
Semester Long Internship Report
On

Scilab Control System Toolbox Development

Submitted by

Nikitha D

Under the guidance of

Prof.Kannan M. Moudgalya

Chemical Engineering Department

IIT Bombay

Mentor

Ms. Rashmi Patankar

Project Manager, Scilab Team, FOSSEE Project, IIT Bombay

Faculty Guide

Dr.V.Krishnaveni

Professor and Head,Department of ECE,

PSG College of Technology

September 1, 2025

Acknowledgment

I would like to express my sincere gratitude to the FOSSEE Team at IIT Bombay for giving
me the opportunity to contribute to the development of the Scilab Control System Toolbox
during my internship. This experience has been valuable in enhancing both my technical
knowledge and practical skills.

I am thankful to Prof. Kannan M. Moudgalya, Department of Chemical Engineering, IIT
Bombay, for creating this platform that enables students to apply their learning through
open-source contributions and meaningful projects.

I extend my thanks to my mentor, Ms. Rashmi Patankar, Project Manager, Scilab Team,
FOSSEE Project, for her constant guidance, support, and constructive feedback throughout
the internship. Her insights helped me improve and gain confidence in my work.

I would also like to acknowledge the FOSSEE Team for maintaining a collaborative and
motivating environment that encouraged continuous learning and growth.

My gratitude also goes to the Department of Electronics and Communication Engineering,
PSG College of Technology, for providing me with a strong academic foundation and
encouraging me to explore opportunities beyond classroom learning.

Finally, I thank Dr. V. Krishnaveni, Professor and Head of the Department of ECE, PSG
College of Technology, for her constant guidance and encouragement, which inspired me to
explore practical applications of Control Systems and contribute to this open-source project.

1

Contents

1 Introduction 3

2 Control System Toolbox Development 4
2.1 Overview . 4
2.2 Development Workflow . 4

2.2.1 Studying Reference Implementations . 5
2.2.2 Line-by-Line Translation to Scilab . 5
2.2.3 Handling Missing or Incompatible Functions 5
2.2.4 Testing and Iteration . 6
2.2.5 Leveraging AI for Translation and Debugging 6

2.3 Current Status . 6
2.3.1 Documentation Pattern . 6
2.3.2 Functions Completed . 7
2.3.3 Challenges Faced . 8
2.3.4 Issues and Possible Improvements . 8

3 Learnings 9

4 Conclusion 10

2

Chapter 1

Introduction

The Free/Libre and Open Source Software for Education (FOSSEE) is a national project
supported by the Ministry of Education, Government of India. It is part of the National
Mission on Education through ICT. The main aim of FOSSEE is to promote the use of free
and open-source software in colleges and universities. By encouraging the use of such tools,
the project helps reduce the need for expensive commercial software. FOSSEE works on
different activities like software development, training programs, and creating learning
materials. Through these efforts, it supports better learning and research in technical fields.
It also motivates students and teachers to take part in the open-source community and gain
hands-on experience with real-world projects.

Scilab is one of the software tools promoted by FOSSEE. It is a free and open-source platform
used for scientific and engineering calculations. Scilab has its own programming language and
supports a wide range of applications such as signal processing, image pro cessing, system
simulation, data analysis, and optimization. It also includes tools for creating 2D and 3D
plots, making it useful for visualizing data and results. Users can add more features to Scilab
by installing toolboxes that expand its functionality. Because it is free and easy to use, Scilab
is often chosen as an alternative to MATLAB in academic settings.

One of the important toolboxes available in Scilab is the Control System Toolbox, which is
developed by the FOSSEE team at IIT Bombay. This toolbox is designed to help users study
and work with control systems. It allows for modeling, analysis, and simulation of different
types of systems. The toolbox has functions to plot root locus, Bode plots, and plot. These
plots help in understanding system behavior and frequency response of the system. It also
provides tools to analyze poles and zeros, which are important for checking the stability of a
system. In addition, the toolbox supports PID controller design and helps users work with
transfer functions and state-space models. Properties like controllability and observability can
also be checked. Since all the features are built to work directly in Scilab, there is no need for
extra software, which makes the toolbox fast and easy to use. It is a helpful tool for students
and professionals in fields such as robotics, automation, and industrial control systems.

3

Chapter 2

Control System Toolbox Development

2.1 Overview

The Control System Toolbox developed as part of the FOSSEE initiative plays a significant
role in supporting control engineering applications within Scilab. It serves as a vital resource
for learners, educators, and practitioners who rely on free and open-source tools for system
modeling and analysis. The toolbox includes a diverse set of functions that cover core aspects
of control system design, ranging from foundational classical techniques to more advanced
modern methods.

The Control System Toolbox in Scilab originally contained only a limited number of
functions. Hence the internship goal was to replicate several control functions from GNU
Octave to expand and extend the existing toolbox’s capabilities. This work aimed to reduce
dependence on external tools and provide a more integrated, Scilab-only solution for users.
The motivations for this translation included:

• Better integration: Allowed greater alignment with Scilab’s internal libraries and
syntax, resulting in fewer runtime issues.

• Enhancement of existing toolbox: To strengthen and expand the capabilities of the
current Control System Toolbox by adding new functions and improving existing ones.

The process of development required a combination of technical understanding, creative
problem-solving, and rigorous testing. Each function was carefully redesigned or rewritten to
match its intended behavior. Special attention was paid to numerical stability, syntax
compatibility, and documentation. The following sections detail the development strategy,
function design, and key results achieved during the internship.

2.2 Development Workflow

The development process followed these main steps:

• The functionality of the original Octave functions was examined in detail.

• Their logic was translated into Scilab using equivalent syntax and operations.

• Any missing or unsupported features in Scilab were identified and implemented
separately.

• Each function was carefully tested, and improvements were made to ensure accuracy
and reliability.

4

2.2.1 Studying Reference Implementations

Before beginning the implementation, it was essential to analyze each control function in
detail. This included understanding its purpose and the mathematical principles involved.
For functions derived from Octave, reference materials such as documentation and source
code were typically available on Octave Forge.

Important tasks during this stage included:

• Studying the mathematical foundation and expected behavior of the function.

• Identifying dependencies, including sub-functions and specific Octave features.

• Assessing the complexity of translation by comparing Octave constructs with Scilab’s
capabilities.

2.2.2 Line-by-Line Translation to Scilab

This stage focused on converting the original Octave/MATLAB code into Scilab-compatible
syntax and structure. While both environments share several programming concepts, there
are important differences that had to be carefully addressed:

• Control structures: Octave uses explicit keywords such as endif and endfor to close
blocks, whereas Scilab uses a single end for all block closures.

• Constants and logical values: Scilab uses predefined constants like

• String handling and indexing: The way Scilab manages strings and performs
indexing operations often differs, requiring adjustments to maintain expected behavior.

• Error handling: Octave’s usage() function had to be replaced with Scilab’s
error(”message”) function for displaying custom error messages.

In some cases, direct one-to-one translation was not possible, which called for creative
reimplementation using Scilab-specific features and logic to ensure functional accuracy.

2.2.3 Handling Missing or Incompatible Functions

During the translation process, several difficulties arose due to missing or incompatible
functions in Scilab. To overcome these issues, alternative strategies were employed:

• Function reimplementation: When no direct equivalent existed in Scilab, new
versions of those functions were created using native Scilab programming constructs.

• Differences in behavior: Some functions with the same name in both Octave and
Scilab behaved differently. In these cases, the intended functionality was reproduced by
writing custom code tailored for Scilab.

In some instances, the original reference code used data types such as structs that Scilab does
not fully support. These cases were addressed by either developing algorithmic substitutes or
bypassing those parts of the implementation altogether.

5

2.2.4 Testing and Iteration

Testing played a crucial role throughout the development process. Often, test cases were
available at the end of the original source files in the reference implementation. When such
tests were missing or inadequate, new test cases were created to verify the accuracy and
reliability of the Scilab implementations. Various input scenarios, including edge cases, were
examined to achieve thorough validation. Each function was repeatedly refined and tested
until its results closely matched those of the original reference.

2.2.5 Leveraging AI for Translation and Debugging

An important part of the workflow was the use of AI (Artificial Intelligence) assistance tools
to speed up the translation process. AI proved valuable at several stages of development:

• Algorithm Extraction: AI was used to interpret the underlying algorithms from the
original Octave code, helping to understand the logical flow before starting the Scilab
implementation.

• Code Translation: Octave code fragments were converted into Scilab syntax with AI
support, ensuring functionality was preserved and suggesting equivalent Scilab functions
where Octave features were not directly supported.

• Code Structuring: After drafting the Scilab version, AI assisted in improving
indentation, formatting, and applying clear naming conventions, which enhanced
readability and maintainability.

• Conceptual Understanding: AI explanations helped in grasping new technical
concepts that were essential for building accurate Scilab functions.

• Error Analysis and Debugging: In cases of partial or unexpected outputs, AI
analyzed error messages and suggested corrections or alternative approaches, which
reduced time spent searching documentation and allowed more focus on the
mathematical aspects of each function.

2.3 Current Status

Following the previously outlined workflow, I have successfully translated 25 functions from
Octave to Scilab.

Each function is accompanied by documentation at the top of its file and test cases at the
bottom.Furthermore, in my repository, you can find test cases and documentation in a
README file for each function.

2.3.1 Documentation Pattern

Since the goal was to replicate the functions as they exist in Octave, Octave’s documentation
served as the primary reference for documenting the corresponding Scilab functions.

The documentation for each function is placed on the top of its declaration and consists of a
single comprehensive comment block. This documentation typically includes four key parts:

• Calling Sequence: The order in which the function evaluates its parameters.

• Parameters: Details about the expected inputs, including their types and valid ranges.

6

• Description: An in-depth explanation of the function’s behavior, including default
settings, input-output expectations, dependencies, and other relevant information.

• Examples: Sample usage illustrating how the function should be used correctly.

Because the functions were rewritten to maintain their original behavior, the documentation
required minimal changes, as the existing descriptions generally aligned well with the Octave
versions.

All the work done during the internship can be found on GitHub:
https://github.com/nikithad14/Scilab-control-system-toolbox-development-functions

2.3.2 Functions Completed

S.No Function name Function name in octave Dependencies

1 append append

2 db2mag db2mag

3 diff iddata @iddata/diff

4 dssdata dssdata sys data

5 horzcat iddata @iddata/horzcat

6 ifft iddata @iddata/ifft

7 inv ss inv sys inverse

8 isminimumphase isminimumphase zero

9 issiso issiso

10 isstable isstable is stable , pole

11 merge iddata @iddata/merge

12 mldivide mldivide

13 mpower mpower

14 mrdivide mrdivide

15 nkshift iddata @iddata/nkshift

16 parallel parallel

17 pole pole pole

18 repsys repsys

19 series series

20 size lti @lti/size

21 times times times

22 transpose transpose transpose

23 uminus uminus

24 uplus uplus

25 end lti end

Table 2.1: List of Completed Functions

7

2.3.3 Challenges Faced

Challenges in Developing Scilab-Native Implementations of Signal Processing Functions
During the development of Scilab-native signal processing functions, challenges arose both
before and after incorporating AI-based assistance. These can be categorized as follows:

Challenges Before Using AI Assistance

• Unavailable Functions: Several sub-functions used in Octave implementations were
missing in Scilab, requiring re-implementation with equivalent logic.

• Different Default Behaviors: Functions like lyap behaved differently in Octave and
Scilab, demanding careful alignment with Octave’s expected behavior.

• Unavailability of SLICOT Library: Octave’s Control System Toolbox relied on the
SLICOT library (Fortran 77 routines for systems and control theory). Translating these
into Scilab was complex.

• Complex Data Types: Octave supports advanced data types such as iddata, which
are not natively available in Scilab.

• Testing Difficulties: Some functions lacked ready-made test cases, requiring manual
creation of test inputs and comparison with Octave outputs for validation.

Challenges After Incorporating AI Assistance

• Risk of Over-Simplification: AI-generated translations sometimes ignored edge cases
or subtle details present in the original Octave implementations.

• Debugging AI-Generated Code: AI outputs occasionally introduced syntactic or
semantic errors that required manual debugging in Scilab.

• Consistency Across Functions: With AI accelerating development, additional effort
was needed to maintain uniform coding style and seamless integration across different
functions.

• Validation Still Essential: Despite AI support, rigorous testing against Octave
remained crucial to ensure correctness, numerical stability, and reliability, particularly
for edge cases.

2.3.4 Issues and Possible Improvements

• Documentation can be improved with practical examples.

• Error handling can be made more robust to prevent unexpected crashes.

8

Chapter 3

Learnings

I have had a lot of valuable learning experiences from this internship opportunity. Some are
enumerated below:

1. Control Systems Knowledge Enhancement:

• Gained a deeper understanding of control systems and their real-world applications.

• Learned how to analyze, design, and simulate control systems effectively.

• Improved conceptual clarity and problem-solving abilities related to system dynamics and
feedback control.

2. Technical Proficiency in Tools and Platforms:

• Learned to code in Scilab and Octave for mathematical modeling and simulations.

• Applied Scilab and Octave to solve practical control system problems and perform simu-
lations.

• Gained hands-on experience using Git and GitHub for version control and collaborative
project management.

3. Time Management and Balance:

• Learned how to effectively manage time between academic responsibilities and internship
tasks.

• Developed better organizational and prioritization skills.

• Gained insight into maintaining consistency in both academic and professional commit-
ments.

4. Professional Communication and Conduct:

• Learned how to communicate clearly and respectfully in a professional environment.

• Understood the importance of writing professional emails and status updates.

• Gained confidence in interacting with mentors, peers, and stakeholders.

9

Chapter 4

Conclusion

In conclusion, my internship at FOSSEE, IIT Bombay, working on the Scilab Control System
Toolbox, has been a truly enriching and insightful journey.

Over the course of this internship, I’ve had the opportunity to contribute meaningfully to the
open-source community by helping improve both the features and performance of the Control
Systems Toolbox.

My main task involved converting control system functions written in Octave into native Scilab
code. This development will make the Scilab Control System Toolbox more efficient, easier to
maintain, and less reliant on external dependencies.Through careful planning, detailed coding,
thorough testing, and continuous refinement, I was able to successfully convert around 19
functions to Scilab and provide clear documentation for each of them.

This internship has been more than just a technical learning experience – it’s been a journey of
growth, exploration, and collaboration. Being part of a project that contributes to open-source
development helped me understand how individual efforts can make a broader impact.

I’m truly grateful to my mentor, Ms. Rashmi Patankar, for her constant support and guid-
ance throughout this internship. Her insights and encouragement made a big difference in
my learning. She was always approachable whenever I had doubts, and her timely feedback
helped me improve continuously. Her structured approach to problem-solving also taught me
the importance of clarity and precision in technical work. I also thank Dr.V Krishnaveni, HoD,
Department of ECE and PSG College of Technology for their support and for encouraging
students to participate in such meaningful open-source initiatives

Looking back, this experience has not only strengthened my technical skills but also deepened
my interest in contributing to open-source tools for science and engineering. I’m excited to
carry forward everything I’ve learned here into whatever comes next.

10

Reference

• https://gnu-octave.github.io/packages/control/

• https://gnu-octave.github.io/pkg-control/

• https://scilab.in/fossee-scilab-toolbox/control-system-toolbox

• https://github.com/nikithad14/Scilab-control-system-toolbox-development-functions

11

	Introduction
	Control System Toolbox Development
	Overview
	Development Workflow
	Studying Reference Implementations
	Line-by-Line Translation to Scilab
	Handling Missing or Incompatible Functions
	Testing and Iteration
	Leveraging AI for Translation and Debugging

	Current Status
	Documentation Pattern
	Functions Completed
	Challenges Faced
	Issues and Possible Improvements

	Learnings
	Conclusion

