
Semester Long Internship Report

On

GUI Development for OpenModelica simulator

Submitted by

Garima

Thamaraimanalan M

Under the guidance of

Prof.Kannan M. Moudgalya

Chemical Engineering Department

IIT Bombay

June 17, 2025

Acknowledgment

We would like to express our gratefulness to the FOSSEE team for giving us this
opportunity to learn, implement, test and understand the applications of technology
in a project of industrial scale. From implementing code standarization, to debug-
ging features and understanding the importance of documentation and structured
application development, these 4 months have been a wonderful experience.

We would like to express our gratitude to Prof. Kannan M. Moudgalya for pro-
viding us with such an opportunity to work on such an impactful project.

We would also like to express our appreciation to our mentors during these 4 months
of work, Mr. Sumanto Kar and Mr. Nikhil Sharma for their guidance at each step
of our work. Nikhil Sir’s lessons in Modelica language helped us in navigating
through some of the complex debugging sessions and optimization process while
Sumanto Sir’s tips helped us in makin sure the development process was structured
and smooth.

it was a journey in the making, a chance to collaborate with sharp minds and learn
from some of the best. We both hope to take the lessons we leanrt during our time
on this project forward in our professional career and look forward to contributing
to more such innovative, impactful and ground-level software development wherever
our path takes us. Thank you FOSSEE for giving us this chance and thank you for
everything.

1

Contents

1 Introduction 3
1.0.1 OpenModelica . 3
1.0.2 Technologies Utilized . 3

2 Problem Statement 5

3 UI Design 6
3.1 UI Compilation . 6
3.2 GUI Walkthrough . 7

3.2.1 Compound Selection . 7
3.2.2 Backend: Compound.mo File Modification 8
3.2.3 Thermodynamic Method Selection 8
3.2.4 Operations Selection . 9
3.2.5 Input Parameter Page . 10
3.2.6 Info Button Feature . 11
3.2.7 Process Optimization . 12
3.2.8 Simulation Execution . 13
3.2.9 Simulation Output and Result Files 13
3.2.10 Scalar Variable Extraction and Plot Setup 15
3.2.11 Plotting Simulation Results with OMPlot 16
3.2.12 Logging and Debugging Support 19
3.2.13 Theme Customization (Dark / Light Mode) 20

4 Conclusion and Future Scope 21

Bibliography 22

2

Chapter 1

Introduction

1.0.1 OpenModelica

OPENMODELICA is an open-source Modelica-based1 modeling and simulation en-
vironment intended for industrial and academic usage. Its long-term development
is supported by a non-profit organization – the Open Source Modelica Consortium
(OSMC)[?].

The goal with the OpenModelica effort is to create a comprehensive Open Source
Modelica modeling, compilation and simulation environment based on free software
distributed in binary and source code form for research, teaching, and industrial us-
age. We invite researchers and students, or any interested developer, to participate
in the project and cooperate around OpenModelica, tools, and applications. Open
Source Modelica Consortium supports its development. It runs on Windows, Linux,
and Mac operating systems. FOSSEE, IIT Bombay has taken up the initiative of
promoting FLOSS (Free/Libre and Open Source Software), for education. We, the
OpenModelica team at FOSSEE, IIT Bombay, promote the use of OpenModelica
as being accessible and readily available. The goal of this project is to enable the
students and faculty of various colleges/institutes/universities across India to use
Free/Libre and Open Source Software tools for all their modeling and simulation
purposes, thereby improving the quality of instruction and learning and to avoid
expensive licenses of commercial modeling and simulation packages for research and
education.

The FOSSEE project is part of the National Mission on Education through
Information and Communication Technology (ICT), Ministry of Human Resource
Development (MHRD), Government of India.

Our project software, a OpenModelica Graphical User Interface based Simu-
lator is an extension of Openmodelica OMEdit.

1.0.2 Technologies Utilized

• Language: Python

3

• Libraries/Framework: PyQt6, Matplotlib, Pyzipper, os, shutil, sys, regex,
xml.etree.ElementTree, subprocess, pathlib

• Tools: Qt Designer, Visual Studio Code, Git and GitHub, OMPlot

4

Chapter 2

Problem Statement

Modeling and simulating chemical processes using OpenModelica typically requires
manual editing of Modelica files and executing command-line scripts. This workflow
is not user-friendly, especially for students or engineers without prior programming
experience. Additionally, managing simulation parameters, modifying thermody-
namic models, and visualizing results often involves switching between multiple
tools, increasing the chances of human error and reducing productivity.

There is a need for an intuitive graphical user interface (GUI) that simplifies the
simulation workflow by:

• Allowing users to select chemical compounds from a database of 433 com-
pounds.

• Automatically generating and modifying Modelica files based on user input.

• Providing step-by-step configuration of thermodynamics and operations.

• Managing simulation parameters and executing simulations with a single click.

• Visualising results using built-in plotting tools like OMPlot.

This project aims to bridge the gap between complex simulation tools and user
accessibility by developing a GUI-based automation layer over OpenModelica, re-
ducing manual effort and enhancing usability.

5

Chapter 3

UI Design

The user interface for the OpenModelica-based application was designed using Qt
Designer, a visual tool for creating intuitive and responsive GUIs. The ‘.ui‘ files
generated by Qt Designer were integrated into the Python application using the
PyQt6 framework. This approach allowed for efficient UI prototyping and rapid
development of user-friendly components.

Figure 3.1: Designing the UI in Qt Designer

3.1 UI Compilation

The ‘.ui‘ files created using Qt Designer were converted to Python files using the
pyside6-uic tool. This process generates Python code that can be directly im-
ported and used within the application.

pyside6-uic input.ui -o output.py

6

3.2 GUI Walkthrough

3.2.1 Compound Selection

In this step, users can select two or more chemical compounds from the Chemsep-
Database using the left-hand list view. The user can either scroll or type the name
to search the compounds. The selected compounds are displayed on the right-hand
side. Once the desired compounds are selected, there are two options for removing
them, either one by one with clear button or all the selected compounds using clear
all button. Clicking the Next button proceeds to the next stage of the application.

Figure 3.2: Compound Selection Screen

7

Figure 3.3: Compound Selecting

3.2.2 Backend: Compound.mo File Modification

Once the user clicks the Next button after selecting compounds, the application dy-
namically writes the selected compound names to a Modelica-compatible file named
Compounds.mo.

Example content written to Compounds.mo:

compoundList = {"Acenaphthene", "Acetaldehyde", "Aceticacid"};

3.2.3 Thermodynamic Method Selection

In this stage, the user selects a thermodynamic property method (e.g., NRTL, UNI-
QUAC, Rault’s Law) from a dropdown list. This selection is critical as it defines
how phase equilibria and other thermodynamic calculations are handled in the sim-
ulation.

Upon selecting the method, the application updates the Batch Rectifier.mo file
using Python. The chosen method is inserted or replaced in the Modelica model,
ensuring the simulation reflects the selected thermodynamic behavior.

8

Figure 3.4: Thermodynamic Method Selection Screen

3.2.4 Operations Selection

Currently, the only operation supported in the application is the Batch Rectifier.
Once selected, the simulation setup continues using the relevant parameters and
configuration for this operation.

Below are screenshots showing the operation selection interface and the initial
configuration screen for the batch rectifier.

9

Figure 3.5: Operation Selection Screen

Figure 3.6: Batch Rectifier Configuration

3.2.5 Input Parameter Page

In this stage, the user is prompted to enter the simulation parameters required
for the operation simulation process. These inputs are necessary for running the
OpenModelica simulation with the correct initial and boundary conditions.

10

The input fields available in the GUI include:

• Start Time – Enter start time in seconds

• Stop Time – Enter stop time in seconds

• HB0 – Enter feed amount

• Ha – Enter initial accumulator hold up

• Hc – Enter condenser hold up

• PB – Enter reboiler pressure

• PC – Enter condenser pressure

• QR – Enter heat duty

• R – Enter reflux ratio (value between 0 and 1)

• XB0 – Enter initial charge feed composition

All values entered by the user are validated for correct format and range. Once
submitted, these values are written into the operation model file to parameterize
the Modelica simulation.

Figure 3.7: Input Parameter Entry Screen

3.2.6 Info Button Feature

As shown in Figure 3.9, to improve usability, the GUI includes an Info button (
Figure 2.10) beside the parameter input fields. When clicked, a helpful tool-tip or
pop-up appears that contains a brief explanation of each parameter.

11

Figure 3.8: Input Parameter after Validation

Figure 3.9: Info Popup Explaining Simulation Parameters

3.2.7 Process Optimization

The Optimize button gives the user the option to further optimize the process,
with select parameters for a better result. Currently, the user has the option of
BASIC optimization. The user has the option of choosing the boundary value for

12

purity of Reflux ration R as x min and x max which are used for constraint-based
optimization.

Figure 3.10: Info Popup Explaining Simulation Parameters

3.2.8 Simulation Execution

After entering the required parameters, the user can start the simulation by clicking
the Simulate button. This triggers the execution of a .mos script using OpenMod-
elica’s command-line interface omc.exe in the backend.

The GUI internally uses Python’s subprocess module to invoke OpenModelica.
The relevant Modelica script (e.g., simulate.mos) is executed through the following
command:

result = subprocess.run(

[self.omc_path, self.script_content],

capture_output=True,

text=True,

)

Upon execution, OpenModelica compiles the model, runs the simulation, and
generates output files as .mat for further analysis.

3.2.9 Simulation Output and Result Files

After the simulation completes, OpenModelica generates several output files in the
temporary directory. The most important of these are:

13

Figure 3.11: Simulation Triggered via GUI

• Modules.Batch Rectifier res.mat – contains simulation result data (used
for plotting and post-processing).

• Modules.Batch Rectifier res.xml – contains metadata about the variables
and structure of the model.

14

An example simulation result record is shown below:

record SimulationResult

messages = "LOG_SUCCESS | The simulation finished successfully.",

timeFrontend = 0.124s,

timeBackend = 2.554s,

timeCompile = 12.164s,

timeSimulation = 1.033s,

timeTotal = 16.263s

end SimulationResult;

These files are saved in a system temporary directory and are used by the GUI
for plotting and exporting data.

Figure 3.12: Simulation Output Files and Log Messages

3.2.10 Scalar Variable Extraction and Plot Setup

Once the simulation is complete, the application parses the Modules.Batch Rectifier res.xml

file to extract all available scalar variables for plotting. These variables include
time-dependent values such as compositions, pressures, temperatures, holdups, and
flow rates.

The extracted variables are displayed in a ListView within the GUI. Users can
select one or more variables from this list to visualize them graphically.

The XML parsing is done using Python’s xml.etree.ElementTree library. The
application scans the <ScalarVariable> tags and extracts relevant metadata such
as:

• Variable name

• Description (if available)

• Variability (continuous, parameter, constant)

• Unit

15

Figure 3.13: List of Scalar Variables Extracted from XML File

Figure 3.14: List of selected Scalar Variables

3.2.11 Plotting Simulation Results with OMPlot

After selecting one or more scalar variables from the list, the user can click the Plot
button. This action triggers a subprocess that launches OMPlot, a built-in plotting
tool of OpenModelica, to visualize the results stored in the .mat file.

16

The GUI invokes OMPlot using the following Python code:

result = subprocess.Popen(

[om_plot, "--plot", f"--filename={self.file_path}"] + self.variables,

stdout=subprocess.PIPE,

stderr=subprocess.PIPE,

text=True,

)

Where:

• om plot is the path to the OMPlot.exe executable.

• self.file path refers to the full path of the generated .mat file.

• self.variables is a list of selected variable names passed as command-line
arguments.

OMPlot reads the .mat result file and plots the specified variables over the
simulation time interval. This provides a clear and interactive visual representation
of the system’s dynamic behavior.

Figure 3.15: OMPlot Showing Simulation Results for Selected Variables

17

Figure 3.16: OMPlot Showing Simulation Results for Selected Variables

18

3.2.12 Logging and Debugging Support

To enhance transparency and aid in debugging, the GUI provides real-time console
logging as well as persistent log file generation. This ensures that users can monitor
the progress of each stage — from file generation to simulation and plotting — and
revisit the logs in case of failures or warnings.

• Console Logging: A dedicated logging window is embedded within the GUI,
displaying all backend activity such as file generation, script execution, sub-
process outputs, and warnings in real time.

• Log File Generation: The GUI creates a log file (e.g., modelica.log) dur-
ing every simulation run. This log contains detailed output from omc.exe,
including:

– Simulation configuration and options

– Compilation and simulation messages

– Time taken for each stage (frontend, backend, compilation, simulation)

– Warnings and error messages, if any

• Error Diagnostics: Warnings such as incomplete initial conditions or unit
mismatches are captured and displayed both in the console and the log file,
helping users quickly identify and correct issues.

Figure 3.17: Console Log Window Displaying Real-Time Simulation Output

19

3.2.13 Theme Customization (Dark / Light Mode)

Users can toggle between Dark Mode and Light Mode dynamically during run-
time.

Figure 3.18: Dark Theme

Figure 3.19: White Theme

20

Chapter 4

Conclusion and Future Scope

The development of a GUI for OpenModelica-based batch distillation simulation
has successfully streamlined an otherwise complex and manual process. By inte-
grating multiple functionalities — including compound selection, thermodynamic
setup, model operation selection, parameter input, simulation execution, real-time
logging, and result visualization — the application provides a unified and user-
friendly interface for process simulation.

This project reduces the dependency on manual scripting and file manipulation,
making Modelica-based simulations accessible to students, researchers, and engi-
neers without deep programming knowledge. The addition of features like OMPlot
integration, theme customization, and logging further improves usability, debugging,
and aesthetics.

Through this internship, a comprehensive understanding of PySide6 for GUI de-
velopment, OpenModelica integration, and process simulation workflows was gained.
The outcome is a modular, extensible application that can serve as a strong foun-
dation for future features such as support for additional unit operations, export
options, and advanced result analytics.

21

Bibliography

[1] OpenModelica Official Documentation.
URL: https://openmodelica.org/documentation

[2] Qt for Python (PySide6) Official Documentation.
URL: https://doc.qt.io/qtforpython/

[3] Qt Designer Manual - Qt Documentation.
URL: https://doc.qt.io/qt-6/qtdesigner-manual.html

[4] Matplotlib Documentation.
URL: https://matplotlib.org/stable/contents.html

[5] Pyzipper — A Python module for encrypted zip files.
URL: https://pypi.org/project/pyzipper/

[6] Python Docs: subprocess module.
URL: https://docs.python.org/3/library/subprocess.html

[7] Python Docs: xml.etree.ElementTree module.
URL: https://docs.python.org/3/library/xml.etree.elementtree.html

[8] Python Docs: re — Regular expression operations.
URL: https://docs.python.org/3/library/re.html

[9] Python Docs: pathlib — Object-oriented filesystem paths.
URL: https://docs.python.org/3/library/pathlib.html

[10] FOSSEE, IIT Bombay - Official Website.
URL: https://fossee.in

[11] OpenModelica OMEdit GUI Tool.
URL: https://openmodelica.org/tools/omedit

[12] OpenModelica OMPlot Tool.
URL: https://openmodelica.org/tools/omplot

[13] qdarktheme: A modern dark/light theme for Qt.
URL: https://pypi.org/project/qdarktheme/

22

https://openmodelica.org/documentation
https://doc.qt.io/qtforpython/
https://doc.qt.io/qt-6/qtdesigner-manual.html
https://matplotlib.org/stable/contents.html
https://pypi.org/project/pyzipper/
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/xml.etree.elementtree.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/pathlib.html
https://fossee.in
https://openmodelica.org/tools/omedit
https://openmodelica.org/tools/omplot
https://pypi.org/project/qdarktheme/

	Introduction
	OpenModelica
	 Technologies Utilized

	Problem Statement
	UI Design
	UI Compilation
	GUI Walkthrough
	Compound Selection
	Backend: Compound.mo File Modification
	Thermodynamic Method Selection
	Operations Selection
	Input Parameter Page
	Info Button Feature
	Process Optimization
	Simulation Execution
	Simulation Output and Result Files
	Scalar Variable Extraction and Plot Setup
	Plotting Simulation Results with OMPlot
	Logging and Debugging Support
	Theme Customization (Dark / Light Mode)

	Conclusion and Future Scope
	Bibliography

