
FOSSEE, IIT Bombay

OpenFOAM GUI

May 28, 2025

Enhancing the OpenFOAM GUI: Migration

and Improvements for Blender 4.2

Compatibility

Budhil Nigam
B.Tech - Computer Engineering

Jamia Millia Islamia

OpenFOAM GUI FOSSEE, IIT Bombay

Acknowledgement

I would like to extend my heartfelt gratitude to Prof. Chandan Bose,

Mr. Diptangshu Dey andMr. Rajdeep Adak for their exceptional mentorship

and constant support throughout the duration of my semester-long internship with

the OpenFOAM GUI Project at FOSSEE, IIT Bombay.

Their depth of knowledge in computational fluid dynamics and open-source

software development has profoundly influenced my understanding, and I am

sincerely thankful for their patience, clarity, and encouragement during each

stage of this journey.

I am equally thankful to the entire staff at FOSSEE, IIT Bombay for providing an

inspiring and collaborative work environment. Their professionalism and

enthusiasm made the experience not only productive but also deeply enriching.

The opportunity to engage with a team so committed to innovation in free and

open-source software has been both a privilege and a learning milestone.

This report is the culmination of numerous discussions, reviews, and

refinements—each made possible by the generous guidance of the individuals

acknowledged above. I remain genuinely appreciative of their unwavering

support and contribution to my academic and professional growth.

2

OpenFOAM GUI FOSSEE, IIT Bombay

Contents

1 Introduction 5

2 Migration to Blender 4.2 LTS 6

2.1 Fix: Curves Visualization Not Rendering in Blender 4.2 LTS 6

2.2 Upgrade: Migration from Deprecated OpenGL Wrapper (bgl) to GPU Module . . . 7

3 Bug Fixes & Development Updates 9

3.1 Fix: File Path Error in Add-on Initialization . 9

3.2 Fix: Double Dialog Appearance on Directory Selection 10

3.3 Persistent Data across saved .blend file . 12

3.4 UI Changes . 14

3.4.1 Header Overlap . 14

3.4.2 Adequate Ratio of the Edges List and Vertices list under the ’Edges’ Menu 17

3.4.3 Separate row for ’Curve Type’ drop down 18

3.5 Dynamic Face Selection for ’Merge Face’ Operation 19

3.6 Updated New Vertex Formula to form symmetric curves 22

4 Results 26

5 Conclusion 33

3

OpenFOAM GUI FOSSEE, IIT Bombay

List of Figures

1 Before: Double Dialog appearing after confirming directory 11

2 After: Single dialog appearing after fix . 11

3 Old Header of ”Venturial” . 16

4 New Header of ”Venturial” without self-overlap 16

5 Adequate ratio to view both the edges and vertices list 17

6 Separate row for ’Curve Type’ drop-down making it a cleaner UI 18

7 Selecting the two faces we want to merge . 21

8 Merging the selected faces with automatic master and slave face recognition 22

9 Before: Camera View of arcs created without any user intervention 24

10 After: Camera View of the created new arcs without any user intervention 24

11 Before: Upper z-axis view of the created new arcs 25

12 After: Upper z-axis view of the created new arcs 25

4

OpenFOAM GUI FOSSEE, IIT Bombay

1 Introduction

OpenFOAM[4] is a free open-source C++ toolbox for solving continuum mechanics problems. It

requires the user to manually write the case files in text format, which may be inconvenient. Having

a Graphical User Interface(GUI) for the software makes it easier to interact with it without having

to learn the technicalities.

The OpenFOAM GUI project aims to develop a tool to alleviate the process of generating

FOAM cases.

OpenFOAM does not have an integrated GUI, but there are many third-party GUI software

products. However, they are inadequately comprehensive for the OpenFOAM solution workflow.

To achieve that, an API was developed earlier to act as an intermediate piece of software between

OpenFOAM and the GUI software named ‘pyvnt’.

Two GUI interfaces have been made previously under the OpenFOAM GUI project, a Blender

addon and a PyQt application. Blender software provides a way to interact with its components

through the ’bpy’ python package. Blender also has a rich node system to represent hierarchical

data. Hence, a GUI is made as a Blender addon using the nodes to represent OpenFOAM case files.

However, the blender add-on ’Venturial’ was built upon Blender 3.6 LTS which will reach it’s

end of support by June 2025. Therefore, there was a need to migrate the add-on to Blender 4.2 LTS

which is the latest long-term version of the Blender software. Along this, several new bug fixes

and new features have been implemented.

5

OpenFOAM GUI FOSSEE, IIT Bombay

2 Migration to Blender 4.2 LTS

2.1 Fix: Curves Visualization Not Rendering in Blender 4.2 LTS

After upgrading the Venturial add-on to support Blender 4.2 LTS, a regression was observed in

which curve visualizations, such as custom boundary or edge overlays drawn using GPU shaders,

were no longer visible in the 3D viewport. These drawings are crucial for representing user-defined

geometry and visual feedback in the GUI.

Cause:

Blender 4.2 LTS introduced an API change in the gpu.shader module [2]. The shader previously

obtained using:

shader = gpu.shader.from_builtin('3D_UNIFORM_COLOR')

is now deprecated or behaves differently. Specifically, the API no longer accepts the string

'3D_UNIFORM_COLOR' directly and requires updated naming conventions or alternatives.

Solution:

The shader initialization was corrected to use the appropriate shader key supported in Blender 4.2

LTS. The draw handler code was updated to explicitly fetch and bind the correct shader, ensuring

that the 3D drawing overlays would render as intended.

The relevant draw function was modified as follows:

import gpu
from gpu_extras.batch import batch_for_shader

def draw_curve():
Corrected shader initialization for Blender 4.2 LTS
shader = gpu.shader.from_builtin('UNIFORM_COLOR')

batch = batch_for_shader(shader, 'LINE_STRIP', {"pos": verts})

Bind shader and draw the curve
shader.bind()
shader.uniform_float("color", col)
batch.draw(shader)

Impact:

This fix restored the expected curve visualization behavior within the Blender viewport. The add-

on now correctly renders overlay graphics such as boundaries and guides, maintaining its usability

in Blender 4.2+.

6

OpenFOAM GUI FOSSEE, IIT Bombay

2.2 Upgrade: Migration from Deprecated OpenGL Wrapper (bgl) to GPU

Module

As part of the compatibility enhancement for Blender 4.2 LTS, deprecated usage of the bgl module

in the ’Visualize’ tab was identified and replaced. The bgl module, previously used for OpenGL

state management and rendering, is deprecated in Blender’s future API. It was necessary to transi-

tion the rendering logic to the modern gpu module to maintain add-on compatibility.

Cause:

The drawing logic for edges and bound properties used bgl.glEnable, bgl.glDisable, and
gpu.shader.from_builtin("3D_SMOOTH_COLOR"), which are no longer fully supported. These
calls caused instability and missing visualizations in Blender 4.2 LTS.

Solution:

All bgl state control calls were replaced with gpu.state equivalents. Additionally, the shader

call was updated from the deprecated "3D_SMOOTH_COLOR" to "SMOOTH_COLOR", as per updated
GPU API requirements.

Code Changes:

The following function demonstrates how both OpenGL state control and shader usage were up-

dated:

def draw_edge_properties(self, operator, context, geo):
Set GPU state
Before
bgl.glEnable(bgl.GL_BLEND)
bgl.glEnable(bgl.GL_LINE_SMOOTH)
bgl.glEnable(bgl.GL_DEPTH_TEST)

After
gpu.state.blend_set('ALPHA')
gpu.state.depth_test_set('LESS_EQUAL')

for point in self.get_edge_properties(geo):
self.draw_line_3d((0.0, 1.0, 0.0, 0.7), point, geo.location)

Reset state
Before
bgl.glDisable(bgl.GL_BLEND)
bgl.glDisable(bgl.GL_LINE_SMOOTH)
bgl.glDisable(bgl.GL_DEPTH_TEST)

After
gpu.state.blend_set('NONE')
gpu.state.depth_test_set('NONE')

7

OpenFOAM GUI FOSSEE, IIT Bombay

Additionally, the shader used in the draw_bound_properties function was updated as

follows:

Old
self.shader = gpu.shader.from_builtin("3D_SMOOTH_COLOR")

New
self.shader = gpu.shader.from_builtin("SMOOTH_COLOR")

Impact:

These changes ensure that the ’Visualize’ tab’s visual elements render correctly in Blender 4.2 LTS

and remain functional in future releases. By eliminating all deprecated bgl usage, the add-on now

aligns with Blender’s recommended GPU drawing pipeline.

8

OpenFOAM GUI FOSSEE, IIT Bombay

3 Bug Fixes & Development Updates

3.1 Fix: File Path Error in Add-on Initialization

During the enhancement of the Venturial add-on for Blender 4.2 LTS compatibility, an issue was

identified where the add-on failed to locate the user_custom_settings.json preferences file

during initialization. This resulted in errors when attempting to load or save user preferences,

thereby disrupting the add-on’s functionality.

Cause:

The problem originated from the method used to define the default path for the preferences file

within the VNT_OT_save_preferences operator. Specifically, the code utilized:

pref_loc: StringProperty(
default=bpy.utils.script_paths(subdir='addons')[1]
+ "/venturial/preferences/user_custom_settings.json"

)

This approach assumed that the desired add-on directory was always located at index [1] of the

list returned by:

bpy.utils.script_paths(subdir='addons')

However, the order of paths in this list can vary across different systems and Blender installations,

leading to incorrect path resolutions and subsequent file not found errors.

Solution:

To rectify this, the index was changed from [1] to [0], ensuring that the path points to the first di-
rectory in the list, which typically corresponds to the user-specific add-ons directory. The updated

code is:

pref_loc: StringProperty(
default=bpy.utils.script_paths(subdir='addons')[0]
+ "/venturial/preferences/user_custom_settings.json"

)

This update helps ensure the add-on functions correctly by matching Blender’s typical folder struc-

ture, which reduces the chance of file path errors during startup.

Impact:

This fix ensures that the Venturial add-on reliably locates and interacts with the

user_custom_settings.json file across various Blender environments. It eliminates initializa-

tion errors related to file paths, thereby improving the add-on’s stability and user experience.

9

OpenFOAM GUI FOSSEE, IIT Bombay

3.2 Fix: Double Dialog Appearance on Directory Selection

During the enhancement of the Venturial add-on for Blender 4.2 LTS compatibility, a bug was dis-

covered where the file browser dialog for selecting a directory would appear twice consecutively.

This caused confusion and required multiple user interactions to complete a single selection.

Cause:

The issue originated in the VNT_OT_select_mesh_filepath operator, defined in the

file_handling_operators.py module. The lack of proper context checks and unconditional

re-invocation logic led to the execution of the operator multiple times.

Solution:

To eliminate this, three key modifications were made:

1. Added a poll() class method to restrict operator execution to valid contexts.

@classmethod
def poll(cls, context):

"""Ensure the operator can be executed."""
return context.scene is not None

2. Updated the execute() method to safely complete the action and avoid reopening the

dialog.

def execute(self, context):
if self.is_dir:

Handle directory selection logic
return {'FINISHED'}

else:
return {'CANCELLED'}

3. Modified the invoke() method to ensure the file selector is invoked just once.

def invoke(self, context, event):
self.is_dir = True
context.window_manager.fileselect_add(self)
return {'RUNNING_MODAL'}

Impact:

This update guarantees that the file selection dialog appears only once per user action, removing

redundancy and significantly improving the user experience.

10

OpenFOAM GUI FOSSEE, IIT Bombay

Figure 1: Before: Double Dialog appearing after confirming directory

Figure 2: After: Single dialog appearing after fix

11

OpenFOAM GUI FOSSEE, IIT Bombay

3.3 Persistent Data across saved .blend file

It was observed that certain custom data, specifically edge and vertex information used for visual-

ization, was not persisting across sessions. Upon saving and reopening a .blend file, the custom

draw handlers and associated data were lost, leading to a degraded user experience.

Cause:

The issue stemmed from the storage of temporary drawing data in global variables or in contexts

that are not preserved when a .blend file is saved and later reopened. Blender’s architecture re-

quires that persistent data be stored within its data structures, such as the Scene, to ensure longevity
across sessions.

Solution:

To address this, the following changes were implemented:

1. Storing Draw Data in the Scene: A function get_edge_draw_data() was defined to re-

trieve or initialize a dictionary within the Scene to store draw handler IDs and vertex data.

def get_edge_draw_data():
"""
Returns a dict used to store temporary drawing data.
This dictionary is attached to the scene and reinitialized on file
load.
"""
scn = bpy.context.scene
if "_edge_draw_data" not in scn:

scn["_edge_draw_data"] = {
"draw_handlers": [],
"verts": []

}
return scn["_edge_draw_data"]

12

OpenFOAM GUI FOSSEE, IIT Bombay

2. Resetting Draw Handlers on File Load: A load handler function load_post_handler()
was added to clear existing draw handlers and vertex data upon loading a .blend file, en-

suring a clean state.

def load_post_handler():
"""
Handler that resets the draw handlers for edges after a .blend file
is loaded.
"""
Clear any existing draw handler references in our scene data.
edge_data = get_edge_draw_data()
edge_data["draw_handlers"].clear()
edge_data["verts"].clear()

Re-run the drawing function for each edge.
scn = bpy.context.scene
for i in range(len(scn.ecustom)):

try:
Assume draw_edge is a function that sets up drawing for

an edge
draw_edge(scn.ecustom[i])

except Exception as e:
print(f"Error drawing edge: {e}")

3. Registering theLoadHandler: The load_post_handler()was registered usingBlender’s
bpy.app.handlers.load_post to ensure it is called after a file is loaded.

import bpy
from bpy.app.handlers import persistent

@persistent
def load_post_handler(dummy):

Handler code as defined above

bpy.app.handlers.load_post.append(load_post_handler)

Impact:

These modifications ensure that custom edge and vertex data used for visualization are preserved

across Blender sessions. By storing the data within the Scene and properly managing it upon file

load, the add-on now provides a consistent and reliable user experience.

13

OpenFOAM GUI FOSSEE, IIT Bombay

3.4 UI Changes

3.4.1 Header Overlap

Cause:

With Blender 4.2, Venturial’s top-bar layout suffered from self-overlapping header elements. This

issue originated from the use of multiple uncoordinated layout rows in the header section—specif-

ically, each UI element was being added using separate layout.row() calls. Blender’s updated

UI behavior, particularly in the top-bar header region, enforces single-row alignment, making such

an approach prone to overlap and layout breakage.

Solution:

To resolve this, the header drawing logic was refactored into two clearly structured parts:

1. header_layout: This function collects all left-aligned elements and places them within a

single row using layout.row(align=True). For instance, the ”File” menu and the tool

selection popover are now drawn sequentially in the same horizontal row:

class header_layout:
def draw(self, layout, context):

cs = context.scene
row = layout.row(align=True)
row.menu(VNT_MT_file_menu.bl_idname, text="File")
row.popover(VNT_PT_uicategory.bl_idname,

text=cs.current_tool_text)
Second row: Mode propertyAdd commentMore actions
row = layout.row(align=True)
row.prop(cs, "mode", icon_only=True, expand=True)

Third row: Venturial and FOSSEE menus
row = layout.row(align=True)
row.menu(

VNT_MT_about_venturial.bl_idname,
text=" Venturial ",
icon_value =

custom_icons["venturial_logo"]["venturial_logo"].icon_id
)
row = layout.row(align=True)
row.menu(

VNT_MT_about_fossee.bl_idname,
text=" FOSSEE ",

icon_value=custom_icons["fossee_logo"]["fossee_logo"].icon_id
)

14

OpenFOAM GUI FOSSEE, IIT Bombay

2. header_preset_layout: Introduced for placing right-aligned controls in the header area,
such as help links and panel close buttons. This follows Blender’s convention where

‘draw_header_preset()‘ is used for right-end justified content. The added code looks like:

class header_preset_layout:Add commentMore actions
"""Preset Class that consists of methods to define venturial's
header layout"""

def draw(self, layout, context):
Fourth row: Help menu and close operator
row = layout.row(align=True)
row.menu(VNT_MT_help_menu.bl_idname, text=" Help ",

icon="QUESTION")
row = layout.row(align=True)
row.alert = TrueAdd commentMore actions
row.operator(VNT_OT_close_venturial.bl_idname, text="",

icon="PANEL_CLOSE")
row.alert = False

And the panel now uses:

class VNT_PT_usermodeview(Panel):
"""Main Panel Layout of User Mode"""
def draw_header(self, context):

layout = self.layout
getattr(header_layout(), "draw")(layout, context)

def draw_header_preset(self, context):
layout = self.layout
getattr(header_preset_layout(), "draw")(layout, context)

def draw(self, context):
layout = self.layout
getattr(mainPanel(), "draw")(layout, context)

This approach ensures that secondary actions (Help and Close) appear on the far right of the

header bar, separated from the primary workflow controls.

Impact: The updated structure improves visual clarity and UI consistency with Blender’s evolving

design standards. By distinguishing between primary (left-aligned) and secondary (right-aligned)

controls, the new layout prevents header self-overlap and enhances usability.

15

OpenFOAM GUI FOSSEE, IIT Bombay

Figure 3: Old Header of ”Venturial”

Figure 4: New Header of ”Venturial” without self-overlap

16

OpenFOAM GUI FOSSEE, IIT Bombay

3.4.2 Adequate Ratio of the Edges List and Vertices list under the ’Edges’ Menu

To improve visual balance and readability in the Edges panel, the layout ratio between the label

and corresponding UI elements was adjusted.

The split factor in the layout definition was updated:

split = layout.split(factor=0.4)

This change provides better horizontal space allocation for vertex and edge lists, preventing label

truncation and enhancing usability.

Figure 5: Adequate ratio to view both the edges and vertices list

17

OpenFOAM GUI FOSSEE, IIT Bombay

3.4.3 Separate row for ’Curve Type’ drop down

In the Edges panel, the Curve Type dropdown was previously placed on the same row as the edge

operation buttons (Generate Edge, Remove Edge), leading to a cramped layout and reduced clar-

ity.

To enhance readability, the layout was restructured to place the Curve Type selection on its own

row. The relevant code changes are as follows:

row1 = layout.row()
row1.prop(cs, "curve_type", text="Curve Type")

row2 = layout.row()
row2.operator('vnt.new_edge')
row2.operator('vnt.remove_edge')

row3 = layout.row()
row3.operator('vnt.new_vert')
row3.operator('vnt.remove_vert')

Impact:

This adjustment improves the visual organization of the Edges panel, making the interface more

intuitive and user-friendly.

Figure 6: Separate row for ’Curve Type’ drop-down making it a cleaner UI

18

OpenFOAM GUI FOSSEE, IIT Bombay

3.5 Dynamic Face Selection for ’Merge Face’ Operation

Cause:

Previously, the “Merge Face” operation in Venturial’s Blender add-on required users to select faces

through drop-downs of static UI lists maintained in scene properties. This approach was cumber-

some and prone to synchronization issues between the 3D viewport and internal data.

Furthermore, the earlier implementation lacked geometric validation for face overlap, risking erro-

neous merges.

Solution:

The migration introduced in this feature modifies the “Merge Face” workflow to use dynamic,

edit-mode-based selection and geometric validation.

• Dynamic Selection: The operator now directly queries the currently selected faces in edit

mode via bmesh, enforcing exactly two face selections:

bm = bmesh.from_edit_mesh(obj.data)
selected_faces = [f for f in bm.faces if f.select]
if len(selected_faces) != 2:

self.report({'ERROR'}, "Exactly two faces must be selected.")
return {'CANCELLED'}

• Geometric Utilities: Mathematical functions made to verify the intersection of the two faces

completely ensuring a face is smaller(slave) and the other is larger(master) and are

completely overlapping into one another and not partially.

def project_point_onto_plane(point, plane_point, plane_normal):
vec = point - plane_point
distance = vec.dot(plane_normal)
projection = point - distance * plane_normal
return distance, projection

def point_in_polygon_2d(pt, poly):
x, y = pt
inside = False
n = len(poly)
for i in range(n):

xi, yi = poly[i]
xj, yj = poly[(i + 1) % n]
if (yi > y) != (yj > y):

x_intersect = (xj - xi) * (y - yi) / (yj - yi + 1e-10) + xi
if x < x_intersect:

inside = not inside
return inside

def faces_intersect(faces, tol=1e-6):

19

OpenFOAM GUI FOSSEE, IIT Bombay

if len(faces) != 2:
raise ValueError("Exactly two faces are required.")

f1, f2 = faces
def face_completely_inside(inner, outer):

u = (outer.verts[1].co - outer.verts[0].co).normalized()
v = outer.normal.cross(u).normalized()
poly2d = [

((vtx.co - outer.verts[0].co).dot(u),
(vtx.co - outer.verts[0].co).dot(v))

for vtx in outer.verts
]
for vtx in inner.verts:

dist, proj = project_point_onto_plane(vtx.co,
outer.verts[0].co, outer.normal)

if abs(dist) > tol:
return False

pt2d = ((proj - outer.verts[0].co).dot(u),
(proj - outer.verts[0].co).dot(v))

if not point_in_polygon_2d(pt2d, poly2d):
return False

return True
return face_completely_inside(f1, f2) or face_completely_inside(f2,
f1)

• FaceValidation andMapping: The selected faces are validated against the add-on’s custom

face list, ensuring only faces recognized by the system are merged:

selected_face_indices = [[v.index for v in f.verts] for f in
selected_faces]

fcustom_faces = [face_strtolist(f.name) for f in cs.fcustom]
if not all(face in fcustom_faces for face in selected_face_indices):

self.report({'ERROR'}, "Selected faces must exist in the face
list.")
return {'CANCELLED'}

• Master/Slave Determination by Area: The operator determines which face is master/slave

by comparing their calculated areas:

face_areas = [f.calc_area() for f in selected_faces]
master_face, slave_face = (selected_face_des[0], selected_face_des[1])

if face_areas[0] > face_areas[1] else (selected_face_des[1],
selected_face_des[0])

20

OpenFOAM GUI FOSSEE, IIT Bombay

• Mapping Storage and Confirmation Message: The merge result is stored in a custom

mapping list and an informative message is reported:

item = cs.fmcustom.add()
item.master_face = master_face
item.slave_face = slave_face
self.report({'INFO'}, f"Merged {item.master_face} (master) with

{item.slave_face} (slave).")

Impact:

This migration delivers a seamless, Blender-native workflow by allowing users to select faces di-

rectly in the 3D viewport, eliminating the need for error-prone static UI lists. The introduction

of geometric validation routines such as plane projection and polygon containment ensures that

merges only occur between genuinely overlapping faces, reducing the risk of invalid operations.

Master/slave face assignment is now automatic and robust.

Figure 7: Selecting the two faces we want to merge

21

OpenFOAM GUI FOSSEE, IIT Bombay

Figure 8: Merging the selected faces with automatic master and slave face recognition

3.6 Updated New Vertex Formula to form symmetric curves

Cause:

The previous method for calculating the position of a new vertex for a new edge/curve of type ’Arc’

created in ’Edges’ menu was insufficient for ensuring geometric symmetry and alignment with the

faces of the 3D Shape/Mesh. The old approach averaged the coordinates of the two edge endpoints,

adjusting the z-coordinate differently, as shown below. This method often produced vertices that

were not properly aligned with the face’s geometry, especially for non-square or rotated cubes,

leading to inconsistent and non-symmetrical results.

coord = [None, None, None]
for i in range(3):

coord[i] = (x[i] + y[i])/1.5

Solution:

To address these issues, a new formula was implemented. This formula constructs a vertex position

that is always on the perimeter of an ellipse (approximated as a circle for square faces), symmetri-

cally around the upper face of the cube. The key steps are:

1. Compute the center of the upper face of the cube:

cube_center = context.active_object.location
face_center = (cube_center[0], cube_center[1], cube_center[2] +

context.active_object.dimensions.z / 2)

22

OpenFOAM GUI FOSSEE, IIT Bombay

2. Calculate the radius as half the diagonal of the face, ensuring the new vertex lies on the ellipse

boundary:

face_diagonal = (context.active_object.dimensions.x ** 2 +
context.active_object.dimensions.y ** 2) ** 0.5

radius = face_diagonal / 2

3. Determine the midpoint of the selected edge, then compute the direction vector from the face

center to this midpoint:

midpoint = [(x[i] + y[i]) / 2 for i in range(3)]
direction = [midpoint[i] - face_center[i] for i in range(3)]
direction[2] = 0 # Project onto XY plane

4. Normalize this direction and use it to place the new vertex symmetrically around the face:

length = (direction[0] ** 2 + direction[1] ** 2) ** 0.5
direction = [direction[i] / length for i in range(2)] + [0]
coord = [

face_center[0] + direction[0] * radius,
face_center[1] + direction[1] * radius,
(x[2] + y[2]) / 2

]

Impact:

This updated approach guarantees that the generated vertex is always positioned on a symmetrical

ellipse (or circle) around the upper face, regardless of the cube’s orientation or dimensions. As a re-

sult, the add-on produces more accurate, visually consistent, and mathematically robust geometry,

which is crucial for procedural modeling workflows. The symmetry and precision introduced by

this new method enhance both the reliability of the add-on and the quality of the generated meshes,

supporting advanced modeling task.

23

OpenFOAM GUI FOSSEE, IIT Bombay

Figure 9: Before: Camera View of arcs created without any user intervention

Figure 10: After: Camera View of the created new arcs without any user intervention

24

OpenFOAM GUI FOSSEE, IIT Bombay

Figure 11: Before: Upper z-axis view of the created new arcs

Figure 12: After: Upper z-axis view of the created new arcs

25

OpenFOAM GUI FOSSEE, IIT Bombay

4 Results

A step by step process of creating a block with associated curves and assigned boundaries and then

generating it’s blockMeshDict file.

1. Opening a new case directory to save blockMeshDict file
We first go to the ’Explore’ tab of our ’Venturial’ add-on in Blender. Click on ’New’ Button

which will open a dialog box asking for the case directory to store blockMeshDict file.

2. Generating a new block object to work on
Go to the ’Geometry’ tab and click on ’Generate Blocks’ button which will generate the

number of blocks we have selected in the integer input box, default being 1.

26

OpenFOAM GUI FOSSEE, IIT Bombay

3. Reading all block and vertices data in the scene
Click on ’Get Blocks’ and then ’Get Vertices’ to collect all the block and vertices data present

in the scene.

4. Modifying the block to an elongated shape
We can also modify the block as we wish and repeat the process of reading the block and

vertices data.

27

OpenFOAM GUI FOSSEE, IIT Bombay

5. Creating edges around the block
Go to ’Edges’ tab and select the edge of the block on which you want to draw your desired

curve via ’EditMode’ of Blender. Simply click on ’Generate Edge’ button to generate a curve

on the selected edge and then ’Generate new Vertex’ to create a vertex along the curve.

6. Assigning boundaries to faces of the block
To assign boundaries for blockMeshDict we have to select the faces of the block and assign

them boundary name and their type. Simply select a face of the block in ’Edit Mode’ and

click on ’New Boundary’, a dialog box will appear to take the name and type of boundary.

28

OpenFOAM GUI FOSSEE, IIT Bombay

7. Run Utility to generate blockMeshDict file
Go to ’Run’ tab and click on ’Generated BlockMesh Dictionary’ to generate the blockMesh-

Dict file of the block and associated curves you have created till now. The blockMeshDict

file will be saved in the same directory you selected in the beginning.

29

OpenFOAM GUI FOSSEE, IIT Bombay

8. Generated blockMeshDict file
The contents of the generated blockMeshDict file in the selected directory after running the

”Run Utilities” is as follows:

/*--------------------------------*- C++
-*----------------------------------*\\

=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 9
\\ / A nd	Web: www.OpenFOAM.org
\\/ M anipulation	
---/
//*******This file is generated by Venturial*********//
FoamFile
{

version 2.0;
format ascii;
class dictionary;
object blockMeshDict;

}
convertToMeters 0.10000000149011612 ;
vertices
(

(-0.5 -0.5 -0.5)
(-0.5 -0.5 2.5)
(-0.5 0.5 -0.5)
(-0.5 0.5 2.5)
(0.5 -0.5 -0.5)
(0.5 -0.5 2.5)
(0.5 0.5 -0.5)
(0.5 0.5 2.5)

);
blocks
(

hex (0 4 6 2 1 5 7 3) (1 1 1) simpleGrading (1 1 1)
);
edges
(

arc 7 5 (0.7071067690849304 0.0 2.5)
arc 5 1 (0.0 -0.7071067690849304 2.5)
arc 3 7 (0.0 0.7071067690849304 2.5)
arc 1 3 (-0.7071067690849304 0.0 2.5)
arc 4 6 (0.7071067690849304 0.0 -0.5)
arc 0 4 (0.0 -0.7071067690849304 -0.5)
arc 2 0 (-0.7071067690849304 0.0 -0.5)
arc 6 2 (0.0 0.7071067690849304 -0.5)

);
boundary

30

OpenFOAM GUI FOSSEE, IIT Bombay

(
a
{

type patch;
faces
(

(7 3 1 5)
);

}
b
{

type wall;
faces
(

(4 5 1 0)
);

}
c
{

type wall;
faces
(

(6 7 5 4)
);

}
d
{

type wall;
faces
(

(2 3 7 6)
);

}
e
{

type wall;
faces
(

(0 1 3 2)
);

}
f
{

type patch;
faces
(

(2 6 4 0)

31

OpenFOAM GUI FOSSEE, IIT Bombay

);
}

);
mergePatchPairs
(
);
//

//

32

OpenFOAM GUI FOSSEE, IIT Bombay

5 Conclusion

We were successful in enhancing the existing OpenFOAM GUI add-on Venturial to make it com-

patible with Blender 4.2 LTS. The work included fixing critical bugs, updating deprecated Blender

API usages, and improving the overall user interface layout. These changes ensure that the add-on

remains functional and stable with the latest Blender release.

The results demonstrate a complete pipeline—from generating a basic geometry like a cube

to exporting its corresponding blockMeshDict file—using the improved add-on. This workflow

showcases the practical utility of the GUI for OpenFOAM case setup. Continued development can

help evolve this prototype into a robust tool for CFD case preparation.

33

OpenFOAM GUI FOSSEE, IIT Bombay

References

[1] BlenderOpenGLWrapperModule: https://docs.blender.org/api/current/bgl.html

[2] BlenderGPUShaderUtilities: https://docs.blender.org/api/current/gpu.shader.html

[3] Blender API Documentation: https://docs.blender.org/api/current/

[4] OpenFoam Documentation: https://www.openfoam.com/documentation/overview

34

	Introduction
	Migration to Blender 4.2 LTS
	Fix: Curves Visualization Not Rendering in Blender 4.2 LTS
	Upgrade: Migration from Deprecated OpenGL Wrapper (bgl) to GPU Module

	Bug Fixes & Development Updates
	Fix: File Path Error in Add-on Initialization
	Fix: Double Dialog Appearance on Directory Selection
	Persistent Data across saved .blend file
	UI Changes
	Header Overlap
	Adequate Ratio of the Edges List and Vertices list under the 'Edges' Menu
	Separate row for 'Curve Type' drop down

	Dynamic Face Selection for 'Merge Face' Operation
	Updated New Vertex Formula to form symmetric curves

	Results
	Conclusion

