
FOSSEE, IIT Bombay
OpenFOAM Case Study Project
May 15, 2025

Development of Parser for PyVnt and Visual
Representation of PyVnt Node in Blender

Yash Suthar
B.E - Computer Science and Engineering

Dayananda Sagar College of Engineering,bangalore Karnataka

FOSSEE, IIT Bombay OpenFOAM Case Study Project

Abstract

OpenFOAM [1]. is a free and open-source C++ toolbox designed for solving continuum
mechanics problems. While powerful, it requires users to manually write and configure
case files in a structured text format. This process can be cumbersome and intimidating,
especially for beginners or those unfamiliar with OpenFOAM’s internal file structure. A
Graphical User Interface (GUI) can significantly improve the user experience by making the
software more intuitive and accessible.

The OpenFOAM GUI Project, under the FOSSEE initiative at IIT Bombay, aims to
streamline and simplify the case setup process through the development of GUI tools.
PyVNT (Python Venturial Node Trees), was developed to act as an intermediary layer
between OpenFOAM and a VenturialGUI. This module is capable of both generating Open-
FOAM case files from GUI-provided input and parsing existing case files (both traditional
OpenFOAM dictionaries and YAML formats) to visualize their structure as a node tree. As
part of this project, a robust parser within PyVNT was developed to interpret OpenFOAM
configuration files and extract their hierarchical structure. This parsed data serves as the
foundation for graphical representation within a node-based interface, visualized using a
custom node system in Blender.

i

FOSSEE, IIT Bombay OpenFOAM Case Study Project

Acknowledgement

I would like to extend my deepest and most sincere gratitude to Prof. Chandan Bose, Mr.
Diptangshu Dey, and Mr. Rajdeep Adak for their exceptional mentorship, insightful
guidance, and unwavering support throughout the duration of my semester-long internship
under the OpenFOAM GUI Project at FOSSEE, IIT Bombay. Their extensive expertise
in computational fluid dynamics as well as their dedication to academic and professional
excellence, have been immensely influential in shaping the direction and quality of my work
during this internship.

Throughout this period, I greatly benefited from their thoughtful feedback, patient ex-
planations, and their willingness to engage in detailed technical discussions. Each interaction
provided valuable learning opportunities that not only broadened my knowledge base, but
also challenged me to approach complex problems with analytical rigor and precision.

I am particularly grateful for the environment they cultivated, one that encourages curios-
ity, critical thinking, and independent exploration. Their mentorship has not only improved
my technical competencies, but also significantly contributed to my growth as a learner and
aspiring professional in the field.

In addition, I would like to acknowledge the contributions and support of the entire team
at FOSSEE, IIT Bombay. Their welcoming attitude, consistent support, and collaborative
spirit created a productive and inspiring work environment. It was truly an honor and a
privilege to be part of such a dynamic and talented group of individuals who are dedicated
to open source development and educational empowerment.

This internship experience has been profoundly enriching, both technically and person-
ally, and I remain deeply appreciative of the opportunity to contribute to a project of such
significance and impact.

ii

FOSSEE, IIT Bombay OpenFOAM Case Study Project

Contents
1 Introduction 2

2 System Design 3
2.1 Architecture Overview . 3
2.2 Data Flow Pipeline: From Text Files to Blender Nodes 4

3 Parser Implementation within PyVNT 5
3.1 Design Goals . 5
3.2 Parsing Strategy and Structure . 6
3.3 Controlling Element Order for File Output 8
3.4 Serializing PyVNT Trees to Files (writeTo) 9
3.5 Tree Representation of Dictionaries . 10
3.6 Parser Grammar (for OpenFOAM Dictionary Format) 11
3.7 YAML Configuration Syntax . 12

3.7.1 Key-word entry . 12
3.7.2 Dictionary . 12
3.7.3 List (Sequence) . 13
3.7.4 Mixed-Type List . 13
3.7.5 Complete YAML Example for blockMeshDict 13

3.8 OpenFoamParser.parse_file Function . 14
3.9 OpenFoamParser.parse_case Function . 16
3.10 OpenFoamParser.get_value Utility Function 17
3.11 Challenges and Solutions . 18

4 Venturial Node System in Blender 19
4.1 Venturial Node Structure . 19
4.2 Node Design . 20

5 Results and Output 20
5.1 Python Tree Output (PyVNT show_tree) 20
5.2 Blender GUI (Venturial Nodes) . 23

6 Conclusion and Future Work 25
6.1 Summary of Work . 25
6.2 Impact on OpenFOAM Usability . 25
6.3 Scope for Enhancements (for PyVNT and Venturial System) 26

1

FOSSEE, IIT Bombay OpenFOAM Case Study Project

1 Introduction
The OpenFOAM GUI Project, under the FOSSEE initiative at IIT Bombay, aims to stream-
line and simplify the case setup process through the development of GUI tools. Most existing
third-party GUI solutions for OpenFOAM either offer limited capabilities or fail to cover
the complete solution workflow required for CFD simulations. To overcome this, a custom
Python-based module, PyVNT (Python Venturial Node Trees) was developed to act
as an intermediary layer between OpenFOAM and a VenturialGUI. This module is capa-
ble of both generating OpenFOAM case files from GUI-provided input and parsing existing
case files (both traditional OpenFOAM dictionaries and YAML formats) to visualize their
structure as a node tree.

As part of this project, a robust parser within PyVNT was developed to interpret Open-
FOAM configuration files and extract their hierarchical structure. This parser reads key-
word entries, nested dictionaries, and lists from OpenFOAM’s text-based input files and
YAML files, converting them into a structured, tree-like format defined by PyVNT classes.
This parsed data serves as the foundation for graphical representation within a node-based
interface.

To visualize this data interactively, a custom tree-node system was designed and im-
plemented within Blender using its built-in scripting capabilities through the bpy Python
module. Blender, a widely used open-source 3D creation suite, offers a powerful node-based
environment ideal for representing hierarchical data. Tree-Nodes allow users to construct,
edit, and understand OpenFOAM simulation setups in a modular and intuitive way, effec-
tively bridging the gap between raw configuration files and a user-friendly graphical interface.
PyVNT serves as the backend data model for these Tree Nodes.

2

FOSSEE, IIT Bombay OpenFOAM Case Study Project

2 System Design

2.1 Architecture Overview

The system developed during this internship is designed to bridge the gap between Open-
FOAM’s text-based case files and a graphical based editing, interactive representation in
Blender. The architecture is modular, consisting of three primary components:

1. Python-Based Parser (within PyVNT)
This module, part of the PyVNT library, is responsible for reading and interpreting
OpenFOAM dictionary files (e.g., fvSolution, controlDict, blockMeshDict) as well
as OpenFOAM-like YAML configuration files. It recursively parses nested key-word-
entries structures and transforms them into a hierarchical data structure (tree) in
memory using PyVNT’s defined classes.

2. Data Abstraction Layer (PyVNT Tree Node Structure)
After parsing, the extracted data is organized into a custom tree structure defined
by PyVNT. Key classes include Node_C (for dictionaries/blocks), Key_C (for key-word
entries), and various Value_P derivatives (for data types like strings, integers, floats,
and lists). Each node in this structure corresponds to an OpenFOAM dictionary entry.
This abstraction layer allows the system to manipulate and represent data generically.

3. Blender Addon (Tree-Node)
A custom Blender Addon built with Python using Blender’s bpy API. It reads the
PyVNT tree structure and dynamically generates node graphs inside Blender’s Node
Editor. Each PyVNT node is represented by a Venturial Node, allowing users to inter-
act with these nodes ,modify values, connecting entries, or exporting the final config-
uration back to OpenFOAM dictionary or YAML format using PyVNT’s serialization
capabilities.

The parser and data structures within PyVNT have been thoughtfully designed with reusabil-
ity and scalability in mind. Its modular structure allows it to be easily integrated into other
front-end systems beyond Blender. This makes PyVNT a core component of the broader
Venturial GUI framework, enabling future expansion and adaptation to various user inter-
faces or platforms that require graphical interaction with OpenFOAM’s case files.

3

FOSSEE, IIT Bombay OpenFOAM Case Study Project

2.2 Data Flow Pipeline: From Text Files to Blender Nodes

Figure 1: Data flow pipeline.

4

FOSSEE, IIT Bombay OpenFOAM Case Study Project

1. Input: OpenFOAM Dictionary File or YAML File
The user provides a case file (e.g., blockMeshDict or blockMeshDict.yaml) written in
OpenFOAM’s custom text format or a compatible YAML structure. This file contains
a hierarchy of dictionaries, parameters, and lists.

2. Parsing the File with PyVNT’s OpenFoamParser
The OpenFoamParser module within PyVNT processes the file. It identifies:

• key-word entries (e.g., solver PBiCG;)
• nested-dictionaries (e.g., SIMPLE { ... })
• Lists (e.g., vertices ((0 1 0) (0 1 0.5)); or YAML sequences)

Each entry is converted into PyVNT’s internal tree node structure.

3. Building PyVNT Tree Nodes
The parser organizes the content into a nested tree format using PyVNT classes like
Node_C, Key_C, and Value_P derivatives. Each dictionary or parameter becomes a
node, and its contents are added as children. This tree preserves the original file’s
logical structure.

4. Serializing Tree to Blender
The PyVNT tree is passed to the Blender Addon, which interprets each PyVNT node
and creates a corresponding Venturial Node in the Blender Node Editor.

5. Rendering in Node Editor
Inside Blender, each dictionary or parameter appears as a node block. Nodes can be
connected visually to reflect the original structure. Users can modify values directly
from the UI.

6. Export using PyVNT’s writeTo function
After the user edits the setup, the modified PyVNT tree structure can be converted
back to OpenFOAM dictionary syntax (.txt) or YAML format (.yaml) using PyVNT’s
writeTo function, ready for use in simulations.

3 Parser Implementation within PyVNT

3.1 Design Goals

OpenFOAM files, such as fvSolution, controlDict, blockMeshDict etc., use a custom
nested syntax that makes manual editing error-prone especially for new users. The goal
was to extract their structure and convert them into a tree-based data representation
using PyVNT, which could then be used in any GUI framework to simplify the process of
configuring OpenFOAM simulations.

The parser, as part of PyVNT, was expected to:

• Read and understand the nested syntax of OpenFOAM dictionaries and equivalent
YAML structures.

5

FOSSEE, IIT Bombay OpenFOAM Case Study Project

• Build a PyVNT tree structure that accurately represents the hierarchy of dictionaries,
lists, and key-value pairs.

• Interface with a GUI layer (like Blender’s Tree-Node) to allow visualization and editing.

A key aspect of this work involved building a custom Tree-Nodes system inside Blender.
This system utilizes the PyVNT node tree abstraction as its backend. These Tree-Nodes
offer a visual representation of the structure generated by the parser, allowing users to
interact with OpenFOAM files in a modular and graphical manner directly within Blender.

Thus, the final deliverables included:

• A robust parser that translates OpenFOAM and YAML files into PyVNT tree struc-
tures.

• A Tree-Node system integrated in Venturial, to display and interact with these trees.

3.2 Parsing Strategy and Structure

The parser, OpenFoamParser in PyVNT, is written in Python. For traditional OpenFOAM
dictionary files, it follows a recursive descent parsing approach. It reads files line by line,
identifying structural elements based on symbols like {}, ;, and whitespace. For YAML
files, it leverages a standard YAML parsing library and then maps the resulting Python data
structures (dictionaries and lists) to the PyVNT class structure (such as Node_C, Key_C, and
various Value_P derivatives).

The parsing process classifies content into:

•� �
1 #solver PBiCG;
2 def p_statement(self ,p):
3 ’’’statement : WORD anylist SEMICOLON ’’’� �

Listing 1: Parser Statement Function

•� �
1 ’’’
2 SIMPLE
3 {
4 nNonOrthogonalCorrectors 1;
5 }
6 ’’’
7 def p_dictionary(self ,p):
8 ’’’dictionary : WORD LBRACE blocks RBRACE ’’’� �

Listing 2: Parser Dictionary Function

•� �
1 ’’’
2 vertices
3 (
4 (0 0 0)(1 0 0.1)(1 1 0.1)(0 1 0.1)
5);
6 edges

6

FOSSEE, IIT Bombay OpenFOAM Case Study Project

7 (
8 arc 0 1 (0.5 0.1 0)
9 spline 4 5

10 (
11 (4.1 4.2 4.3)
12 (4.5 4.6 4.7)
13 (4.9 5.0 5.1)
14)
15 polyLine 6 7
16 (
17 (6.1 6.2 6.3)
18 (6.5 6.6 6.7)
19)
20);
21 ’’’
22 def p_listblock(self ,p): #isNode=False
23 ’’’listblock : WORD LPAREN blocks RPAREN SEMICOLON ’’’� �

Listing 3: Parser Listblock Function

•� �
1 ’’’
2 boundary
3 (
4 movingWall
5 {
6 type wall;
7 faces
8 (
9 (3 7 6 2)

10);
11 }
12 fixedWalls
13 {
14 type wall;
15 faces
16 (
17 (0 4 7 3)
18 (2 6 5 1)
19 (1 5 4 0)
20);
21 }
22 frontAndBack
23 {
24 type empty;
25 faces ((0 3 2 1)(4 5 6 7));
26 }
27);
28 ’’’
29 def p_listblock(self ,p): #isNode=True
30 ’’’listblock : WORD LPAREN blocks RPAREN SEMICOLON ’’’� �

Listing 4: Parser Listblock(isNode=True) Function

7

FOSSEE, IIT Bombay OpenFOAM Case Study Project

The parsing logic for dictionary files tokenizes the input into a structured hierarchy. For
each block or entry, the parser creates corresponding PyVNT objects (Node_C, Key_C, etc.).
This hierarchical representation allows the system to accurately mirror the original file’s
organization. Each PyVNT object stores information such as its name, associated value(s),
its type (implicitly defined by the PyVNT class), and any children for nested structures.
These PyVNT objects form the tree structure that serves as the backend for GUI components
or can be manipulated directly in Python scripts.

3.3 Controlling Element Order for File Output

For OpenFOAM dictionary files (.txt format), the order of entries can be significant.
PyVNT’s Node_C objects maintain an ordered list of their elements (child Key_Cs and
Node_Cs). This order is respected by display utilities like show_tree and, critically, by
the writeTo function when generating .txt files.

• set_order(names_list: list): This Node_C method allows users to explicitly de-
fine the order of its direct children (keys and nested nodes) by providing a list of their
names. See Figure ?? for an example.

• get_ordered_items() -> list: This Node_C method returns items in the order they
will be written out for .txt files.� �

1 from pyvnt import Node_C , Key_C , Enm_P , List_CP , writeTo , show_tree
2 import os
3 import shutil
4

5 # Create a directory for output
6 output_dir = "pyvnt_output_example"
7

8 if os.path.exists(output_dir):
9 shutil.rmtree(output_dir) # Clean previous run

10 os.makedirs(output_dir)
11

12

13 root_node = Node_C("myConfig") # Filename will be myConfig.txt
14

15 key_c = Key_C("C_setting", Enm_P("val_c", {"val_c"}, default="val_c")
)

16 key_a = Key_C("A_setting", Enm_P("val_a", {"val_a"}, default="val_a")
)

17 child_b_node = Node_C("B_child_node",parent=root_node)
18 key_d = Key_C("D_setting", Enm_P("val_d", {"val_d"}, default="val_d")

)
19

20 list_key = Key_C("E_list_key")
21 list_cp_val = List_CP("my_list_data", elems =[[Enm_P("item1", {"item1"

},default="item1")],[Enm_P("item2", {"item2"}, default="item2")]])
22

23 list_key.append_val(list_cp_val._Value_P__name ,list_cp_val)
24 # Add in an order different from desired final output

8

FOSSEE, IIT Bombay OpenFOAM Case Study Project

25 root_node.add_data(key_c)
26 root_node.add_data(key_a)
27 root_node.add_data(key_d)
28 root_node.add_data(list_key)
29

30 # --- Write to file BEFORE setting a specific order ---
31 print(f"--- Writing to {root_node.name}.txt (default order) ---")
32 writeTo(root_node , output_dir , fileType=’txt’)
33 show_tree(root_node)
34

35 # --- Set a specific order for root_node ’s items ---
36 desired_output_order = ["A_setting", "B_child_node", "C_setting", "

E_list_key", "D_setting"]
37 root_node.set_order(desired_output_order)
38

39 print(f"\\n--- Writing to {root_node.name}_ordered.txt (custom order)
---")

40 # To avoid overwriting , let’s change the root_node name for the new
file

41 original_name = root_node.name
42 root_node.name = original_name + "_ordered"
43 show_tree(root_node)
44 writeTo(root_node , output_dir , fileType=’txt’)� �
Listing 5: set_order function to arrange connected children or data in a specific order

The output files generated before and after using set_order would differ in the arrange-
ment of their content, demonstrating the control PyVNT provides over file layout.

Code Reordering Example

Before� �
1 B_child_node
2 {
3 }
4 C_setting val_c;
5 A_setting val_a;
6 D_setting val_d;
7 E_list_key
8 (
9 item1

10 item2
11);� �

After� �
1 A_setting val_a;
2 B_child_node
3 {
4 }
5 C_setting val_c;
6 E_list_key
7 (
8 item1
9 item2

10);
11 D_setting val_d;� �

3.4 Serializing PyVNT Trees to Files (writeTo)

PyVNT provides a writeTo(root_node, path, fileType=’txt’) function to serialize a
node tree back into a file.

• root_node: The top-level Node_C object. Its name is used for the output filename
(e.g., controlDict.txt).

9

FOSSEE, IIT Bombay OpenFOAM Case Study Project

• path: The directory to save the file.

• fileType: Output format.

– ’txt’ (default): Traditional OpenFOAM dictionary format. Uses get_ordered_items(),
respecting any custom order.

– ’yaml’: YAML representation. YAML library dict key order (often preserved
from Python 3.7+ dicts) and List_CP order are maintained.� �

1 writeTo(NodeHead , path=r"\output", fileType=’txt’)
2 # OR
3 writeTo(NodeHead , path=r"\output", fileType=’yaml’)� �

Listing 6: writeTo function to export data to txt or yaml format

3.5 Tree Representation of Dictionaries

After parsing, the configuration file is transformed into a tree-like structure using PyVNT’s
classes (Node_C, Key_C, Value_P derivatives). This structure consists of nodes and branches
where:

• Each Node_C represents a dictionary block, and each Key_C represents a key with its
value(s).

• Leaf nodes within the conceptual tree are typically the Value_P instances (strings,
numbers, simple lists).

• Branches denote hierarchy, with Node_C objects containing other Node_Cs and Key_Cs.

For example, blockMeshDict is transformed into a tree like:

� �
1 blockMeshDict_from_yaml
2 {
3 convertToMeters : 0.1
4 vertices : ((0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 0, 0.1),

(1, 0, 0.1), (1, 1, 0.1), (0, 1, 0.1))
5 blocks : (’hex’, (0, 1, 2, 3, 4, 5, 6, 7), (20, 20, 1), ’

simpleGrading ’, (1, 1, 1))
6 edges : (’arc’, 0, 1, (0.5, 0.1, 0), ’spline ’, 4, 5, (’(4.1’, 4.2, ’

4.3)’, ’(4.5’, 4.6, ’4.7)’, ’(4.9’, 5.0, ’5.1)’), ’polyLine ’, 6,
7, (’(6.1’, 6.2, ’6.3)’, ’(6.5’, 6.6, ’6.7)’))

7 mergePatchPairs : ((’cyclicPair1A ’, ’cyclicPair1B ’), (’anotherPatchA
’, ’anotherPatchB ’))

8 }
9 |-- FoamFile

10 | {
11 | format : ascii
12 | class : dictionary
13 | object : blockMeshDict
14 | }

10

FOSSEE, IIT Bombay OpenFOAM Case Study Project

15 \-- boundary
16 |-- movingWall
17 | {
18 | type : wall
19 | faces : ((3, 7, 6, 2) ,)
20 | }
21 |-- fixedWalls
22 | {
23 | type : wall
24 | faces : ((0, 4, 7, 3), (2, 6, 5, 1), (1, 5, 4, 0))
25 | }
26 \-- frontAndBack
27 {
28 type : empty
29 faces : ((0, 3, 2, 1), (4, 5, 6, 7))
30 }� �

This abstract tree makes it easy to manipulate the structure in code or pass it to a visual
frontend like Blender.

3.6 Parser Grammar (for OpenFOAM Dictionary Format)� �
1 file : blocks
2

3 blocks : blocks block | block
4

5 block : dictionary | listblock | statement | hexEdge_items | coordlists
| empty

6

7 dictionary : WORD LBRACE blocks RBRACE
8

9 listblock : WORD LPAREN blocks RPAREN SEMICOLON
10

11 hexEdge_items : hexEdge_items hexEdge_item | hexEdge_item
12

13 hexEdge_item : hex_item | edge_item
14

15 hex_item : WORD LPAREN NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER
NUMBER RPAREN LPAREN NUMBER NUMBER NUMBER RPAREN word gradlist

16

17 edge_item : WORD number number gradlist
18

19 gradlist : coodlist | LPAREN coordlists RPAREN
20

21 coordlists : coordlists coodlist | coodlist
22

23 coodlist : LPAREN anylist RPAREN
24

25 statement : WORD anylist SEMICOLON
26

27 anylist : anylist sitem | sitem
28

29 sitem : word | number | dimension | vector | empty

11

FOSSEE, IIT Bombay OpenFOAM Case Study Project

30

31 vector : LPAREN NUMBER NUMBER NUMBER RPAREN
32

33 dimension : LSQUABRAC NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER
RSQUABRAC� �

Listing 7: Parser Grammer

3.7 YAML Configuration Syntax

This section explains the structure and syntax of YAML files used to represent OpenFOAM
dictionaries in a structured, readable format. YAML supports scalars, dictionaries, and lists.

3.7.1 Key-word entry� �
1 key: "entry1 entry2 ..."
2 OR
3 key: singleEntry� �

Listing 8: Key-word entries

This corresponds to the following OpenFOAM syntax:� �
1 format: "ascii"
2 format ascii;� �

Listing 9: Key-word entry Equivalent OpenFOAM Syntax

3.7.2 Dictionary� �
1 FoamFile:
2 format: "ascii"
3 class: "dictionary"
4 object: "blockMeshDict"� �

Listing 10: Dictionary

This corresponds to the following OpenFOAM syntax:� �
1 FoamFile
2 {
3 format ascii;
4 class dictionary;
5 object blockMeshDict;
6 }� �

Listing 11: Dictionary Equivalent OpenFOAM Syntax

12

FOSSEE, IIT Bombay OpenFOAM Case Study Project

3.7.3 List (Sequence)

Lists are defined using dashes ‘-‘:� �
1 vertices:
2 - [0, 0, 0]
3 - [1, 0, 0]
4 - [1, 1, 0]� �

Listing 12: YAML List Example

This corresponds to the following OpenFOAM syntax:� �
1 vertices
2 (
3 (0 0 0)
4 (1 0 0)
5 (1 1 0)
6);� �

Listing 13: Equivalent OpenFOAM List

3.7.4 Mixed-Type List

Certain OpenFOAM entries (e.g., blocks) are represented by ordered sequences in YAML:� �
1 blocks:
2 - hex
3 - [0, 1, 2, 3, 4, 5, 6, 7]
4 - [20, 20, 1]
5 - simpleGrading
6 - [1, 1, 1]� �

Listing 14: Mixed-Type List in YAML

3.7.5 Complete YAML Example for blockMeshDict

The following is a full YAML representation of an OpenFOAM blockMeshDict file:� �
1 FoamFile:
2 format: "ascii"
3 class: "dictionary"
4 object: "blockMeshDict"
5

6 convertToMeters: 0.1
7

8 vertices:
9 - [0, 0, 0]

10 - [1, 0, 0]
11 - [1, 1, 0]
12 - [0, 1, 0]
13 - [0, 0, 0.1]
14 - [1, 0, 0.1]
15 - [1, 1, 0.1]

13

FOSSEE, IIT Bombay OpenFOAM Case Study Project

16 - [0, 1, 0.1]
17

18 blocks:
19 - hex
20 - [0, 1, 2, 3, 4, 5, 6, 7]
21 - [20, 20, 1]
22 - simpleGrading
23 - [1, 1, 1]
24

25 edges:
26 - arc
27 - 0
28 - 1
29 - [0.5, 0.1, 0]
30 - spline
31 - 4
32 - 5
33 - [[4.1 , 4.2, 4.3], [4.5, 4.6, 4.7], [4.9, 5.0, 5.1]]
34 - polyLine
35 - 6
36 - 7
37 - [[6.1 , 6.2, 6.3], [6.5, 6.6, 6.7]]
38

39 boundary:
40 - movingWall:
41 type: "wall"
42 faces:
43 - [3, 7, 6, 2]
44

45 - fixedWalls:
46 type: "wall"
47 faces:
48 - [0, 4, 7, 3]
49 - [2, 6, 5, 1]
50 - [1, 5, 4, 0]
51

52 - frontAndBack:
53 type: "empty"
54 faces:
55 - [0, 3, 2, 1]
56 - [4, 5, 6, 7]
57

58 mergePatchPairs: []� �
Listing 15: Complete YAML Configuration for blockMeshDict

3.8 OpenFoamParser.parse_file Function

Functionality
The parse_file(text: str = None, fileType: str = ’txt’, path: str = None)
method of the OpenFoamParser class is the primary entry point for parsing single Open-
FOAM dictionary files or YAML configuration files into a PyVNT node tree. It accepts

14

FOSSEE, IIT Bombay OpenFOAM Case Study Project

either a direct text string or a file path and delegates the parsing task to internal text or
YAML parsers accordingly.

This function supports multiple input formats (.txt for traditional OpenFOAM dictio-
naries, .yaml for YAML format) and chooses the appropriate internal parser based on file
extension (if path is given) or the explicitly provided fileType (if text is given). The
parsed result is returned as a PyVNT Node_C object.

Parameters

Table 1: Parameters for OpenFoamParser.parse_file

Name Type Description
text str Optional. Raw string containing the file content to be

parsed.
fileType str Optional. Type of the input (’txt’ or ’yaml’). Required if

text is provided and type cannot be inferred.
path str Optional. Path to the OpenFOAM dictionary or YAML

file. If provided, content is read from this file.

Output

• Returns a PyVNT Node_C object representing the root of the parsed structure.

• Returns None if parsing fails (e.g., file not found, unsupported format, syntax errors).

Behavior Summary

• If a path is provided:

◦ Reads the file from disk.

◦ Determines the parser based on file extension (.txt, no extension for dictionary,
or .yaml).

◦ Parses the content. The root node of the PyVNT tree is typically named after
the file (e.g., "blockMeshDict").

• If text is provided:

◦ Uses fileType to choose the parser (’txt’ or ’yaml’).

◦ Parses the given string directly. The root node might be named ’root’ by default,
which can be renamed by the user.

• Internal parsers handle the specifics of dictionary syntax or YAML structure conversion
to PyVNT objects.

Example Use Case (Parsing YAML from text) This example demonstrates parsing
YAML content directly and then displaying the tree structure. A similar approach works for
dictionary files or parsing from file paths. The expected output would be a tree structure
printed to the console:

15

FOSSEE, IIT Bombay OpenFOAM Case Study Project

� �
1

2 # parse_yaml_example.py
3 from pyvnt import OpenFoamParser , Node_C , show_tree # Assuming these

are top -level imports
4

5 # Sample YAML content (can also be read from a file)
6 yaml_content = "YAML EXAMPLE LISTING 15"
7

8 # Initialize the parser
9 parser = OpenFoamParser ()

10

11 # Parse the YAML string
12 # For a file: tree = parser.parse_file(path="path/to/your/blockMeshDict

.yaml")
13 tree = parser.parse_file(text=yaml_content , fileType=’yaml’)
14

15 # If parsed from text , the root node might be named ’root’ by default.
16 # You can rename it for clarity:
17 if tree and tree.name == "root": # Default name from parser for text

input
18 tree.name = "blockMeshDict_from_yaml"
19

20 # Display the generated tree
21 if tree:
22 show_tree(tree)
23 else:
24 print("Failed to parse YAML content.")� �

Listing 16: Parsing YAML content using OpenFoamParser

3.9 OpenFoamParser.parse_case Function

Functionality
The parse_case(path: str) method of the OpenFoamParser class recursively parses an
entire OpenFOAM case directory structure. It walks through folders (e.g., system/, constant/,
0/), attempting to parse recognized files (.txt, dictionary files without extension, .yaml)
and building a hierarchical PyVNT tree. Each folder becomes a parent Node_C, and each
successfully parsed file becomes a child Node_C. This creates a full node-based representation
of the case directory. (Note: The README mentions this is in beta as it might try to parse
any file; this behavior should be considered.)

Parameters

Table 2: Parameters for OpenFoamParser.parse_case

Name Type Description
path str The path to the top-level OpenFOAM case directory or a

subdirectory.

Output

16

FOSSEE, IIT Bombay OpenFOAM Case Study Project

• Returns a PyVNT Node_C object, representing the root of the parsed case directory,
with children representing successfully parsed files and subdirectories.

Behavior Summary

• Creates a master Node_C named after the directory specified in path.

• Iterates through each item (file or subfolder) in the directory:

◦ If it’s a directory, calls parse_case() recursively for that subdirectory.

◦ If it’s a file that the parser recognizes (based on extension or heuristics), calls
parse_file() to parse its contents into a PyVNT tree.

• Attaches each successfully parsed file tree or subdirectory tree as a child to the master
Node_C.

Example Use Case� �
1 case_tree = parser.parse_case("OpenFOAM/cavity/")� �

Listing 17: parse_case function to parse an OpenFOAM case directory

This would return a root node named "your_OpenFOAM_case_directory_name" with
children like "system", "0", and "constant"—each containing their respective parsed con-
tent as further PyVNT sub-trees.

Key Advantages

• Enables full-case visualization and manipulation within a single PyVNT tree structure.

• Allows for comprehensive case loading into tools like the Venturial Node system.

3.10 OpenFoamParser.get_value Utility Function

Functionality
The get_value(node: Node_C, *keys) method (typically part of the OpenFoamParser
instance or a utility associated with PyVNT) is used to query a specific element from a
parsed PyVNT tree by providing a sequence of keys representing the path to the desired
element. It performs a traversal of the tree.

Parameters

Table 3: Parameters for get_value

Name Type Description
node Node_C The root PyVNT Node_C from which to start the

traversal.
*keys str A sequence of one or more strings representing

the path (names of nested nodes or keys) to the
desired value.

Output

17

FOSSEE, IIT Bombay OpenFOAM Case Study Project

• Returns the corresponding PyVNT object (Node_C, Key_C, or a Value_P derivative
like List_CP) if the path exists.

• Returns None if any key in the path is not found.

Behavior Summary

• Starts at the provided node.

• For each key in *keys, it searches within the current node’s children (Key_Cs or nested
Node_Cs) for an item with that name.

• If found, it moves to that item for the next key in the sequence.

• If a key is not found at any step, the search stops and returns None.

Features

• Simplifies accessing deeply nested data within a PyVNT tree.

• Useful for scripting, data validation, or extracting specific configuration details.

Limitations

• Assumes keys in the sequence exist in the expected order.

• Does not handle advanced OpenFOAM syntax like macro expansion (#include) during
traversal; it operates on the already parsed static tree.

Example Use Case� �
1 # Get the ’tolerance ’ value under ’solvers ’
2 tolerance_node = parser.get_value(case_tree , ’solvers ’, ’p’, ’tolerance

’)� �
Listing 18: get_value usage to access a nested key from the OpenFOAM case tree

3.11 Challenges and Solutions

During the development of the parser, several technical challenges were encountered due to
the non-standard structure of OpenFOAM configuration files and the need to support YAML
as well. Each challenge was addressed with targeted solutions:

• Custom Syntax Handling (OpenFOAM Dictionaries): OpenFOAM files don’t
follow standard formats like JSON or XML, requiring a custom tokenizer and brace-
matching mechanism.
Solution: A custom tokenizer and brace-matching mechanism were implemented. A
recursive parsing strategy was developed to handle nested structures, ensuring accurate
interpretation of OpenFOAM dictionaries into PyVNT objects. (The report mentions
PLY; PyVNT’s dictionary parser might use similar principles or a different custom
approach).

18

FOSSEE, IIT Bombay OpenFOAM Case Study Project

• YAML Mapping: YAML files, while structured, need their native Python dictio-
nary/list representation mapped to PyVNT’s specific class structure (Node_C, Key_C,
etc.).
Solution: After standard YAML parsing, a conversion layer iterates through the
Python data structures and instantiates the appropriate PyVNT objects, recursively
building the PyVNT tree.

• Comment and Whitespace Skipping: Files often include comments (//, /* */)
and irregular spacing.
Solution: For dictionary files, a preprocessing pass can be used to remove comments
and normalize whitespace. YAML parsers typically handle comments inherently.

• Deep Nesting: Some files contain deeply nested structures.
Solution: Recursive parsing (for dictionaries) and recursive conversion (for YAML)
handle these structures effectively within PyVNT.

• Value Ambiguity / Type Inference: Scalar values, dictionaries, and lists need to
be correctly identified and typed within the PyVNT model. OpenFOAM often requires
type inference (e.g. is "0" an int or a string for an enum? Is a list of lists representing
vectors or something else?).
Solution: The parser employs context-aware analysis and type inference rules. For
YAML, types are more explicit but still need mapping to PyVNT’s property types (e.g.,
IntProperty, Enm_P). PyVNT aims to create generic representations, with Enm_P often
being used for string values that could have restricted options.

• Consistency Across Frontend: The data format needed to work seamlessly with
the PyVNT backend and Blender frontend.
Solution: The standardized PyVNT class interface ensures that the parser output (a
PyVNT tree) is directly usable by downstream systems like the Tree-Nodes in Blender.

4 Venturial Node System in Blender

4.1 Venturial Node Structure

The Venturial Node addon follows Blender’s modular addon architecture. The structure is
organized as:� �

1 venturial_nodes/
2 __init__.py
3 ButtonDraw_UI_Header.py
4 DataConvertore.py
5 Examples/
6 Collection_Property.py
7 custom_nodes_template.py
8 Nodes/
9 Dict_Node.py

10 Dim_Set_Node.py
11 Enm_Node.py

19

FOSSEE, IIT Bombay OpenFOAM Case Study Project

12 Flt_Node.py
13 Int_Node.py
14 Key_Node.py
15 List_Node.py
16 MultiValue_Node.py
17 Node.py
18 Output_Node.py
19 Str_Node.py
20 Tensor_Node.py
21 Vector_Node.py
22 Operator/
23 List_Operators.py
24 Node_Links_Swapper.py
25 utils/
26 Ven_Export.py
27 Ven_Import.py� �

Listing 19: Python Greet Function

The node editor is integrated into Blender’s UI via a custom node tree called Venturial
Nodes.

• A new node editor window can be opened from the Editor Type menu.

• Within this editor, users can select the “Venturial Nodes” type to start working.

The node tree inherits from bpy.types.NodeTree and provides customized behaviors like
linking validation and update callbacks. The underlying data for these nodes is managed by
a PyVNT tree.

4.2 Node Design

Each node in the Venturial system visually represents a component of an OpenFOAM dic-
tionary, corresponding to a PyVNT object (Node_C, Key_C, or Value_P derivative).

Features:

• Input/Output sockets allow visual construction of the PyVNT tree hierarchy.

• Custom drawing methods in Blender for dynamic field input.

• Property update callbacks synchronize Venturial Node UI with the backend PyVNT
data structures.

5 Results and Output

5.1 Python Tree Output (PyVNT show_tree)

A parsed OpenFOAM file, like blockMeshDict, results in a PyVNT tree. The show_tree
utility can visualize this textually:

This textual tree directly reflects the structure held by PyVNT objects and is the data
source for the Blender GUI.

20

FOSSEE, IIT Bombay OpenFOAM Case Study Project

Figure 2: Example PyVNT show_tree output for a parsed blockMeshDict.

21

FOSSEE, IIT Bombay OpenFOAM Case Study Project

Table 4: Venturial Node Types and their corresponding PyVNT elements and Design Aspects

Venturial Node
Type

Corresponding PyVNT
Element(s)

Design Elements in Blender

Dict_Node.py Node_C - String field for dictionary
name
- Input and output sockets for
nesting
- Side panel for renaming

Output_node.py Root Node_C (conceptual) - Single input socket for root
Node_C
- "Export" button
- Shows status. Also acts as
head/input node.

List_Node.py List_CP (holding Node_Cs
or other Value_Ps)

- Input socket for items.
- Toggle for list type (nodes vs.
simple data).

Key_Node.py Key_C - String property for key name
- Input socket for its value
(Value_P derivative).

Int_Node.py IntProperty (or Int_P) - Integer input field.
Flt_Node.py FloatProperty (or Flt_P) - Float input field.
Str_Node.py Enm_P (or generic string) - String input field. May

include dropdown for enum
options.

Vector_Node.py List_CP of 3 numbers
(often from
FloatProperty)

- Three separate FloatProperty
fields, combines into tuple/list.

Dim_Set_Node.py List_CP of 7 numbers - Seven FloatProperty fields.
Exports as a list.

MultiValue_Node.py List_CP of a single type
(e.g., multiple
IntProperty)

- UI for adding/removing
subfields of a single data type.

22

FOSSEE, IIT Bombay OpenFOAM Case Study Project

5.2 Blender GUI (Venturial Nodes)

Figure 3: Venturial Node interface in Blender, displaying a part of an OpenFOAM case.

23

FOSSEE, IIT Bombay OpenFOAM Case Study Project

Figure 4: Detailed view of interconnected Tree-Nodes representing Cavity/sys-
tem/fvSchemes.

24

FOSSEE, IIT Bombay OpenFOAM Case Study Project

6 Conclusion and Future Work

6.1 Summary of Work

During this internship, a parser was developed, capable of interpreting both traditional
OpenFOAM dictionary files and compatible YAML configuration files. This parser was de-
signed as a core component of the PyVNT (Python Venturial Node Trees) library, facilitating
interaction with OpenFOAM case structures.

The developed OpenFoamParser within PyVNT successfully translates the complex, nested
syntax of these files into a structured, hierarchical tree representation using PyVNT’s de-
fined data classes (e.g., Node_C, Key_C, Value_P). Key functionalities of PyVNT that were
established around this parser include serializing these trees back to file formats using the
writeTo method, and mechanisms for controlling element order in dictionary output. The
parser supports both standalone file parsing and full OpenFOAM case directory traversal.

While the central objective was the parser’s development and its integration into the
PyVNT data model, its utility was further demonstrated by enabling the integration of
PyVNT trees with a visual frontend. A node-based system, Venturial Nodes, was created
inside Blender, which uses the PyVNT tree (generated by the parser) as its backend data
model. This allowed for interactive editing of OpenFOAM case files, showcasing the parser’s
role in a complete workflow from raw file input to a graphical environment.

6.2 Impact on OpenFOAM Usability

OpenFOAM is a powerful tool used in computational fluid dynamics (CFD) for simulating
complex physical phenomena. However, the software primarily relies on manually edited
dictionary files, which can be time-consuming and error-prone, especially for users who are
just beginning to explore CFD workflows or OpenFOAM itself.

The parser developed as part of PyVNT, and the broader PyVNT library (encompassing
data structures and utilities), significantly improve the user experience by providing:

• A fully automated parser in PyVNT that handles OpenFOAM dictionary syntax and
YAML mapping, eliminating much of the need for manual syntax handling.

• A structured, object-oriented PyVNT tree-based representation of cases, making them
easier to analyze, manipulate programmatically, and transform.

• A clear pathway for GUIs, like the Blender-integrated Venturial Node System, to
consume and interact with OpenFOAM data by leveraging PyVNT’s parsed output.

These tools, with the parser at their core, drastically improve the accessibility and user
experience of OpenFOAM, especially for:

• New users unfamiliar with its syntax.

• Students and educators looking for a more visual learning experience (enabled by GUIs
using PyVNT).

• Researchers and engineers aiming for quick, error-free, and programmatic case editing.

25

FOSSEE, IIT Bombay OpenFOAM Case Study Project

6.3 Scope for Enhancements (for PyVNT and Venturial System)

While PyVNT and the Venturial Node system lay a solid foundation, several enhancements
can be made:

1. Live File Synchronization

• Enable real-time file watching; if an OpenFOAM/YAML file linked to a PyVNT
tree is changed externally, offer to reload/update the tree and GUI.

2. Export/Import Enhancements for PyVNT

• PyVNT’s writeTo function already supports .txt and .yaml. Ensure YAML
output is optimized for readability and potential use as an intermediate format
for Venturial or other tools.

• Enhance OpenFoamParser to more robustly handle various OpenFOAM tutorial
cases as templates, potentially with more sophisticated type inference for ambigu-
ous entries.

3. Enhanced GUI Features

• Add inline documentation or tooltips inside Blender for each node parameter,
possibly sourcing information from PyVNT’s structure (e.g., Enm_P options).

• Allow users to search and filter nodes based on OpenFOAM categories or PyVNT
object types.

4. Enable Macros Support in PyVNT Parser
OpenFOAM configuration files often make use of macros, such as #include, #calc,
and #codeStream. Currently, PyVNT’s OpenFoamParser processes the static content
of dictionary files and does not evaluate or resolve these macros.

A future enhancement for PyVNT would involve extending the parser to:

• Recognize macro directives.
• Optionally resolve #include paths by parsing and merging the content of included

files into the main PyVNT tree structure.
• Represent unresolved macros or expressions in a way that Venturial Nodes can

display them (e.g., as special read-only nodes or string values).

This would improve PyVNT’s ability to handle complex, real-world OpenFOAM cases.

5. Advanced Type Handling and Tensor Support in PyVNT and Venturial
Nodes
Support for more complex OpenFOAM data types, like vectors, symmetric tensors,
and full tensors, needs robust handling in both Parser and the Venturial Nodes.

• Venturial Nodes: Develop specialized Venturial Nodes for these tensor types,
providing intuitive UI elements in Blender for viewing and editing their compo-
nents (e.g., dedicated vector input nodes, matrix-like displays for tensors).

26

FOSSEE, IIT Bombay OpenFOAM Case Study Project

This ensures accurate parsing, editing, and re-exporting of tensor data while maintain-
ing compatibility with OpenFOAM’s syntax.

References
[1] Hrvoje Jasak. “OpenFOAM: Open source CFD in research and industry". International

Journal of Naval Architecture and Ocean Engineering, vol. 1, Dec. 2009, pp. 89–94.
Available at: dictionary Class Reference | OpenFOAM Source Code Guide

[2] Blender Foundation. Blender Python API Documentation. Available at:
https://docs.blender.org/api/current/

[3] PyFoam GitHub Repository. Available at: https://github.com/takaakiaoki/PyFoam

[4] Python Software Foundation. PLY (Python Lex-Yacc) Documentation. Available at:
https://ply.readthedocs.io/en/latest/index.html

27

https://www.openfoam.com/documentation/guides/latest/api/classFoam_1_1dictionary.html
https://docs.blender.org/api/current/
https://github.com/takaakiaoki/PyFoam
https://ply.readthedocs.io/en/latest/index.html

	Introduction
	System Design
	Architecture Overview
	Data Flow Pipeline: From Text Files to Blender Nodes

	Parser Implementation within PyVNT
	Design Goals
	Parsing Strategy and Structure
	Controlling Element Order for File Output
	Serializing PyVNT Trees to Files (writeTo)
	Tree Representation of Dictionaries
	Parser Grammar (for OpenFOAM Dictionary Format)
	YAML Configuration Syntax
	Key-word entry
	Dictionary
	List (Sequence)
	Mixed-Type List
	Complete YAML Example for blockMeshDict

	OpenFoamParser.parse_file Function
	OpenFoamParser.parse_case Function
	OpenFoamParser.get_value Utility Function
	Challenges and Solutions

	Venturial Node System in Blender
	Venturial Node Structure
	Node Design

	Results and Output
	Python Tree Output (PyVNT show_tree)
	Blender GUI (Venturial Nodes)

	Conclusion and Future Work
	Summary of Work
	Impact on OpenFOAM Usability
	Scope for Enhancements (for PyVNT and Venturial System)

