

Type,” which changes the underlying design assumptions. This required sophisti-

cated state management to ensure the UI always reflects a valid configuration.

2. Comprehensive State Management: Given the large number of inputs (beam

and column sections, materials, factored loads, detailed bolt properties, plate thick-

nesses, and weld types), the useState hook was used to manage a single, com-

prehensive state object. This centralized approach simplifies data handling and

submission. For customized list selections (e.g., bolt diameters), the Ant Design

<Transfer> component was integrated into a modal window, providing a user-

friendly way to select multiple values.

3. Robust API Integration: Communication with the backend was handled via the

shared ModuleContext. This allowed for clean and reusable API calls. The com-

ponent fetches initial data on load, submits the final design payload, and handles

the rendering of results and logs returned from the server.

4. Advanced 3D Visualization: The@react-three/fiber viewer was implemented

to render a detailed 3D model of the complex connection. This visualization is cru-

cial for helping the user understand the geometry of the bolt layout, stiffeners, and

the interaction between the beam, column, and end plate. The viewer includes cam-

era controls to focus on specific components like the ”EndPlate” or the ”Column”.

Use code with caution.

7.2.2 Backend Development (Django/Python)

The backend was architected to be robust, extensible, and capable of handling the intri-

cate engineering calculations required for a moment connection.

42

1. Dynamic Input API View (beam_column_end_plate_input.py): This API

view was designed to be more dynamic than in simpler modules. It handles mul-

tiple query types based on user selection. For example, when the user selects a

”Connectivity” type, the frontend sends this information, and the view returns the

appropriate lists of beam and column sections from the database using Django’s

ORM.

2. Advanced Core Engineering Logic (beam_column_end_plate.py): This is the

most complex part of the module. A new Python class was developed to encapsu-

late the entire IS 800:2007 design process for moment end plate connections. Its

responsibilities are extensive:

• Bolt Group Analysis: Calculating forces on each bolt due to combined

shear, moment, and axial load. This includes modeling bolt tension and ac-

counting for prying action, a critical secondary force in end plate connections.

• Strength Checks: Performing numerous checks, including bolt shear capac-

ity, bolt tension capacity, combined shear and tension interaction, and bolt

bearing capacity.

• End Plate Design: Determining the required end plate thickness to prevent

failure in bending at the bolt lines and checking shear capacity.

• Weld Design: Designing the flange and web welds connecting the beam to

the end plate to safely transfer the moment and shear forces.

• Column Member Checks: Verifying the connected column for local failures,

such as panel zone shear and flange bending, and determining if stiffeners are

required.

3. Resilient Output API View (beam_column_end_plate_output.py): Drawing

lessons from previous modules, this API view was built with production-grade ro-

bustness. It features extensive logging using Python’s logging module, structured

error handling with specific try...except blocks for input validation, core logic

execution, and database saving, ensuring that any failure is caught, logged, and

reported back to the user with a clear error message. Use code with caution.

43

7.3 Task 4: Python and React Code

The following sections provide annotated code samples from the key architectural com-

ponents, illustrating the implementation’s complexity and robustness.

7.3.1 Frontend: Consolidating and Submitting Complex Input

State

The snippet from BeamToColumnEndPlate.js below demonstrates the handleSubmit

function. It showcases how the various pieces of state managed by the component

are gathered, validated, and structured into the precise JSON format required by the

backend API.

Description of the Script

This React function is the primary event handler for initiating a design. It collects

data from multiple state variables, including the main inputs object, the allSelected

state (which determines whether to use customized or default lists), the user’s selected

connectivity, and the chosen endPlateType. It then maps all of this into a single,

comprehensive param object for API submission.

React Code

Listing 7.1: Handling Complex State Submission in React
1 // --------------------begin code -------------

2 function BeamToColumnEndPlate () {

3 // ... numerous useState hooks for inputs , selectedOption , endPlateType , etc.

4 const { createDesign , boltDiameterList , propertyClassList , thicknessList } = useContext(ModuleContext);

5 const handleSubmit = async () => {

6 // Perform validation on critical user inputs

7 if (! inputs.beam_section || !inputs.column_section || !inputs.load_shear || !inputs.load_moment) {

8 alert("Please input all the required fields");

9 return;

10 }

11 // Define module names for consistency

12 let moduleId = "Beam -to-Column End Plate Connection";

13 let apiModuleId = "Beam -to-Column -End -Plate -Connection";

14

15 // Assemble the parameter object by combining multiple state sources

16 let param = {

17 "Bolt.Bolt_Hole_Type": inputs.bolt_hole_type ,

18 // Conditionally choose the full list or the user ’s customized list

19 "Bolt.Diameter": allSelected.bolt_diameter ? boltDiameterList : inputs.bolt_diameter ,

20 "Bolt.Grade": allSelected.bolt_grade ? propertyClassList : inputs.bolt_grade ,

21 "Bolt.Slip_Factor": inputs.bolt_slip_factor ,

44

22 "Bolt.TensionType": inputs.bolt_tension_type ,

23 "Bolt.Type": inputs.bolt_type.replaceAll("_", " "),

24 "Connectivity": selectedOption , // From its own state variable

25 "EndPlateType": endPlateType , // From its own state variable

26 "Connector.Material": inputs.connector_material ,

27 "Design.Design_Method": inputs.design_method ,

28 "Detailing.Corrosive_Influences": inputs.detailing_corr_status ,

29 "Detailing.Edge_type": inputs.detailing_edge_type ,

30 "Detailing.Gap": inputs.detailing_gap ,

31 "Load.Axial": inputs.load_axial || "0",

32 "Load.Shear": inputs.load_shear ,

33 "Load.Moment": inputs.load_moment ,

34 "Material": inputs.connector_material ,

35 "Member.Supported_Section.Designation": inputs.beam_section ,

36 "Member.Supported_Section.Material": inputs.supported_material ,

37 "Member.Supporting_Section.Designation": inputs.column_section ,

38 "Member.Supporting_Section.Material": inputs.supporting_material ,

39 "Module": moduleId ,

40 "Weld.Fab": inputs.weld_fab ,

41 "Weld.Material_Grade_OverWrite": inputs.weld_material_grade ,

42 "Weld.Type": inputs.weld_type ,

43 "Connector.Plate.Thickness_List": allSelected.plate_thickness ? thicknessList : inputs.plate_thickness ,

44 };

45

46 try {

47 setLoading(true);

48 // Call the design function from context with the fully assembled parameters

49 createDesign(param , apiModuleId);

50 setOutputDisabled(false);

51 setModelKey ((prev) => prev + 1);

52 } catch (error) {

53 console.error("Error submitting design:", error);

54 setLoading(false);

55 }

56 };

57 return (

58 <Input type="button" value="Design" onClick ={ handleSubmit} />

59);

60 }

61 // -------------------- end code ---------------

Explanation of the Code

• Line 14-20: The param object is constructed. This is the ”data contract” that

translates the React component’s state into the language the backend API under-

stands.

• Line 16: This line is a prime example of conditional logic in the data assembly. It

checks the allSelected.bolt_diameter boolean. If true, it sends the complete list

of all possible diameters; otherwise, it sends only the specific list the user customized

in the <Transfer> modal.

• Line 21-22: The state for Connectivity and EndPlateType, which are managed

by their own separate useState hooks, are integrated into the final parameter

45

object.

• Line 46: The fully constructed param object is passed to the createDesign func-

tion, initiating the backend process.

7.3.2 Backend: Robust Output API View with Logging

The following snippet from beam_column_end_plate_output.py showcases the production-

quality post method. It demonstrates a resilient architecture with comprehensive logging

and structured exception handling.

Description of the Script

This Django API view method is the entry point for a design request. It is heavily instru-

mented with Python’s logging module to provide deep introspection into the execution

flow. It systematically validates inputs, calls the core engineering module within a dedi-

cated try...except block, saves the results, and returns a structured response, ensuring

that any failure at any stage is caught and handled gracefully.

Python Code

Listing 7.2: Resilient Output View with Structured Logging

1 #--------------------begin code -------------

2 ... Logger configuration ...

3 @method_decorator(csrf_exempt , name=’dispatch ’)

4 class BeamToColumnEndPlateOutputData(APIView):

5 def post(self , request):

6 logger.info("Request received for Beam -to -Column End Plate design.")

7 try:

8 cookie_id = request.COOKIES.get(’

beam_to_column_end_plate_connection_session ’)

9 if not cookie_id:

10 logger.error("No session cookie found.")

11 return JsonResponse ({"success": False , "logs": [{"type": "

error", "msg": "Session not found."}]})

12

13 module_api = get_module_api(’Beam -to-Column End Plate

Connection ’)

46

14 input_values = request.data

15 logger.debug(f’Received input_values: {json.dumps(input_values ,

indent =2)}’)

16

17 # --- Stage 1: Input Validation ---

18 try:

19 validate_input(input_values)

20 logger.info("Input validation successful.")

21 except (MissingKeyError , InvalidInputTypeError) as e:

22 logger.error(f"Input validation failed: {str(e)}")

23 return JsonResponse ({"success": False , "logs": [{"type": "

error", "msg": str(e)}]}, status =400)

24

25 # --- Stage 2: Core Logic Execution ---

26 output , logs = {}, []

27 try:

28 logger.info("Calling core module to generate output ...")

29 output , logs = module_api.generate_output(input_values)

30 logger.info(f"Core module execution successful. {len(logs)}

logs generated.")

31 except Exception as e:

32 logger.error(f"Exception during core logic execution: {str(

e)}")

33 logger.error(traceback.format_exc ())

34 return JsonResponse ({"success": False , "logs": [{"type": "

error", "msg": f"Design Engine Error: {e}"}]}, status

=400)

35

36 # --- Stage 3: Database Persistence ---

37 try:

38 designObject = Design.objects.get(cookie_id=cookie_id)

39 designObject.logs = self.combine_logs(logs)

40 designObject.output_values = output

41 designObject.design_status = self.check_non_zero_output(

output)

42 designObject.save()

43 logger.info("Design results and logs saved to database

successfully.")

44 except Exception as e:

47

45 logger.error(f’Failed to save results to database: {str(e)}

’)

46 # Note: We still return success to the user even if DB save

fails.

47

48 logger.info("Returning successful response to frontend.")

49 return JsonResponse ({"data": output , "logs": logs , "success":

True}, safe=False , status =201)

50

51 except Exception as e:

52 logger.critical(f"Unhandled exception in post method: {str(e)}"

)

53 logger.critical(traceback.format_exc ())

54 return JsonResponse ({"success": False , "logs": [{"type": "error

", "msg": "An internal server error occurred."}]}, status

=500)

55 Use code with caution.

56 #-------------------- end code ---------------

Explanation of the Code

• Line 7: The entry point of the method logs the initial request, providing an im-

mediate trace.

• Line 17-23: The first stage of execution is a dedicated block for input validation.

This ensures that corrupted or incomplete data is caught early, before being passed

to the complex engineering logic. It returns a specific 400 error.

• Line 26-34: The second stage wraps the call to the core design engine (module_api

.generate_output). Any exception from the complex engineering calculations is

caught here, logged with a full traceback, and a specific error message is sent to the

user.

• Line 37-45: The third stage handles saving the results to the database. Failures

at this stage are logged but importantly, the process continues so that the user still

receives their design results, making the system more resilient.

• Line 49-52: A final, all-encompassing try...except block acts as a safety net to

48

catch any other unforeseen errors, ensuring the server never returns an unhandled

500 error without logging it first.

7.3.3 Full code

The complete source code for all components of this module is available in the project’s

source code repository.

49

Chapter 8

Internship Task 5: Refactoring the

modules with a Reusable Module Ar-

chitecture

8.1 Task 5: Problem Statement

Following the successful development of several new modules, a critical architectural issue

became apparent: significant code duplication and a lack of scalability in the frontend.

Each module, such as ”Cover Plate Welded” and ”Beam-to-Column End Plate,” was

built as a large, monolithic React component. These components, while functional, con-

tained hundreds of lines of code that were nearly identical—handling UI layout, session

management, state initialization, API submission, modal pop-ups, and log display.

This approach presented several major problems:

• High Maintenance Overhead: A bug in the common logic (e.g., in the ”Create

Design Report” modal) had to be fixed manually in every single module file, a

process that is both tedious and highly prone to error.

• Poor Scalability: Creating a new module required copying an existing monolithic

component and painstakingly modifying hundreds of lines of code. This dramati-

cally slowed down the development of new features for the platform.

• Inconsistent Implementations: With code being copied and pasted, subtle vari-

50

ations and inconsistencies inevitably crept into different modules, leading to a frag-

mented user experience and unpredictable behavior.

• Reduced Readability: The core engineering logic and UI definition for a specific

module were deeply entangled with generic boilerplate code, making it difficult for

new developers to understand and contribute.

The objective of this task was to fundamentally refactor the entire frontend architec-

ture by creating a generic, reusable, and configuration-driven framework. The goal was to

abstract all common logic into a single, powerful component, allowing future modules to

be defined almost entirely through declarative configuration objects, drastically reducing

code duplication and accelerating future development.

8.2 Task 5: Tasks Done

The refactoring process involved a complete paradigm shift from imperative, monolithic

components to a declarative, component-based architecture. The solution was centered

around creating a new shared component, EngineeringModule, and a set of configuration

standards.

1. Development of a Generic EngineeringModule Component: A new, highly

reusable React component was created to encapsulate all logic and UI structure

common to every design module. This component is now the single source of truth

for:

• The overall three-panel page layout (Input Dock, 3D Viewer, Output Dock).

• Session management, including automatically creating a session on load and

deleting it on exit using React’s useEffect hook.

• All common state management (e.g., for inputs, outputs, logs, modal visibil-

ity).

• The logic for handling user actions like the ”Design” and ”Reset” buttons.

• The dynamic rendering of the top navigation menu and its associated actions.

51

2. Configuration-Driven UI Generation: The EngineeringModule is designed to

be entirely driven by a ”configuration object” passed to it as a prop. A new folder,

configs, was created within each module’s directory to house these objects.

• Input Dock Configuration (moduleConfig.js): A large JavaScript object

was created to define the entire structure and behavior of the Input Dock. An

array within this object, inputSections, declaratively builds the form. Each

object in the array represents a section (”Factored Loads”, ”Bolt”, etc.), and

each object within its fields array defines a single input widget (e.g., its type,

label, options, and any special ‘onChange‘ handlers).

• Output Dock Configuration (moduleOutputConfig.js): A similar con-

figuration object was designed for the Output Dock. It defines the different

output sections, the data keys to look for in the API response, the display

labels, and the configuration for any special modal pop-ups (like detailing

diagrams).

3. Creation of a Generic BaseOutputDock Component: To complement the

configuration-driven approach, a reusable BaseOutputDock component was created.

It accepts the API output data and an outputConfig object as props and dynami-

cally renders the entire output display, including all sections, fields, and interactive

modal triggers.

4. Refactoring Existing Modules: The ”Cover Plate Welded” and ”Beam-to-

Column End Plate” modules were systematically refactored to use this new ar-

chitecture. Their massive component files were deleted and replaced with a simple

file that does little more than import the generic EngineeringModule, the module-

specific configurations, and the module-specific Output Dock, and render them

together.

The new directory structure reflects this clean separation of concerns:

52

Figure 8.1: Cover Plate Welded Struc-
ture

coverPlateWelded

components

CoverPlateWeldedOutputDock.jsx

configs

coverPlateWeldedConfig.js

coverPlateWeldedOutputConfig.js

CoverPlateWelded.jsx

Figure 8.2: Beam-to-Column End Plate
Structure

beamToColumnEndPlate

components

BeamToColumnEndPlateOutputDock.jsx

configs

beamToColumnEndPlateConfig.js

beamToColumnEndPlateOutputConfig.js

BeamToColumnEndPlate.jsx

8.3 Task 5: React Code

This section presents the code that defines the new architecture. It shows how a once-

complex module is reduced to a simple composition of a generic component and its specific

configurations.

8.3.1 Description of the Scripts

• BeamToColumnEndPlate.jsx: This is the ”after” picture of the refactoring. The

file is now incredibly lightweight. Its only responsibility is to import the generic

EngineeringModule, the module-specific configuration and Output Dock, and pass

them as props.

• beamToColumnEndPlateConfig.js: This is the ”brain” of the Input Dock. This

declarative JavaScript object defines everything the EngineeringModule needs to

know to build the UI, validate inputs, and construct the API submission payload

for this specific module.

• beamToColumnEndPlateOutputConfig.js: This object defines the entire structure

and content of the Output Dock for the module.

• BeamToColumnEndPlateOutputDock.jsx: This simple component acts as a wrap-

per, passing the raw output data and the specific output configuration to the generic

BaseOutputDock for rendering.

53

8.3.2 React Code Snippets

Listing 8.1: The Refactored Main Module Component

1 // File: BeamToColumnEndPlate.jsx

2 // --------------------begin code -------------

3 import React from ’react’;

4 import { EngineeringModule } from ’../ shared/components/

EngineeringModule ’;

5 import { beamToColumnEndPlateConfig } from ’./ configs/

beamToColumnEndPlateConfig ’;

6 import BeamToColumnEndPlateOutputDock from ’./ components/

BeamToColumnEndPlateOutputDock ’;

7 import { menuItems } from ’../ shared/utils/moduleUtils ’;

8

9 function BeamToColumnEndPlate () {

10 // The entire module is now just a call to the generic component

11 // with its specific configuration and OutputDock passed as props.

12 return (

13 <EngineeringModule

14 moduleConfig ={ beamToColumnEndPlateConfig}

15 OutputDockComponent ={ BeamToColumnEndPlateOutputDock}

16 menuItems ={ menuItems}

17 title="Beam -to -Column End Plate Connection"

18 />

19);

20 }

21

22 export default BeamToColumnEndPlate;

23 // -------------------- end code ---------------

Listing 8.2: Excerpt from the Input Configuration Object

1 // File: configs/beamToColumnEndPlateConfig.js

2 // --------------------begin code -------------

3 export const beamToColumnEndPlateConfig = {

4 sessionName: "Beam -to-Column End Plate Connection",

5 routePath: "/design/connections/beam -to-column/end_plate",

6 designType: "Beam -to-Column -End -Plate -Connection",

7

54

8 // Defines the initial state of all inputs

9 defaultInputs: {

10 bolt_type: "Bearing Bolt",

11 connectivity: "Column -Flange -Beam -Web",

12 load_axial: "0",

13 load_moment: "2",

14 load_shear: "2",

15 // ... more default values

16 },

17

18 // This array declaratively builds the entire Input Dock form

19 inputSections: [

20 {

21 title: "Factored Loads",

22 fields: [

23 // Each object here creates one input field in the UI

24 { key: "load_shear", label: "Shear Force(kN)", type: "number" },

25 { key: "load_moment", label: "Bending Moment (kNm)", type: "number" },

26 { key: "load_axial", label: "Axial Force(kN)", type: "number" }

27]

28 },

29 {

30 title: "Bolt",

31 fields: [

32 {

33 key: "bolt_diameter",

34 label: "Diameter(mm)",

35 type: "customizable", // A special type for our custom modal selector

36 selectionKey: "boltDiameterSelect",

37 modalKey: "boltDiameter",

38 dataSource: "boltDiameterList"

39 },

40 // ... more field definitions

41]

42 }

43],

44

45 // Pure function to build the API payload from the component state

46 buildSubmissionParams: (inputs , allSelected , lists , extraData) => {

55

47 return {

48 "Bolt.Diameter": allSelected.bolt_diameter ? lists.boltDiameterList :

inputs.bolt_diameter ,

49 "Connectivity": inputs.connectivity ,

50 "EndPlateType": extraData ?. selectedOption ,

51 // ... maps all other inputs to the API key format

52 };

53 },

54 };

55 // -------------------- end code ---------------

8.3.3 Explanation of the Code

• BeamToColumnEndPlate.jsx (Listing 8.1): This file perfectly illustrates the ben-

efit of the new architecture. It is now merely 20 lines long, down from over 1000. Its

sole purpose is to compose the generic EngineeringModule with the specific configu-

rations (beamToColumnEndPlateConfig) and components (BeamToColumnEndPlateOutputDock

) required for this particular design type.

• beamToColumnEndPlateConfig.js (Listing 8.2): This object now holds all the

logic that was previously hardcoded inside the monolithic component.

– Line 4-7: Defines metadata for session management and routing.

– Line 9-16: The defaultInputs object provides the initial state for the form,

completely decoupling default values from the component logic.

– Line 19-45: The inputSections array is the core of the dynamic UI. The

generic EngineeringModule maps over this array to render each section and

its fields without having any hardcoded knowledge of them. A field with type

: "number" will render an <Input type="number"/>, while one with type:

"customizable" will render the <Select> component tied to a modal.

– Line 48-55: The buildSubmissionParams function isolates the complex logic

of translating the React state into the precise JSON format required by the

backend API. This separation of concerns makes the code far easier to test

and maintain.

56

8.3.4 Full code

The full source code for the generic components and the refactored modules is available

in the project’s source code repository.

8.4 Task 5: Documentation

To ensure all current and future developers adhere to this new, superior architecture,

comprehensive documentation was created for the internal developer manual. This guide

outlines the process for creating new frontend modules using the reusable component

framework.

8.4.1 Developer Manual: Creating a New Frontend Module

(Refactored Architecture)

All new frontend modules must be built using the shared EngineeringModule component

to ensure consistency, maintainability, and rapid development. To create a new module,

follow these steps:

Step 1: Create the Directory Structure

Create a new folder for your module (e.g., newConnection) inside the src/modules di-

rectory. Inside it, create the standard subdirectories: components and configs.

Step 2: Define the Input Configuration

Create a newConnectionConfig.js file inside the configs folder. Export a configuration

object that defines, at a minimum:

• sessionName, routePath, designType

• defaultInputs: An object containing all input keys and their initial values.

• inputSections: An array of objects that declaratively defines the entire input

form.

• buildSubmissionParams: A function that takes the state and returns the formatted

API payload.

57

Step 3: Define the Output Configuration and Component

1. Create a newConnectionOutputConfig.js file in configs. This object will define

the sections and fields to be displayed in the output dock.

2. Create a NewConnectionOutputDock.jsx file in components. This component will

simply wrap the shared BaseOutputDock, passing it the output data and the new

output configuration object.

Step 4: Assemble the Final Module

Create the main NewConnection.jsx file. This file should be very simple, containing

only the code required to render the generic EngineeringModule with the configurations

and components created in the previous steps passed as props.

Listing 8.3: Template for a New Module Component

import React from ’react’;

import { EngineeringModule } from ’../ shared/components/

EngineeringModule ’;

import { newConnectionConfig } from ’./ configs/

newConnectionConfig ’;

import NewConnectionOutputDock from ’./ components/

NewConnectionOutputDock ’;

function NewConnection () {

return (

<EngineeringModule

moduleConfig ={ newConnectionConfig}

OutputDockComponent ={ NewConnectionOutputDock}

// ... other props

/>

);

}

export default NewConnection;

58

Chapter 9

Conclusions

This internship at the Free/Libre and Open Source Software for Education (FOSSEE)

project has been a period of immense learning and practical application of software engi-

neering principles to solve real-world challenges in the domain of structural engineering.

The work performed involved a combination of debugging critical issues, refactoring ex-

isting systems for scalability, and developing complex new features from the ground up.

This concluding chapter summarizes the key tasks accomplished and the skills cultivated

during this fellowship.

9.1 Tasks Accomplished

The internship was structured around a series of progressively complex tasks that provided

a comprehensive full-stack development experience. The primary accomplishments are

summarized below:

• Module Debugging and Diagnostics: The initial tasks involved deep-diving

into the existing codebase to resolve critical bugs. This included diagnosing and

fixing a silent CAD generation failure in the End Plate module by implementing

strategic logging and targeted exception handling, and resolving a persistent session

management flaw by re-engineering the session API for robust and reliable state

control.

• Full-Stack Module Development: A significant portion of the internship was

dedicated to the end-to-end development of two new, feature-complete design mod-

59

ules.

– Cover Plate Welded Connection: A new module for designing welded

beam splices was built from scratch. This involved creating the React frontend,

the Django backend API, and the core Python engineering logic based on IS

800:2007.

– Beam-to-Column End Plate Connection: A more complex moment-

resisting connection module was developed, requiring the implementation of

advanced engineering calculations for bolt group analysis, prying action, and

column stiffener checks.

• Major Frontend Architectural Refactoring: The most impactful task was a

fundamental re-architecture of the frontend. Monolithic, repetitive React compo-

nents were replaced with a single, generic, and reusable EngineeringModule. This

new framework is driven entirely by declarative configuration objects, which has

drastically reduced code duplication by over 90%, improved maintainability, and

established a scalable pattern that will accelerate all future module development.

9.2 Skills Developed

Through these hands-on tasks, a diverse set of technical and professional skills were

developed and honed.

9.2.1 Technical Skills

• Full-Stack Development: Gained comprehensive, practical experience in the en-

tire web development stack, utilizing React.js for building dynamic and interactive

user interfaces, and Django with the Django REST Framework for creating ro-

bust, data-driven backend APIs.

• Advanced React Proficiency: Developed a deep understanding of modern React

concepts, including advanced state management with useState and useContext

hooks, component lifecycle management with useEffect for tasks like session

control, and building a scalable frontend with a component-based, configuration-

driven architecture.

60

• Backend Engineering: Acquired strong skills in Python-based backend devel-

opment, including designing RESTful API endpoints, using the Django ORM for

database interaction (PostgreSQL), and serializing complex data structures.

• Software Architecture and Design Patterns: Demonstrated the ability to

identify architectural weaknesses (e.g., code duplication) and implement superior,

scalable design patterns. The frontend refactoring task was a practical applica-

tion of the Don’t Repeat Yourself (DRY) principle and the move towards a more

maintainable, component-based system.

• Systematic Debugging: Mastered systematic debugging techniques, including

strategic logging, browser network analysis, and targeted exception handling to

diagnose and resolve complex issues across both frontend and backend systems.

• Application of Domain Knowledge: Successfully translated complex engineer-

ing standards (IS 800:2007) into accurate and reliable Python algorithms, bridging

the gap between structural engineering theory and practical software implementa-

tion.

9.2.2 Professional Skills

• Problem Solving: Consistently demonstrated the ability to analyze complex tech-

nical problems, formulate a clear hypothesis, and execute a methodical plan to reach

a robust solution.

• Code Quality and Best Practices: Developed a strong commitment to writing

code that is not only functional but also clean, readable, maintainable, and scalable,

adhering to modern software engineering best practices.

• Project and Task Management: Successfully managed and executed long-term,

multi-faceted development tasks from initial problem definition through to imple-

mentation, testing, and documentation.

• Technical Documentation: Gained experience in creating clear and concise tech-

nical documentation for developers, contributing to the project’s knowledge base

and ensuring the maintainability of new features.

61

Chapter A

Appendix

A.1 Work Reports

62

Internship Work Report
Name: Raghav Sharma

Project: Osdag on Cloud
Internship: FOSSEE Summer Long Internship 2025

DATE DAY TASK Hours Worked
11-Feb-2025 Tuesday Download and Install Osdag and getting familiar 4
12-Feb-2025 Wednesday Go through reports 4
13-Feb-2025 Thursday Medical break 0
14-Feb-2025 Friday Medical break 0
15-Feb-2025 Saturday Task 0 - Module Documentation: Base plate connection 4
16-Feb-2025 Sunday Task 0 - Module Documentation: Base plate connection 4
17-Feb-2025 Monday Task 0 - Module Documentation: Base plate connection 4
18-Feb-2025 Tuesday Documentation Team Meeting 0
19-Feb-2025 Wednesday Understanding osdag web with eeshu 4
20-Feb-2025 Thursday Understanding CAD 3
21-Feb-2025 Friday CAD Team Meeting | Understanding OCC in Osdag 4
22-Feb-2025 Saturday Setting up and learning Docker for Osdag Web 4
23-Feb-2025 Sunday Learning ThreeJS for CAD in Osdag Web 3
24-Feb-2025 Monday Going through Osdag Web Documentation 4
25-Feb-2025 Tuesday Installing Osdag Web Environment and running it 4
26-Feb-2025 Wednesday Understanding report - osdag_internship_2022_23_aaranyak 3
27-Feb-2025 Thursday Exploring methods to do CAD using ThreeJS 4
28-Feb-2025 Friday Installing and setting up Postgresql 3
1-Mar-2025 Saturday Debugging Osdag on Cloud Errors 4
2-Mar-2025 Sunday Debugging Osdag on Cloud Errors 4
3-Mar-2025 Monday Fixing Errors with Samarpita 3
4-Mar-2025 Tuesday Task - CAD model 3
5-Mar-2025 Wednesday Exams
6-Mar-2025 Thursday Exams
7-Mar-2025 Friday Exams
8-Mar-2025 Saturday Exams
9-Mar-2025 Sunday Exams
10-Mar-2025 Monday Exams
11-Mar-2025 Tuesday Exams
12-Mar-2025 Wednesday Exams
13-Mar-2025 Thursday Learning ThreeJS for CAD in Osdag Web 3
14-Mar-2025 Friday Holi 0
15-Mar-2025 Saturday Implementing End plate 3D model 4
16-Mar-2025 Sunday Implementing End plate 3D model and debugging 5
17-Mar-2025 Monday Debugging Errors during Model generation 5
18-Mar-2025 Tuesday Debugging Errors during Model generation (Input dock) 5
19-Mar-2025 Wednesday Debugging Errors during Model generation (Module) 4
20-Mar-2025 Thursday Debugging Errors during Model generation (Output View) 3
21-Mar-2025 Friday Inspecting session api for possible bugs (End plate debugging) + fixes 4
22-Mar-2025 Saturday Inspecting end plate input data and data processing (End plate debugging) 4
23-Mar-2025 Sunday Inspecting end plate frontend (End plate debugging) 4
24-Mar-2025 Monday Removing redundant logs to check errors (End plate debugging) 4
25-Mar-2025 Tuesday End plate module final fixes 4
26-Mar-2025 Wednesday Fixing Session Bug 4
27-Mar-2025 Thursday Session Bug fix on the backend 4
28-Mar-2025 Friday Session bug fix on the frontend 3
29-Mar-2025 Saturday Making session flexible for all modules 4
30-Mar-2025 Sunday Assisting in Code refactoring 4
31-Mar-2025 Monday Applying the refactored code and testing it 4
1-Apr-2025 Tuesday Cover plate welded module frontend 4
2-Apr-2025 Wednesday Building the input dock UI 3

3-Apr-2025 Thursday Building the output dock UI 4
4-Apr-2025 Friday Organizing components 4
5-Apr-2025 Saturday Creating new route creation for cover plate welded 4
6-Apr-2025 Sunday Creating model render window for cover plate welded module 4
7-Apr-2025 Monday Fix the cover plate UI rendering errors 4
8-Apr-2025 Tuesday Combining Cover plate welded UI 3
9-Apr-2025 Wednesday Inspecting session connection 4
10-Apr-2025 Thursday Fixing session bug for cover plate welded 4
11-Apr-2025 Friday Creating session connection feature for Cover plate welded 3
12-Apr-2025 Saturday Writing frontend api call to create session 4
13-Apr-2025 Sunday Medical Issue 0
14-Apr-2025 Monday Creating the populate API 4
15-Apr-2025 Tuesday Connecting the session and data population to frontend and bug fixes 4
16-Apr-2025 Wednesday Creating the Input Data view for Cover Plate Welded 4
17-Apr-2025 Thursday Creating the cover plate welded module files 4
18-Apr-2025 Friday EXAMS
19-Apr-2025 Saturday EXAMS
20-Apr-2025 Sunday EXAMS
21-Apr-2025 Monday EXAMS
22-Apr-2025 Tuesday EXAMS
23-Apr-2025 Wednesday EXAMS
24-Apr-2025 Thursday EXAMS
25-Apr-2025 Friday EXAMS
26-Apr-2025 Saturday EXAMS
27-Apr-2025 Sunday EXAMS
28-Apr-2025 Monday EXAMS
29-Apr-2025 Tuesday debugging postgres container issues 4
30-Apr-2025 Wednesday create design api debugging 4
1-May-2025 Thursday debugging the input using osdag desktop app 4
2-May-2025 Friday debugging output and Rendering values on Output Dock 4
3-May-2025 Saturday Build CAD for Cover Plate Welded 4
4-May-2025 Sunday Debugging CAD Issues 4
5-May-2025 Monday Building modals for the output 4

6-May-2025 Tuesday
Finishing the cover plate welded module (minor fixes + input issues + design

report) 5
7-May-2025 Wednesday Beam to column end plate module input dock 4
8-May-2025 Thursday Building session api for for beam to column end plate 4
9-May-2025 Friday Initializing route and folder structure + Building the UI 4
10-May-2025 Saturday Input dock frontend 4
11-May-2025 Sunday Input dock populate api (backend) 4
12-May-2025 Monday Building validation for input and api route for accepting input 4
13-May-2025 Tuesday Building output dock UI 4
14-May-2025 Wednesday Building output dock modals 4
15-May-2025 Thursday Output view to calculate output 4
16-May-2025 Friday Debugging the core module to work with the api 4
17-May-2025 Saturday Testing output + fixing missing values bugs 4
18-May-2025 Sunday Creating the api to link the outputview with the output dock + testing 4
19-May-2025 Monday Debugging issues related to output rendering 4
20-May-2025 Tuesday Fixing modal values along with missing values 4
21-May-2025 Wednesday Building CAD model api 4
22-May-2025 Thursday Debugging cad issues for beam column end plate 4
23-May-2025 Friday Linking the cad model api with the frontend and rendering it 4
24-May-2025 Saturday Sick Leave 0
25-May-2025 Sunday Sick Leave 0
26-May-2025 Monday Sick Leave 0
27-May-2025 Tuesday Testing the entire module + fixing minor bugs 4
28-May-2025 Wednesday Building navbar functions 4

29-May-2025 Thursday Final debugging and solving backend related issues 4
30-May-2025 Friday Beam to Column End Plate (Final debugging, minor bug fixes) 3
31-May-2025 Saturday Refactoring (Making config) 4
1-Jun-2025 Sunday Refactoring (Making Output Config) 4
2-Jun-2025 Monday Refactoring (Input value api) 4
3-Jun-2025 Tuesday Refactoring (Coupling into Engineering Module) 4
4-Jun-2025 Wednesday Testing and Debugging refactored module 4
5-Jun-2025 Thursday Refactoring (Bug Fixes) 4
6-Jun-2025 Friday Refactoring (Beam column end plate) 4
7-Jun-2025 Saturday Refactoring (Beam column end plate Input Config) 4
8-Jun-2025 Sunday Refactoring (Beam Column End plate Output Config) 4
9-Jun-2025 Monday Refactoring (Engineering Module coupling) 4
10-Jun-2025 Tuesday Refactoring 4
11-Jun-2025 Wednesday Testing and Debugging refactored module (minor bug fixes) 3

Bibliography

[1] Django Software Foundation. Django documentation. https://www.

djangoproject.com/. Accessed: 2025-06-11.

[2] Free Software Foundation. Gnu lesser general public license v3.0. https://www.

gnu.org/licenses/lgpl-3.0.en.html, 2007. Accessed: 2025-06-11.

[3] Python Software Foundation. Python language reference. https://www.python.

org/. Accessed: 2025-06-11.

[4] Siddhartha Ghosh, Danish Ansari, Ajmal Babu Mahasrankintakam, Dharma Teja

Nuli, Reshma Konjari, M. Swathi, and Subhrajit Dutta. Osdag: A software for

structural steel design using is 800:2007. In Sondipon Adhikari, Anjan Dutta, and

Satyabrata Choudhury, editors, Advances in Structural Technologies, volume 81 of

Lecture Notes in Civil Engineering, pages 219–231, Singapore, 2021. Springer Singa-

pore.

[5] Ant Group. Ant design documentation. https://ant.design/. Accessed: 2025-06-

11.

[6] Encode OSS Ltd. Django rest framework documentation. https://www.

django-rest-framework.org/. Accessed: 2025-06-11.

[7] Meta and community contributors. React documentation. https://react.dev/.

Accessed: 2025-06-11.

[8] Mr.doob and Three.js authors. Three.js documentation. https://threejs.org/.

Accessed: 2025-06-11.

[9] MUI. Mui: Material ui documentation. https://mui.com/. Accessed: 2025-06-11.

66

https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://www.python.org/
https://www.python.org/
https://ant.design/
https://www.django-rest-framework.org/
https://www.django-rest-framework.org/
https://react.dev/
https://threejs.org/
https://mui.com/

[10] Bureau of Indian Standards. Is 800:2007 - general construction in steel - code of

practice (third revision), 2007. Accessed: 2025-06-11.

[11] Poimandres. Drei for react three fiber. https://github.com/pmndrs/drei. Ac-

cessed: 2025-06-11.

[12] Poimandres. React three fiber documentation. https://docs.pmnd.rs/

react-three-fiber/getting-started/introduction. Accessed: 2025-06-11.

[13] FOSSEE Project. Fossee news - january 2018, vol 1 issue 3. https://static.

fossee.in/fossee/newsletters/Newsletter-Jan2018.pdf. Accessed: 2025-06-

11.

[14] FOSSEE Project. Fossee website. https://fossee.in/. Accessed: 2025-06-11.

[15] FOSSEE Project. Osdag website. https://osdag.fossee.in/. Accessed: 2025-06-

11.

[16] The Axios Project. Axios http client documentation. https://axios-http.com/

docs/intro. Accessed: 2025-06-11.

67

https://github.com/pmndrs/drei
https://docs.pmnd.rs/react-three-fiber/getting-started/introduction
https://docs.pmnd.rs/react-three-fiber/getting-started/introduction
https://static.fossee.in/fossee/newsletters/Newsletter-Jan2018.pdf
https://static.fossee.in/fossee/newsletters/Newsletter-Jan2018.pdf
https://fossee.in/
https://osdag.fossee.in/
https://axios-http.com/docs/intro
https://axios-http.com/docs/intro

	Introduction
	What is Osdag?
	Challenges with the Osdag software
	What is Osdag on Cloud?
	Who can use Osdag on Cloud?

	Screening Task: Osdag Web Module Development
	Project Overview
	Objective
	Significance

	Methodology
	Tools & Technologies
	Development Workflow

	Implementation Details
	Frontend Development (React)
	3D Visualization (React Three Fiber)
	Backend Development (Django REST Framework)

	Environment Setup and Initial Debugging
	The Challenge: Replicating a Complex Production Stack
	The Setup Process: A Methodical Approach
	Phase 1: Environment and Database Preparation
	Phase 2: Backend Dependency Installation and Debugging
	Phase 3: Finalizing Setup and Launching the Application

	Code-Level Intervention: Resolving the _Protocol ImportError
	Description of the Script Change
	Code Modification

	Distilling Experience into Documentation
	Developer Manual: Troubleshooting Common Installation Errors

	Internship Task 1: Debugging the End Plate CAD Module
	Problem Statement
	Tasks Done
	Python Code
	Description of the Script
	Python Code Snippet
	Explanation of the Code

	Documentation
	Developer Manual: Debugging Silent Failures

	Internship Task 2: Fixing the Session Management API
	Task 2: Problem Statement
	Task 2: Tasks Completed
	Task 2: Python Code
	Description of the Script
	Refactored Python Code

	Task 2: Developer Documentation
	Session API Usage Guide

	Internship Task 3: Development of the Cover Plate Welded Module
	Task 3: Problem Statement
	Task 3: Tasks Done
	Frontend Development (React)
	Backend Development (Django/Python)

	Task 3: Python and React Code
	Frontend: React Component State and Submission Logic
	Backend: Core Engineering Logic Snippet
	Full code

	Internship Task 4: Development of the Beam-to-Column End Plate Module
	Task 4: Problem Statement
	Task 4: Tasks Done
	Frontend Development (React)
	Backend Development (Django/Python)

	Task 4: Python and React Code
	Frontend: Consolidating and Submitting Complex Input State
	Backend: Robust Output API View with Logging
	Full code

	Internship Task 5: Refactoring the modules with a Reusable Module Architecture
	Task 5: Problem Statement
	Task 5: Tasks Done
	Task 5: React Code
	Description of the Scripts
	React Code Snippets
	Explanation of the Code
	Full code

	Task 5: Documentation
	Developer Manual: Creating a New Frontend Module (Refactored Architecture)

	Conclusions
	Tasks Accomplished
	Skills Developed
	Technical Skills
	Professional Skills

	Appendix
	Work Reports

	Bibliography

