
Semester-Long Internship Report
On

Testing Framework for Osdag OSI Files

Submitted by

Lakshana Shree S

3rd Year B.E Student, Department of CSE

Rajalakshmi Institute of Technology

Chennai

Under the Guidance of

Prof. Siddhartha Ghosh

Department of Civil Engineering

Indian Institute of Technology Bombay

Mentors:

Ajmal Babu M S

Parth Karia

Ajinkya Dahale

June 27, 2025

Acknowledgments

• I express my sincere gratitude to all those who supported and guided me throughout

the course of this project. It has been a valuable and enriching experience, and I’m

thankful to all who played a part in it.

• I’m especially thankful to the project staff at the Osdag team — Ajmal Babu M. S.,

Ajinkya Dahale, and Parth Karia — for their consistent help, technical guidance,

and kind support during my time with the project.

• I would also like to thank Prof. Siddhartha Ghosh, Principal Investigator of the Os-

dag project, Department of Civil Engineering, IIT Bombay, for leading the initiative

and enabling students like me to be part of such an impactful project.

• My thanks to Prof. Kannan M. Moudgalya, Principal Investigator of the FOSSEE

project, Department of Chemical Engineering, IIT Bombay, for making platforms

like FOSSEE possible that open up learning opportunities for students across the

country.

• I sincerely appreciate the efforts of Ms. Usha Viswanathan, Ms. Vineeta Parmar,

and the entire FOSSEE team for their smooth coordination and support throughout

the internship.

• I gratefully acknowledge the National Mission on Education through Information

and Communication Technology (ICT), Ministry of Education (MoE), Government

of India, for their role in supporting and facilitating this project.

• I would also like to thank my fellow interns and teammates for their collaboration

and support during this journey — working with them made the experience more

engaging and enjoyable.

1

• Lastly, I am grateful to my college, the Department of Computer Science and En-

gineering, my faculty members, Head of the Department, and Principal for their

constant encouragement and support throughout my studies.

2

Contents

1 Introduction 6

1.1 National Mission in Education through ICT 6

1.1.1 ICT Initiatives of MoE . 7

1.2 FOSSEE Project . 8

1.2.1 Projects and Activities . 8

1.2.2 Fellowships . 8

1.3 Osdag Software . 9

1.3.1 Osdag GUI . 10

1.3.2 Features . 10

2 Screening Task 11

2.1 Problem Statement . 11

2.1.1 Objective . 11

2.2 Methodology . 12

2.3 Design Calculations . 12

2.3.1 Input Parameters . 12

2.3.2 Weld Strength . 13

2.3.3 Shear Strength of the Weld . 13

2.3.4 Number of Welds . 13

2.3.5 Design Distances . 13

2.3.6 Length of the Connection . 13

2.4 Expected Outcomes . 14

2.5 Flowchart . 15

2.5.1 Full code . 15

2.6 Conclusion . 18

2.7 References . 18

3 Internship Task 1: OSI File Testing and Automation in Osdag 19

3.1 Internship Task 1: Problem Statement 19

3.2 Internship Task 1: Tasks Done . 19

3.2.1 Directory Structure . 20

3

3.2.2 Task Instructions: Writing Python Test Files 20

3.2.3 Example Validation Code . 21

3.2.4 Example Test Code . 22

4 Internship Task 2: Validation Against Expected Parameters 24

4.1 Internship Task 2: Problem Statement 24

4.2 Internship Task 2: Tasks Done . 24

4.2.1 Task Instructions: Writing Python Test Files with Hardcoded Inputs 25

4.2.2 Example Validation Function . 25

4.2.3 Example Test Case . 26

5 Internship Task 3: Integration with Conda Build Process 27

5.1 Internship Task 3: Problem Statement 27

5.2 Internship Task 3: Tasks Done . 27

5.2.1 Task Instructions: Setting Up and Integrating with Conda 28

5.2.2 Example Conda Recipe . 29

6 Internship Task 4: Testing Tension Bolted Module with Mocks 32

6.1 Internship Task 4: Problem Statement 32

6.1.1 Understanding Mocks . 32

6.2 Internship Task 4: Tasks Done . 33

6.2.1 Task Instructions: Writing Tests with Mocks 33

6.2.2 Full Code . 34

7 Internship Task 5: Mimicking Fin Plate GUI Inputs 43

7.1 Internship Task 5: Problem Statement 43

7.2 Internship Task 5: Tasks Done . 43

7.2.1 Task Instructions: Mimicking Fin Plate GUI Inputs 44

7.2.2 Full Code . 45

7.3 Documentation and Contribution . 57

7.3.1 GitHub Repository Links . 57

7.3.2 Summary . 57

8 Appendix 58

4

8.1 Work Reports . 58

9 Conclusions 64

9.1 Tasks Accomplished . 64

9.2 Skills Developed . 65

Bibliography 67

5

Chapter 1

Introduction

1.1 National Mission in Education through ICT

The National Mission on Education through ICT (NMEICT) is a scheme under the

Department of Higher Education, Ministry of Education, Government of India. It aims

to leverage the potential of ICT to enhance teaching and learning in Higher Education

Institutions in an anytime-anywhere mode.

The mission aligns with the three cardinal principles of the Education Policy—access,

equity, and quality—by:

• Providing connectivity and affordable access devices for learners and institutions.

• Generating high-quality e-content free of cost.

NMEICT seeks to bridge the digital divide by empowering learners and teachers in

urban and rural areas, fostering inclusivity in the knowledge economy. Key focus areas

include:

• Development of e-learning pedagogies and virtual laboratories.

• Online testing, certification, and mentorship through accessible platforms like EduSAT

and DTH.

• Training and empowering teachers to adopt ICT-based teaching methods.

For further details, visit the official website: www.nmeict.ac.in.

6

https://www.nmeict.ac.in
https://www.nmeict.ac.in

1.1.1 ICT Initiatives of MoE

The Ministry of Education (MoE) has launched several ICT initiatives aimed at students,

researchers, and institutions. The table below summarizes the key details:

No. Resource For Students/Researchers For Institutions

Audio-Video e-content

1 SWAYAM Earn credit via online courses Develop and host courses; accept
credits

2 SWAYAMPRABHA Access 24x7 TV programs Enable SWAYAMPRABHA
viewing facilities

Digital Content Access

3 National Digital Li-
brary

Access e-content in multiple dis-
ciplines

List e-content; form NDL Clubs

4 e-PG Pathshala Access free books and e-content Host e-books

5 Shodhganga Access Indian research theses List institutional theses

6 e-ShodhSindhu Access full-text e-resources Access e-resources for institu-
tions

Hands-on Learning

7 e-Yantra Hands-on embedded systems
training

Create e-Yantra labs with IIT
Bombay

8 FOSSEE Volunteer for open-source soft-
ware

Run labs with open-source soft-
ware

9 Spoken Tutorial Learn IT skills via tutorials Provide self-learning IT content

10 Virtual Labs Perform online experiments Develop curriculum-based exper-
iments

E-Governance

11 SAMARTH ERP Manage student lifecycle digi-
tally

Enable institutional e-
governance

Tracking and Research Tools

12 VIDWAN Register and access experts Monitor faculty research out-
comes

13 Shodh Shuddhi Ensure plagiarism-free work Improve research quality and
reputation

14 Academic Bank of
Credits

Store and transfer credits Facilitate credit redemption

Table 1.1: Summary of ICT Initiatives by the Ministry of Education

7

1.2 FOSSEE Project

The FOSSEE (Free/Libre and Open Source Software for Education) project promotes

the use of FLOSS tools in academia and research. It is part of the National Mission on

Education through Information and Communication Technology (NMEICT), Ministry of

Education (MoE), Government of India.

1.2.1 Projects and Activities

The FOSSEE Project supports the use of various FLOSS tools to enhance education and

research. Key activities include:

• Textbook Companion: Porting solved examples from textbooks using FLOSS.

• Lab Migration: Facilitating the migration of proprietary labs to FLOSS alterna-

tives.

• Niche Software Activities: Specialized activities to promote niche software tools.

• Forums: Providing a collaborative space for users.

• Workshops and Conferences: Organizing events to train and inform users.

1.2.2 Fellowships

FOSSEE offers various internship and fellowship opportunities for students:

• Winter Internship

• Summer Fellowship

• Semester-Long Internship

Students from any degree and academic stage can apply for these internships. Se-

lection is based on the completion of screening tasks involving programming, scientific

computing, or data collection that benefit the FLOSS community. These tasks are de-

signed to be completed within a week.

For more details, visit the official FOSSEE website.

8

https://fossee.in
https://fossee.in

Figure 1.1: FOSSEE Projects and Activities

1.3 Osdag Software

Osdag (Open steel design and graphics) is a cross-platform, free/libre and open-source

software designed for the detailing and design of steel structures based on the Indian

Standard IS 800:2007. It allows users to design steel connections, members, and systems

through an interactive graphical user interface (GUI) and provides 3D visualizations of

designed components. The software enables easy export of CAD models to drafting

tools for construction/fabrication drawings, with optimized designs following industry

best practices [1, 2, 3]. Built on Python and several Python-based FLOSS tools (e.g.,

PyQt and PythonOCC), Osdag is licensed under the GNU Lesser General Public License

(LGPL) Version 3.

9

1.3.1 Osdag GUI

The Osdag GUI is designed to be user-friendly and interactive. It consists of

• Input Dock: Collects and validates user inputs.

• Output Dock: Displays design results after validation.

• CAD Window: Displays the 3D CAD model, where users can pan, zoom, and

rotate the design.

• Message Log: Shows errors, warnings, and suggestions based on design checks.

Figure 1.2: Osdag GUI

1.3.2 Features

• CAD Model: The 3D CAD model is color-coded and can be saved in multiple

formats such as IGS, STL, and STEP.

• Design Preferences: Customizes the design process, with advanced users able to

set preferences for bolts, welds, and detailing.

• Design Report: Creates a detailed report in PDF format, summarizing all checks,

calculations, and design details, including any discrepancies.

For more details, visit the official Osdag website.

10

https://osdag.fossee.in

Chapter 2

Screening Task

2.1 Problem Statement

The goal of this project is to design a welded lap joint connecting two plates with specific

thicknesses and widths, subjected to a known tensile force. The design should comply

with IS 800:2007, focusing on selecting an appropriate weld size, weld material grade,

and plate material grade, while ensuring that the connection is both efficient and safe.

The design problem is defined with the following parameters:

• Plate Width (w): Width of the plates in mm.

• Plate Thicknesses (t1, t2): Thickness of the two plates in mm.

• Tensile Force (P): Applied tensile force in kN.

2.1.1 Objective

Develop an algorithm to design a welded lap joint that meets the following requirements:

• Select weld size and material grade from IS 800:2007.

• Choose a steel plate grade GP from the list: {“E250”, “E275”, “E300”, “E350”,

“E410”}.

• Find the most efficient connection, ensuring minimal weld length and size.

• Ensure the utilization ratio is close to 1.

11

• Minimize the length of the connection while maintaining safety and efficiency.

• Ensure all detailing distances are in round figures.

• Ensure the strength of the connection exceeds the tensile strength of the plate.

• The design must comply with IS 800:2007 standards.

2.2 Methodology

The design process involves the following steps:

1. Input Parameters: Receive values for tensile force, plate width, and thicknesses.

2. Material Selection: Choose appropriate weld and plate grades and determine

their mechanical properties.

3. Weld Strength Calculation: Calculate the ultimate tensile strength and yield

strength of the weld material.

4. Design Calculation: Determine the required weld size and the number of welds.

5. Check Compliance: Ensure that the design meets IS 800:2007 standards, and

the utilization ratio is close to 1.

6. Optimize Design: Select the weld size and material grade that minimize the weld

length while ensuring safety and efficiency.

2.3 Design Calculations

The calculations are performed using the following equations and considerations:

2.3.1 Input Parameters

• Plate thickness t1, t2 (in mm)

• Plate width w (in mm)

• Tensile force P (in kN)

12

• Weld size and material grade (from IS 800:2007)

• Plate grade GP (from available grades: “E250”, “E275”, “E300”, “E350”, “E410”)

2.3.2 Weld Strength

The strength of the weld is calculated based on the chosen material grade. For a given

material grade, the ultimate tensile strength (fu) and yield strength (fy) are calculated

as follows:

fu = 100×Grade

fy = (Grade− int(Grade))× fu

2.3.3 Shear Strength of the Weld

The shear strength of the weld is calculated using the formula:

Vw = Shear Capacity(fy, Aw, Aw, 0, 0,Field)

2.3.4 Number of Welds

The required number of welds is determined by:

Nw = ⌈ P

Vw × 0.75
⌉

2.3.5 Design Distances

The detailing distances, such as pitch, gauge, end distance, and edge distance, are calcu-

lated based on IS 800:2007 standards.

2.3.6 Length of the Connection

The length of the connection should be minimized while ensuring that the weld strength

and detailing requirements are met.

13

2.4 Expected Outcomes

The final design should include:

• Weld Size (d)

• Weld Material Grade (GB)

• Length of Weld

• Strength of Connection

• Yield Strength of Plates 1 and 2 (fy)

• Length of Connection

• Efficiency of Connection (Utilization Ratio)

14

2.5 Flowchart

Start

Input Parameters

Calculate Weld Strength

Determine Number of Welds

Calculate Detailing Distances

Optimize Weld Design

Verify Design

End

Figure 2.1: Flowchart of the Design Procedure

2.5.1 Full code

import math

Define material grade properties as per IS800 :2007 and IS2062

:2011

grade_yield_strengths = {

"E250": 250, # MPa

"E275": 275,

15

"E300": 300,

"E350": 350,

"E410": 410

}

Define design constants

partial_safety_factor = 1.25 # for weld material as per IS

800:2007

Function to calculate weld strength

def calculate_weld_strength(size , length , material_grade):

Weld shear strength (as per IS 800:2007)

weld_strength = (grade_yield_strengths[material_grade] / math

.sqrt (3)) / partial_safety_factor

return weld_strength * size * length

Function to design a lap joint

def design_lap_joint(P, w, t1 , t2):

"""

P: Tensile force in kN

w: Plate width in mm

t1 , t2: Plate thicknesses in mm

"""

Convert tensile force to N (1 kN = 1000 N)

P = P * 1000

Yield strengths of plates

plate1_yield = grade_yield_strengths["E250"] * t1 * w #

Example plate grade: E250

plate2_yield = grade_yield_strengths["E250"] * t2 * w #

Example plate grade: E250

Weld size selection (as per IS 800:2007 , t_min = t1 or t2)

16

weld_size = min(t1, t2) - 1 # Assuming a 1 mm reduction for

throat thickness

Length of weld required

material_grade = "E250" # Example weld material grade

weld_strength = calculate_weld_strength(weld_size , 1,

material_grade) # Per mm

length_of_weld = P / weld_strength

Refined logic: only round length if it’s a reasonable

amount

if length_of_weld > 100: # Arbitrary threshold to prevent

excessive rounding

length_of_weld = math.ceil(length_of_weld / 10) * 10

else:

length_of_weld = round(length_of_weld , 2)

Connection efficiency (utilization ratio)

connection_strength = calculate_weld_strength(weld_size ,

length_of_weld , material_grade)

efficiency = connection_strength / max(plate1_yield ,

plate2_yield)

Output results

return {

"Weld Size (mm)": weld_size ,

"Weld Material Grade": material_grade ,

"Length of Weld (mm)": length_of_weld ,

"Strength of Connection (N)": connection_strength ,

"Plate 1 Yield Strength (N)": plate1_yield ,

"Plate 2 Yield Strength (N)": plate2_yield ,

"Efficiency of Connection": round(efficiency , 2)

}

17

Example Input

P = 50 # kN

w = 200 # mm

t1 = 10 # mm

t2 = 8 # mm

Run the design function

result = design_lap_joint(P, w, t1 , t2)

Print the results

for key , value in result.items():

print(f"{key}: {value}")

2.6 Conclusion

This report outlines the design of a welded lap joint for two plates subjected to a tensile

force, as per IS 800:2007. The design process includes material selection, strength calcu-

lations, and optimization to meet safety and efficiency standards. The designed joint will

be evaluated based on various parameters to ensure it fulfills all design requirements.

2.7 References

1. IS 800:2007: General Construction in Steel – Code of Practice

2. IS 2062:2011: Steel for General Structural Purposes

3. IS 800:2007 Code of Practice for General Construction in Steel – Code of Practice

4. IS 2062:2011 Steel for General Structural Purposes

18

Chapter 3

Internship Task 1: OSI File Testing

and Automation in Osdag

3.1 Internship Task 1: Problem Statement

The objective of Internship Task 1 is to develop a robust framework for validating .osi

files used in Osdag, an open-source software for structural steel design. These JSON-based

files contain parameters and configurations for structural steel connection modules, such

as fin plate or base plate connections. The goal is to create an automated testing system

that ensures valid .osi files pass silently while invalid files are flagged with appropriate

error messages, enhancing the reliability of the Osdag software.

3.2 Internship Task 1: Tasks Done

To achieve the objectives of Task 1, you will implement a Python-based validation frame-

work to automatically test .osi files. The following tasks will guide you through creating

and organizing the necessary test files:

• Develop Validation Logic: Create a Python script (osi validate.py) to vali-

date .osi files. The script should check:

– The presence of the mandatory "module" key in the JSON data.

– The validity of the "module" value against a predefined list of supported mod-

ules (e.g., finplate, baseplate, cleatangle).

19

– The type correctness of numeric fields, such as beam size, ensuring they are

integers or floats.

• Write Test Cases: Use the Pytest framework to create a test file (test osi validate.py)

that tests the validation logic. The test cases should cover:

– Valid .osi files that should pass all checks.

– Invalid .osi files that should fail specific checks (e.g., missing "module" key

or non-numeric beam size).

• Organize Test Files: Structure the project directory to include separate folders

for valid and invalid .osi files. This organization aids in managing test cases and

ensures clarity during testing.

• Automate Testing: Create a batch script (run tests.bat) for Windows to exe-

cute all test cases with a single command, streamlining the testing process.

3.2.1 Directory Structure

The following directory structure organizes the validation scripts and test files:
osi testing

osi validate.py

test osi validate.py

valid osi files

Example 1.1.1.1.1.osi

Example 1.1.1.1.2.osi

invalid osi files

Modified Example 1.1.1.1.1.osi

Modified Example 1.1.1.1.2.osi

3.2.2 Task Instructions: Writing Python Test Files

To write Python test files for validating .osi files, follow these steps:

1. Set Up the Environment:

20

• Ensure Python 3.8+ and Pytest are installed (pip install pytest).

• Create a project directory (osi testing) with subfolders valid osi files

and invalid osi files.

• Place sample .osi files in the respective folders. Valid files should conform

to the expected JSON structure, while invalid files should include errors like

missing keys or incorrect data types.

2. Implement Validation Logic:

• Create osi validate.py with functions to load and validate .osi files.

• Use the json module to parse .osi files and implement checks for required

keys, valid module names, and numeric fields.

3. Write Pytest Test Cases:

• In test osi validate.py, write test functions using Pytest to verify each

validation check.

• Use pytest.assert to ensure the validation functions return expected results

(e.g., True for valid files, False for invalid files).

• Test both valid and invalid .osi files to cover all edge cases.

4. Automate Test Execution:

• Create a batch script (run tests.bat) with the command pytest test osi validate.py

--verbose to run all tests.

• Ensure the script is executable and points to the correct Python environment.

3.2.3 Example Validation Code

The following code demonstrates the validation logic for .osi files:

Listing 3.1: OSI Validation Logic

import json

def load_osi_file(file_path):

""" Load and parse a .osi file."""

21

try:

with open(file_path , ’r’) as file:

return json.load(file)

except json.JSONDecodeError:

raise ValueError(f"Invalid JSON format in {file_path}")

def validate_module_presence(data):

""" Check if the ’module ’ key exists in the data."""

return "module" in data

def validate_known_module(data):

""" Check if the ’module ’ value is valid."""

valid_modules = ["finplate", "baseplate", "cleatangle"]

return data.get("module") in valid_modules

def validate_numeric_fields(data , field):

""" Check if a specified field is numeric."""

return isinstance(data.get(field), (int , float))

3.2.4 Example Test Code

The following Pytest script tests the validation logic:

Listing 3.2: Pytest Test Cases

import pytest

from osi_validate import *

@pytest.fixture

def valid_osi_data ():

return load_osi_file("valid_osi_files/Example_1 .1.1.1.1. osi")

@pytest.fixture

def invalid_osi_data ():

return load_osi_file("invalid_osi_files/Modified_Example_1

.1.1.1.1. osi")

22

def test_module_key_present(valid_osi_data):

assert validate_module_presence(valid_osi_data)

def test_valid_module_name(valid_osi_data):

assert validate_known_module(valid_osi_data)

def test_beam_size_is_numeric(valid_osi_data):

assert validate_numeric_fields(valid_osi_data , "beam_size")

def test_missing_module_key(invalid_osi_data):

assert not validate_module_presence(invalid_osi_data)

23

Chapter 4

Internship Task 2: Validation Against

Expected Parameters

4.1 Internship Task 2: Problem Statement

The goal of Internship Task 2 is to extend the validation framework to compare .osi

file parameters (e.g., beam depth, column size) against expected values defined in an

external reference spreadsheet. This ensures that .osi files adhere to pre-approved design

standards, enhancing the accuracy of structural designs in Osdag.

4.2 Internship Task 2: Tasks Done

To validate .osi files against expected parameters, you will perform the following tasks:

• Define Validation Functions: Create functions in osi validate.py to check if

specific parameters match expected values from the reference spreadsheet.

• Write Pytest Test Cases: Develop test cases in test osi validate.py to verify

each parameter against its expected value.

• Map Expected Values: Manually extract expected parameter values from the

spreadsheet and hardcode them in the test cases for validation.

24

4.2.1 Task Instructions: Writing Python Test Files with Hard-

coded Inputs

To write Python test files that validate .osi files against hardcoded expected inputs,

follow these steps:

1. Prepare the Environment:

• Ensure the project directory from Task 1 is set up, including osi validate.py

and test osi validate.py.

• Obtain the reference spreadsheet containing expected parameter values for

.osi files.

2. Extract Expected Values:

• Review the spreadsheet to identify parameters (e.g., beam depth, column size)

and their expected values.

• Hardcode these values in the test file or a separate configuration file for refer-

ence.

3. Extend Validation Logic:

• Add functions to osi validate.py to compare .osi file parameters against

hardcoded expected values.

• Ensure the functions handle edge cases, such as missing parameters or type

mismatches.

4. Write Pytest Test Cases:

• In test osi validate.py, create test functions for each parameter, using

pytest.assert to compare actual values from .osi files with expected values.

• Use Pytest fixtures to load .osi files and reduce code duplication.

4.2.2 Example Validation Function

The following function validates the beam depth parameter:

25

Listing 4.1: Checking Beam Depth

def check_beam_depth(data , expected_depth =300):

""" Check if beam_depth is an integer and meets the minimum

value."""

return isinstance(data.get("beam_depth"), int) and data["

beam_depth"] >= expected_depth

4.2.3 Example Test Case

The following test case validates beam depth against a hardcoded value:

Listing 4.2: Test for Beam Depth

import pytest

from osi_validate import *

@pytest.fixture

def osi_data ():

return load_osi_file("test_files/sample_design.osi")

def test_beam_depth(osi_data):

assert check_beam_depth(osi_data , expected_depth =300)

26

Chapter 5

Internship Task 3: Integration with

Conda Build Process

5.1 Internship Task 3: Problem Statement

The objective of Internship Task 3 is to integrate the OSI validation tests into the Conda

package build process for Osdag. This ensures that all validation tests are executed

automatically during packaging, improving code reliability and enabling compatibility

with Continuous Integration/Continuous Deployment (CI/CD) pipelines.

5.2 Internship Task 3: Tasks Done

To integrate the validation tests with the Conda build process, you will perform the

following tasks:

• Set Up Version Control:

– Fork the Osdag repository from https://github.com/osdag/osdag.

– Clone the forked repository to your local machine.

– Create a new branch named automation-testing for your changes.

• Develop Conda Recipe: Create a Conda recipe with a meta.yaml file to define

the package build process, including test execution.

27

https://github.com/osdag/osdag

• Integrate Tests: Configure the Conda recipe to run Pytest test cases during the

build process, ensuring that build fails if any test case fails.

• Commit and Push Changes: Stage, commit, and push the testing scripts and

Conda recipe to the automation-testing branch in your forked repository.

5.2.1 Task Instructions: Setting Up and Integrating with Conda

To integrate the OSI validation tests with the Conda build process, follow these detailed

steps:

1. Set Up the Repository:

• Fork the Osdag repository from https://github.com/osdag/osdag to your

GitHub account.

• Clone the forked repository to your local machine:

git clone https :// github.com/<your -username >/ osdag.git

cd osdag

• Create a new branch for your changes:

git checkout -b feature/branch

2. Create Conda Recipe:

• Create a directory named osdag-conda-recipe in your project.

• Add a meta.yaml file to define the package metadata, build script, and test

commands.

• Ensure the recipe includes dependencies like python, pytest, and Osdag run-

time requirements (e.g., pyqt, numpy).

3. Integrate Test Execution:

• In the meta.yaml file, configure the build: script: section to install the

package and run Pytest.

• In the test: section, specify the test files and commands to execute Pytest.

28

https://github.com/osdag/osdag

• Ensure that test failures cause the Conda build to fail, enforcing quality con-

trol.

4. Commit and Push Changes:

• Add the testing scripts (osi validate.py, test osi validate.py) and Conda

recipe files to the repository:

git add osi_validate.py test_osi_validate.py osdag -conda -

recipe/

• Commit the changes with a descriptive message:

git commit -m "Add OSI validation tests and Conda recipe

for automated testing"

• Push the automation-testing branch to your forked repository:

git push origin feature/branch

5. Execute Conda Build:

• Navigate to the Conda recipe directory:

cd osdag -conda -recipe

• Run the Conda build command:

conda build .

• Verify that the build process executes the Pytest test cases and fails if any test

does not pass.

5.2.2 Example Conda Recipe

The following meta.yaml file configures the Conda build process:

Listing 5.1: Conda Recipe for Testing

package:

name: osdag

version: "0.1"

29

source:

path: ..

build:

script:

- pip install .

- pytest --verbose --capture=no

requirements:

build:

- python >=3.8

- pip

- pytest

- setuptools

- setuptools_scm

host:

- python >=3.8

- pip

- pytest

- setuptools

- setuptools_scm

run:

- python >=3.8

- pyqt

- requests

- numpy

- pyyaml

- pygithub

- pytest

test:

source_files:

- recipe/tests/test_validator.py

30

- recipe/tests/validator.py

requires:

- pytest

commands:

- pytest recipe/tests/

about:

home: "https :// osdag.fossee.in"

summary: "Open Steel Design and Graphics (Osdag) - an open -

source software for structural steel design developed by

FOSSEE , IIT Bombay."

31

Chapter 6

Internship Task 4: Testing Tension

Bolted Module with Mocks

6.1 Internship Task 4: Problem Statement

The goal of Internship Task 4 is to create a Python test suite to validate the Tension bolted

module in Osdag using the unittest framework and mocking techniques. Mocking is

used to simulate the behavior of the Tension bolted class, avoiding dependencies on

its actual implementation, which may involve complex structural calculations or external

resources.

6.1.1 Understanding Mocks

Mocks in Python, provided by the unittest.mock module, are fake implementations of

objects or methods used in unit testing. They allow you to isolate the code under test

by replacing dependencies (e.g., database calls, file operations, or complex computations)

with controlled, predefined behaviors. In this task, you will mock the Tension bolted

class to return hardcoded results, enabling fast and reliable testing without executing the

actual structural design logic.

• Purpose of Mocks: Mocks simulate the behavior of the Tension bolted class,

allowing you to test the logic that processes its outputs without running the actual

computations.

32

• How Mocks Are Used: The MagicMock and patch utilities from unittest.mock

are used to create a mock object for the Tension bolted class and define its method

outputs. For example, you can configure the results to test method to return a

predefined dictionary of results.

• Benefits: Mocks make tests faster, independent of external systems, and easier to

control by allowing you to specify expected outputs for specific inputs.

6.2 Internship Task 4: Tasks Done

To validate the Tension bolted module, you will perform the following tasks:

• Set Up the Test Environment: Configure the test environment with necessary

imports and a mock object for the Tension bolted class.

• Write Test Cases: Create test cases using unittest to validate the outputs of

the Tension bolted module against expected values.

• Use Mocks: Mock the Tension bolted class to return predefined results for var-

ious test cases, simulating different input scenarios.

• Verify Outputs: Assert that the mocked outputs match expected values for pa-

rameters like section designation, tension capacity, bolt grade, and number of bolts.

6.2.1 Task Instructions: Writing Tests with Mocks

To write a test suite for the Tension bolted module using mocks, follow these steps:

1. Set Up the Environment:

• Ensure Python 3.8+ and unittest are available (included in the standard

library).

• Create a test file named test tension bolted mock.py in the tests directory

of your Osdag repository.

• Import necessary modules: unittest, unittest.mock.MagicMock, and unittest.mock.patch.

2. Configure the Mock:

33

• Use MagicMock to create a mock object for the Tension bolted class in the

setUp method.

• Configure the mock to return predefined results for the results to test

method and ensure set input values returns None.

3. Write Test Cases:

• Define multiple test cases (e.g., test tension bolted test1, test tension bolted test2)

to cover different input scenarios.

• Use the @patch decorator to replace the real Tension bolted class with the

mock object during testing.

• For each test case, define a design dict with input parameters and a mock results

dictionary with expected outputs.

• Assert that the mocked outputs match the expected values using self.assertEqual

and self.assertAlmostEqual for floating-point comparisons.

4. Run the Tests:

• Execute the test suite using:

python -m unittest test_tension_bolted_mock.py -v

• Verify that all test cases pass, indicating that the mocked outputs align with

the expected results.

6.2.2 Full Code

The following test suite validates the Tension bolted module using mocks:

Listing 6.1: Test Suite for Tension Bolted Module with Mocks

import unittest

from unittest.mock import MagicMock , patch

mock functions in python are fake implementations of real

objects or methods.

t h e y re used in unit testing when you d o n t want to depend

on actual implementation

34

(like database calls , file reads , or in this case , a heavy

design computation class).

the mock just pretends to do what the real method does and

returns predefined values.

this makes testing fast , isolated , and easy to control.

here , we are mocking the Tension_bolted class (probably a heavy

structural module from osdag),

and we’re faking its method outputs by giving hardcoded (

predefined) results.

class TestTensionBolted(unittest.TestCase):

def setUp(self):

create a fake object (mock) for the Tension_bolted

class

self.tension_bolted = MagicMock ()

whenever results_to_test is called on our mock object ,

return an empty dictionary by default

self.tension_bolted.results_to_test.return_value = {}

make sure set_input_values just silently returns

nothing

self.tension_bolted.set_input_values.return_value = None

@patch(’tension_bolted.Tension_bolted ’) # this replaces the

real class with a mock during the test

def test_tension_bolted_test1(self , mock_tension_bolted):

test case 1: check if results match expected mock

values

this is what we expect the real method to return (but

we mock it)

mock_results = {

35

"KEY_DISP_DESIGNATION": "40 x 20 x 3",

"KEY_DISP_TENSION_YIELDCAPACITY": "79.09",

"KEY_OUT_DISP_BOLT_LINE": "2",

"KEY_OUT_DISP_BOLTS_ONE_LINE": "2",

"KEY_OUT_DISP_BOLT_CAPACITY": "17.71",

"KEY_OUT_DISP_GRD_PROVIDED": "3.6",

"KEY_OUT_DISP_D_PROVIDED": "20"

}

self.tension_bolted.results_to_test.return_value =

mock_results

fake user input for the test

design_dict = {

"KEY_SECSIZE": "40 x 20 x 3",

"KEY_GRD": "3.6",

"KEY_D": "20",

"KEY_MATERIAL": "E 250 (Fe 410 W)A",

"KEY_SEC_PROFILE": "Angles",

"KEY_LOCATION": "Long Leg",

"KEY_TYP": "Bearing Bolt",

"KEY_PLATETHK": "10",

"KEY_AXIAL": "50",

}

expected outputs based on the mock results

expected_designation = "40 x 20 x 3"

expected_tension_capacity_section = 79.09

expected_tension_capacity_plate = 70.84

expected_bolt_grade = 3.6

expected_number_of_bolts = 4

expected_bolt_diameter = 20

simulate setting the inputs and getting the result

self.tension_bolted.set_input_values(design_dict)

36

results = self.tension_bolted.results_to_test("temp_test1

.txt")

assert that each value matches our expectations

self.assertEqual(results["KEY_DISP_DESIGNATION"],

expected_designation)

self.assertAlmostEqual(float(results["

KEY_DISP_TENSION_YIELDCAPACITY"]),

expected_tension_capacity_section , places =2)

calculate bolt capacity manually and check if it

matches expected plate capacity

number_of_bolts = int(results["KEY_OUT_DISP_BOLT_LINE"])

* int(results["KEY_OUT_DISP_BOLTS_ONE_LINE"])

plate_capacity = float(results["

KEY_OUT_DISP_BOLT_CAPACITY"]) * number_of_bolts

self.assertAlmostEqual(plate_capacity ,

expected_tension_capacity_plate , places =2)

self.assertEqual(float(results["KEY_OUT_DISP_GRD_PROVIDED

"]), expected_bolt_grade)

self.assertEqual(number_of_bolts ,

expected_number_of_bolts)

self.assertEqual(int(results["KEY_OUT_DISP_D_PROVIDED"]),

expected_bolt_diameter)

@patch(’tension_bolted.Tension_bolted ’)

def test_tension_bolted_test2(self , mock_tension_bolted):

test case 2

mock_results = {

"KEY_DISP_DESIGNATION": "MC 100",

"KEY_DISP_TENSION_YIELDCAPACITY": "104.82",

"KEY_OUT_DISP_BOLT_LINE": "1",

"KEY_OUT_DISP_BOLTS_ONE_LINE": "3",

37

"KEY_OUT_DISP_BOLT_CAPACITY": "58.25",

"KEY_OUT_DISP_GRD_PROVIDED": "12.9",

"KEY_OUT_DISP_D_PROVIDED": "12"

}

self.tension_bolted.results_to_test.return_value =

mock_results

design_dict = {

"KEY_SECSIZE": "MC 100",

"KEY_GRD": "12.9",

"KEY_D": "12",

"KEY_MATERIAL": "E 250 (Fe 410 W)A",

"KEY_SEC_PROFILE": "Channels",

"KEY_LOCATION": "Web",

"KEY_TYP": "Bearing Bolt",

"KEY_PLATETHK": "10",

"KEY_AXIAL": "50",

}

expected_designation = "MC 100"

expected_tension_capacity_section = 104.82

expected_tension_capacity_plate = 174.75

expected_bolt_grade = 12.9

expected_number_of_bolts = 3

expected_bolt_diameter = 12

self.tension_bolted.set_input_values(design_dict)

results = self.tension_bolted.results_to_test("temp_test2

.txt")

self.assertEqual(results["KEY_DISP_DESIGNATION"],

expected_designation)

self.assertAlmostEqual(float(results["

KEY_DISP_TENSION_YIELDCAPACITY"]),

38

expected_tension_capacity_section , places =2)

number_of_bolts = int(results["KEY_OUT_DISP_BOLT_LINE"])

* int(results["KEY_OUT_DISP_BOLTS_ONE_LINE"])

plate_capacity = float(results["

KEY_OUT_DISP_BOLT_CAPACITY"]) * number_of_bolts

self.assertAlmostEqual(plate_capacity ,

expected_tension_capacity_plate , places =2)

self.assertEqual(float(results["KEY_OUT_DISP_GRD_PROVIDED

"]), expected_bolt_grade)

self.assertEqual(number_of_bolts ,

expected_number_of_bolts)

self.assertEqual(int(results["KEY_OUT_DISP_D_PROVIDED"]),

expected_bolt_diameter)

@patch(’tension_bolted.Tension_bolted ’)

def test_tension_bolted_test3(self , mock_tension_bolted):

test case 3

mock_results = {

"KEY_DISP_DESIGNATION": "40 x 40 x 3",

"KEY_DISP_TENSION_YIELDCAPACITY": "28.79",

"KEY_OUT_DISP_BOLT_LINE": "2",

"KEY_OUT_DISP_BOLTS_ONE_LINE": "2",

"KEY_OUT_DISP_BOLT_CAPACITY": "12.0",

"KEY_OUT_DISP_GRD_PROVIDED": "4.6",

"KEY_OUT_DISP_D_PROVIDED": "10"

}

self.tension_bolted.results_to_test.return_value =

mock_results

design_dict = {

"KEY_SECSIZE": "40 x 40 x 3",

"KEY_GRD": "4.6",

39

"KEY_D": "10",

"KEY_MATERIAL": "E 250 (Fe 410 W)A",

"KEY_SEC_PROFILE": "Angles",

"KEY_LOCATION": "Long Leg",

"KEY_TYP": "Bearing Bolt",

"KEY_PLATETHK": "10",

"KEY_AXIAL": "50",

}

expected_designation = "40 x 40 x 3"

expected_tension_capacity_section = 28.79

expected_tension_capacity_plate = 48.0

expected_bolt_grade = 4.6

expected_number_of_bolts = 4

expected_bolt_diameter = 10

self.tension_bolted.set_input_values(design_dict)

results = self.tension_bolted.results_to_test("temp_test3

.txt")

self.assertEqual(results["KEY_DISP_DESIGNATION"],

expected_designation)

self.assertAlmostEqual(float(results["

KEY_DISP_TENSION_YIELDCAPACITY"]),

expected_tension_capacity_section , places =2)

number_of_bolts = int(results["KEY_OUT_DISP_BOLT_LINE"])

* int(results["KEY_OUT_DISP_BOLTS_ONE_LINE"])

plate_capacity = float(results["

KEY_OUT_DISP_BOLT_CAPACITY"]) * number_of_bolts

self.assertAlmostEqual(plate_capacity ,

expected_tension_capacity_plate , places =2)

self.assertEqual(float(results["KEY_OUT_DISP_GRD_PROVIDED

"]), expected_bolt_grade)

40

self.assertEqual(number_of_bolts ,

expected_number_of_bolts)

self.assertEqual(int(results["KEY_OUT_DISP_D_PROVIDED"]),

expected_bolt_diameter)

@patch(’tension_bolted.Tension_bolted ’)

def test_tension_bolted_test4(self , mock_tension_bolted):

test case 4

mock_results = {

"KEY_DISP_DESIGNATION": "MC 175",

"KEY_DISP_TENSION_YIELDCAPACITY": "363.86",

"KEY_OUT_DISP_BOLT_LINE": "2",

"KEY_OUT_DISP_BOLTS_ONE_LINE": "3",

"KEY_OUT_DISP_BOLT_CAPACITY": "61.62",

"KEY_OUT_DISP_GRD_PROVIDED": "5.6",

"KEY_OUT_DISP_D_PROVIDED": "20"

}

self.tension_bolted.results_to_test.return_value =

mock_results

design_dict = {

"KEY_SECSIZE": "MC 175",

"KEY_GRD": "5.6",

"KEY_D": "20",

"KEY_MATERIAL": "E 250 (Fe 410 W)A",

"KEY_SEC_PROFILE": "Channels",

"KEY_LOCATION": "Web",

"KEY_TYP": "Bearing Bolt",

"KEY_PLATETHK": "10",

"KEY_AXIAL": "50",

}

expected_designation = "MC 175"

41

expected_tension_capacity_section = 363.86

expected_tension_capacity_plate = 369.72

expected_bolt_grade = 5.6

expected_number_of_bolts = 6

expected_bolt_diameter = 20

self.tension_bolted.set_input_values(design_dict)

results = self.tension_bolted.results_to_test("temp_test4

.txt")

self.assertEqual(results["KEY_DISP_DESIGNATION"],

expected_designation)

self.assertAlmostEqual(float(results["

KEY_DISP_TENSION_YIELDCAPACITY"]),

expected_tension_capacity_section , places =2)

number_of_bolts = int(results["KEY_OUT_DISP_BOLT_LINE"])

* int(results["KEY_OUT_DISP_BOLTS_ONE_LINE"])

plate_capacity = float(results["

KEY_OUT_DISP_BOLT_CAPACITY"]) * number_of_bolts

self.assertAlmostEqual(plate_capacity ,

expected_tension_capacity_plate , places =2)

self.assertEqual(float(results["KEY_OUT_DISP_GRD_PROVIDED

"]), expected_bolt_grade)

self.assertEqual(number_of_bolts ,

expected_number_of_bolts)

self.assertEqual(int(results["KEY_OUT_DISP_D_PROVIDED"]),

expected_bolt_diameter)

this runs all tests when we execute the file

if __name__ == "__main__":

unittest.main()

42

Chapter 7

Internship Task 5: Mimicking Fin Plate

GUI Inputs

7.1 Internship Task 5: Problem Statement

The goal of Internship Task 5 is to create a Python test suite that mimics the Osdag

GUI input process for the Fin Plate Connection module. The test suite should simulate

the GUI’s input validation logic, ensuring that input parameters are validated against

database values and design preferences, and handle compatibility with legacy keys and

material properties.

7.2 Internship Task 5: Tasks Done

To mimic the Fin Plate GUI inputs, you will perform the following tasks:

• Set Up the Environment: Configure the test environment with necessary im-

ports, database connections, and paths to Osdag’s SQLite database.

• Implement Input Mimicry: Create a function to simulate the GUI’s input col-

lection process, validating inputs against database values and handling custom ma-

terial grades.

• Write Test Cases: Develop test cases to validate the input mimicry function with

multiple .osi file scenarios.

43

• Validate Outputs: Ensure the generated design dictionary includes all required

keys, validated values, and compatibility mappings.

7.2.1 Task Instructions: Mimicking Fin Plate GUI Inputs

To create a test suite that mimics the Fin Plate GUI inputs, follow these detailed steps:

1. Set Up the Environment:

• Ensure Python 3.8+ and required Osdag dependencies (sqlite3, pyqt, numpy)

are installed.

• Verify that the Osdag SQLite database is accessible at PATH TO DATABASE (e.g.,

path/to/osdag/ResourceFiles/Database/IntDesign.db).

• Create a test file named test fin plate mimicry.py in the tests directory.

• Import necessary modules: sqlite3, FinPlateConnection, Common, MaterialValidator,

and predefined constants like VALUES CONN, VALUES TYP, VALUES GRD CUSTOMIZED,

and VALUES PLATETHK CUSTOMIZED.

2. Implement Input Mimicry Function:

• Create a function (mimic fin plate inputs) that takes a test case dictionary

and returns a validated design dictionary.

• Connect to the Osdag database to fetch valid values for combobox fields (e.g.,

KEY SUPTNGSEC, KEY D).

• Validate input fields (e.g., KEY SHEAR, KEY GRD) using appropriate validators

(e.g., integer for KEY SHEAR, float for KEY GRD).

• Handle custom material grades using MaterialValidator and compute fu

and fy based on thickness.

• Map legacy compatibility keys to ensure backward compatibility with older

Osdag versions.

3. Write Test Cases:

• Define multiple test cases in test mimic fin plate inputs, each representing

a different .osi file scenario.

44

• For each test case, call mimic fin plate inputs and verify that the output

design dictionary is correctly populated.

• Use exception handling to catch and report validation errors.

4. Run the Tests:

• Execute the test suite using:

python test_fin_plate_mimicry.py

• Verify that all test cases pass, indicating successful validation of the input

mimicry process.

7.2.2 Full Code

The following test suite mimics the Fin Plate GUI inputs:

Listing 7.1: Test Suite for Mimicking Fin Plate GUI Inputs

import sqlite3

from design_type.connection.fin_plate_connection import

FinPlateConnection

from utils.common.Common import connectdb , connectdb1 ,

MaterialValidator , VALUES_CONN , VALUES_TYP ,

VALUES_GRD_CUSTOMIZED , VALUES_PLATETHK_CUSTOMIZED

from utils.common.component import PATH_TO_DATABASE

function to get ultimate (fu) and yield (fy) strengths for a

material grade

def get_fy_fu(material_grade , thickness=None):

""" return fu and fy for a material grade , considering

thickness for plates."""

handle standard material grade e 250 (fe 410 w)a

if material_grade == "E 250 (Fe 410 W)A":

if no thickness provided , return default fu, fy

if thickness is None:

return 410, 250

else:

45

convert thickness to float for comparison

thickness = float(thickness)

return fu, fy based on thickness ranges

if thickness <= 20:

return 410, 250, 250, 250

elif thickness <= 40:

return 410, 250, 240, 240

else:

return 410, 250, 240, 230

handle custom material grades starting with "cus_"

elif material_grade.startswith("Cus_"):

validator = MaterialValidator(material_grade)

check if custom material is valid

if validator.is_valid_custom ():

parts = material_grade.split(’_’)

extract fu and fy from custom grade name

fu, fy = float(parts [-1]), float(parts [-2])

return fu, fy based on thickness

if thickness is None:

return fu , fy

else:

return fu , fy , fy , fy

default fu , fy if material grade is unknown

return 410, 250

function to mimic gui input for fin plate connection

def mimic_fin_plate_inputs(test_case_data):

""" mimic gui input collection for fin plate connection ,

creating a design_dictionary."""

copy input data to avoid modifying original

design_dictionary = test_case_data.copy()

connect to database to fetch valid values

conn = sqlite3.connect(PATH_TO_DATABASE)

46

cursor = conn.cursor ()

define input fields for fin plate connection

input_fields = [

{"key": "KEY_MODULE", "type": "TYPE_MODULE", "value": "

Fin Plate Connection"},

{"key": "KEY_CONN", "type": "TYPE_COMBOBOX", "values":

VALUES_CONN},

fetch beams or columns based on connection type

{"key": "KEY_SUPTNGSEC", "type": "TYPE_COMBOBOX",

"values": connectdb("Beams") if test_case_data.get("

KEY_CONN") == "Beam -Beam" else connectdb("Columns")},

{"key": "KEY_SUPTNGSEC_MATERIAL", "type": "TYPE_COMBOBOX"

, "values": connectdb("Material")},

{"key": "KEY_SUPTDSEC", "type": "TYPE_COMBOBOX", "values"

: connectdb("Beams")},

{"key": "KEY_SUPTDSEC_MATERIAL", "type": "TYPE_COMBOBOX",

"values": connectdb("Material")},

{"key": "KEY_SHEAR", "type": "TYPE_TEXTBOX", "validator":

"Int Validator"},

{"key": "KEY_AXIAL", "type": "TYPE_TEXTBOX", "validator":

"Int Validator"},

{"key": "KEY_D", "type": "TYPE_COMBOBOX_CUSTOMIZED", "

values": connectdb1 ()},

{"key": "KEY_TYP", "type": "TYPE_COMBOBOX", "values":

VALUES_TYP},

{"key": "KEY_GRD", "type": "TYPE_COMBOBOX_CUSTOMIZED", "

values": VALUES_GRD_CUSTOMIZED},

{"key": "KEY_PLATETHK", "type": "TYPE_COMBOBOX_CUSTOMIZED

", "values": VALUES_PLATETHK_CUSTOMIZED},

{"key": "KEY_CONNECTOR_MATERIAL", "type": "TYPE_COMBOBOX"

, "values": connectdb("Material")},

]

47

define design preference fields

design_pref_fields = [

{"key": "KEY_DP_BOLT_TYPE", "type": "TYPE_COMBOBOX", "

values": ["Pretensioned", "Non pre -tensioned"]},

{"key": "KEY_DP_BOLT_HOLE_TYPE", "type": "TYPE_COMBOBOX",

"values": ["Standard", "Over -sized"]},

{"key": "KEY_DP_BOLT_SLIP_FACTOR", "type": "TYPE_TEXTBOX"

, "value": "0.3"},

{"key": "KEY_DP_WELD_FAB", "type": "TYPE_COMBOBOX", "

values": ["Shop Weld", "Field Weld"]},

{"key": "KEY_DP_WELD_MATERIAL_G_O", "type": "TYPE_TEXTBOX

", "value": "410"},

{"key": "KEY_DP_DETAILING_EDGE_TYPE", "type": "

TYPE_COMBOBOX",

"values": ["Sheared or hand flame cut", "Rolled , machine

-flame cut , sawn and planed"]},

{"key": "KEY_DP_DETAILING_GAP", "type": "TYPE_TEXTBOX", "

value": "10"},

{"key": "KEY_DP_DETAILING_CORROSIVE_INFLUENCES", "type":

"TYPE_COMBOBOX", "values": ["No", "Yes"]},

{"key": "KEY_DP_DESIGN_METHOD", "type": "TYPE_COMBOBOX",

"values": ["Limit State Design"]},

]

validate each input field

for field in input_fields:

key = field["key"]

input_type = field["type"]

valid_values = field.get("values", [])

value = design_dictionary.get(key)

check combobox values are valid

if input_type == "TYPE_COMBOBOX":

48

if value not in valid_values and value not in ["",

None]:

raise ValueError(f"Invalid value ’{value}’ for {

key}. Valid: {valid_values}")

check customized combobox values

elif input_type == "TYPE_COMBOBOX_CUSTOMIZED":

if isinstance(valid_values , list) and valid_values

and isinstance(valid_values [0], list):

valid_values = valid_values [0]

if value not in valid_values and value not in ["",

None]:

raise ValueError(f"Invalid value ’{value}’ for {

key}. Valid: {valid_values}")

validate textbox inputs as integers

elif input_type == "TYPE_TEXTBOX" and field.get("

validator") == "Int Validator":

try:

if value not in ["", None]:

int_value = int(value)

if int_value <= 0:

print(f"Warning: {key} must be positive.

Using default: 1")

design_dictionary[key] = "1"

else:

design_dictionary[key] = ""

except ValueError:

print(f"Error: Invalid {key}: ’{value}’. Using

default: 1")

design_dictionary[key] = "1"

validate custom material grades

if key.endswith("_MATERIAL") and value and value.

startswith("Cus_"):

validator = MaterialValidator(value)

49

if not validator.is_valid_custom ():

print(f"Warning: Invalid custom material ’{value

}’ for {key}. Using default: E 250 (Fe 410 W)A

")

design_dictionary[key] = "E 250 (Fe 410 W)A"

convert specific keys to float or string

if key == "KEY_GRD":

design_dictionary[key] = float(value) if value else

8.8

elif key == "KEY_D":

design_dictionary[key] = float(value) if value else

20.0

else:

design_dictionary[key] = str(value) if value is not

None else ""

validate design preference fields

for field in design_pref_fields:

key = field["key"]

input_type = field["type"]

valid_values = field.get("values", [])

default_value = field.get("value", valid_values [0] if

valid_values else "")

value = design_dictionary.get(key , default_value)

check design preference combobox values

if input_type == "TYPE_COMBOBOX":

if value not in valid_values:

print(f"Warning: Invalid value ’{value}’ for {key

}. Using default: {default_value}")

design_dictionary[key] = default_value

validate textbox inputs as floats

50

elif input_type == "TYPE_TEXTBOX":

try:

float(value)

except ValueError:

print(f"Warning: Invalid value ’{value}’ for {key

}. Using default: {default_value}")

design_dictionary[key] = default_value

add compatibility keys for legacy support

compatibility_keys = {

"Connectivity *": "KEY_CONN",

"Member.Supporting_Section.Designation" : "KEY_SUPTNGSEC"

,

"Member.Supported_Section.Designation": "KEY_SUPTDSEC",

"Member.Supporting_Section.Material": "

KEY_SUPTNGSEC_MATERIAL",

"Member.Supported_Section.Material": "

KEY_SUPTDSEC_MATERIAL",

"Load.Shear": "KEY_SHEAR",

"Load.Axial": "KEY_AXIAL",

"Bolt.Diameter": "KEY_D",

"Bolt.Grade": "KEY_GRD",

"Bolt.Type": "KEY_TYP",

"Bolt.Bolt_Hole_Type": "KEY_DP_BOLT_HOLE_TYPE",

"Bolt.TensionType": "KEY_DP_BOLT_TYPE",

"Detailing.Bolt_Slip_Factor": "KEY_DP_BOLT_SLIP_FACTOR",

"Detailing.Edge_type": "KEY_DP_DETAILING_EDGE_TYPE",

"Detailing.Corrosive_Influences": "

KEY_DP_DETAILING_CORROSIVE_INFLUENCES",

"Detailing.Gap": "KEY_DP_DETAILING_GAP",

"Design.Method": "KEY_DP_DESIGN_METHOD",

"Material": "KEY_CONNECTOR_MATERIAL",

"Module": "KEY_MODULE",

"Plate.Thickness": "KEY_PLATETHK",

51

"Plate.Material_Grade": "KEY_CONNECTOR_MATERIAL",

"Connector.Material": "KEY_CONNECTOR_MATERIAL",

"Shear_Force": "KEY_SHEAR",

"Axial_Force": "KEY_AXIAL",

"Weld.Material": "KEY_DP_WELD_MATERIAL_G_O",

"Weld.Material_Grade_OverWrite": "

KEY_DP_WELD_MATERIAL_G_O",

"Weld.Fab": "KEY_DP_WELD_FAB",

"Weld.Fabrication": "KEY_DP_WELD_FAB",

"Weld.Fu": "KEY_DP_WELD_MATERIAL_G_O",

}

map compatibility keys to design dictionary

for dest_key , src_key in compatibility_keys.items():

design_dictionary[dest_key] = design_dictionary.get(

src_key , "")

calculate material properties for supporting , supported ,

and connector

material_keys = [

("KEY_SUPTNGSEC_FU", "KEY_SUPTNGSEC_FY", "

KEY_SUPTNGSEC_MATERIAL", None),

("KEY_SUPTDSEC_FU", "KEY_SUPTDSEC_FY", "

KEY_SUPTDSEC_MATERIAL", None),

("KEY_CONNECTOR_FU", "KEY_CONNECTOR_FY_20", "

KEY_CONNECTOR_MATERIAL", design_dictionary.get(’

KEY_PLATETHK ’, 10)),

]

assign fu and fy based on material and thickness

for fu_key , fy_key , mat_key , thickness in material_keys:

material = design_dictionary.get(mat_key , "E 250 (Fe 410

W)A")

if thickness is None:

52

fu, fy = get_fy_fu(material)

design_dictionary[fu_key] = str(fu)

design_dictionary[fy_key] = str(fy)

else:

fu, fy_20 , fy_20_40 , fy_40 = get_fy_fu(material ,

float(thickness))

design_dictionary[fu_key] = str(fu)

design_dictionary[fy_key] = str(fy_20)

design_dictionary[’KEY_CONNECTOR_FY_20_40 ’] = str(

fy_20_40)

design_dictionary[’KEY_CONNECTOR_FY_40 ’] = str(fy_40)

close database connection

conn.close()

return design_dictionary

function to test fin plate input mimicry with four test cases

def test_mimic_fin_plate_inputs ():

""" test the mimicry function with four osi file test cases.

"""

define four test cases based on osi files

test_cases = [

finplatetest1.osi

{

"KEY_MODULE": "Fin Plate Connection",

"KEY_CONN": "Column Flange -Beam Web",

"KEY_SUPTNGSEC": "HB 300",

"KEY_SUPTNGSEC_MATERIAL": "E 250 (Fe 410 W)A",

"KEY_SUPTDSEC": "MB 200",

"KEY_SUPTDSEC_MATERIAL": "E 250 (Fe 410 W)A",

"KEY_SHEAR": "5",

"KEY_AXIAL": "",

"KEY_D": "20",

"KEY_GRD": "10.9",

53

"KEY_TYP": "Bearing Bolt",

"KEY_PLATETHK": "10",

"KEY_CONNECTOR_MATERIAL": "E 250 (Fe 410 W)A",

"KEY_DP_BOLT_TYPE": "Pretensioned",

"KEY_DP_BOLT_HOLE_TYPE": "Standard",

"KEY_DP_BOLT_SLIP_FACTOR": "0.3",

"KEY_DP_WELD_FAB": "Shop Weld",

"KEY_DP_WELD_MATERIAL_G_O": "410",

"KEY_DP_DETAILING_EDGE_TYPE": "Sheared or hand flame

cut",

"KEY_DP_DETAILING_GAP": "10",

"KEY_DP_DETAILING_CORROSIVE_INFLUENCES": "No",

"KEY_DP_DESIGN_METHOD": "Limit State Design"

},

finplatetest2.osi

{

"KEY_MODULE": "Fin Plate Connection",

"KEY_CONN": "Column Web -Beam Web",

"KEY_SUPTNGSEC": "HB 200",

"KEY_SUPTNGSEC_MATERIAL": "E 250 (Fe 410 W)A",

"KEY_SUPTDSEC": "MB 200",

"KEY_SUPTDSEC_MATERIAL": "E 250 (Fe 410 W)A",

"KEY_SHEAR": "5",

"KEY_AXIAL": "",

"KEY_D": "20",

"KEY_GRD": "8.8",

"KEY_TYP": "Friction Grip Bolt",

"KEY_PLATETHK": "16",

"KEY_CONNECTOR_MATERIAL": "E 250 (Fe 410 W)A",

"KEY_DP_BOLT_TYPE": "Pretensioned",

"KEY_DP_BOLT_HOLE_TYPE": "Standard",

"KEY_DP_BOLT_SLIP_FACTOR": "0.3",

"KEY_DP_WELD_FAB": "Shop Weld",

"KEY_DP_WELD_MATERIAL_G_O": "410",

54

"KEY_DP_DETAILING_EDGE_TYPE": "Sheared or hand flame

cut",

"KEY_DP_DETAILING_GAP": "10",

"KEY_DP_DETAILING_CORROSIVE_INFLUENCES": "No",

"KEY_DP_DESIGN_METHOD": "Limit State Design"

},

finplatetest3.osi

{

"KEY_MODULE": "Fin Plate Connection",

"KEY_CONN": "Beam -Beam",

"KEY_SUPTNGSEC": "MB 200",

"KEY_SUPTNGSEC_MATERIAL": "E 250 (Fe 410 W)A",

"KEY_SUPTDSEC": "MB 300",

"KEY_SUPTDSEC_MATERIAL": "E 250 (Fe 410 W)A",

"KEY_SHEAR": "50",

"KEY_AXIAL": "8",

"KEY_D": "20",

"KEY_GRD": "8.8",

"KEY_TYP": "Bearing Bolt",

"KEY_PLATETHK": "12",

"KEY_CONNECTOR_MATERIAL": "E 250 (Fe 410 W)A",

"KEY_DP_BOLT_TYPE": "Pretensioned",

"KEY_DP_BOLT_HOLE_TYPE": "Standard",

"KEY_DP_BOLT_SLIP_FACTOR": "0.3",

"KEY_DP_WELD_FAB": "Shop Weld",

"KEY_DP_WELD_MATERIAL_G_O": "410",

"KEY_DP_DETAILING_EDGE_TYPE": "Sheared or hand flame

cut",

"KEY_DP_DETAILING_GAP": "10",

"KEY_DP_DETAILING_CORROSIVE_INFLUENCES": "No",

"KEY_DP_DESIGN_METHOD": "Limit State Design"

},

finplatetest4.osi

{

55

"KEY_MODULE": "Fin Plate Connection",

"KEY_CONN": "Beam -Beam",

"KEY_SUPTNGSEC": "MB 300",

"KEY_SUPTNGSEC_MATERIAL": "E 250 (Fe 410 W)A",

"KEY_SUPTDSEC": "MB 200",

"KEY_SUPTDSEC_MATERIAL": "E 250 (Fe 410 W)A",

"KEY_SHEAR": "50",

"KEY_AXIAL": "8",

"KEY_D": "20",

"KEY_GRD": "8.8",

"KEY_TYP": "Bearing Bolt",

"KEY_PLATETHK": "20",

"KEY_CONNECTOR_MATERIAL": "E 250 (Fe 410 W)A",

"KEY_DP_BOLT_TYPE": "Non pre -tensioned",

"KEY_DP_BOLT_HOLE_TYPE": "Over -sized",

"KEY_DP_BOLT_SLIP_FACTOR": "0.3",

"KEY_DP_WELD_FAB": "Field Weld",

"KEY_DP_WELD_MATERIAL_G_O": "410",

"KEY_DP_DETAILING_EDGE_TYPE": "Rolled , machine -flame

cut , sawn and planed",

"KEY_DP_DETAILING_GAP": "10",

"KEY_DP_DETAILING_CORROSIVE_INFLUENCES": "No",

"KEY_DP_DESIGN_METHOD": "Limit State Design"

}

]

run each test case and validate

for i, test_case in enumerate(test_cases , 1):

print(f"\nRunning Test Case {i} (FinPlateTest{i}.osi)")

try:

design_dict = mimic_fin_plate_inputs(test_case)

print("Design Dictionary:")

for key , value in sorted(design_dict.items()):

print(f" {key}: {value}")

56

create fin plate connection object and set inputs

fin_plate = FinPlateConnection ()

fin_plate.set_input_values(design_dict)

print(f"Test Case {i}: Validation Successful")

except Exception as e:

print(f"Test Case {i}: Validation Failed - {str(e)}")

raise

run tests if script is executed directly

if __name__ == "__main__":

test_mimic_fin_plate_inputs ()

7.3 Documentation and Contribution

7.3.1 GitHub Repository Links

• Testing Repository: https://github.com/lakshanashreee/Osdag/tree/testing-framework-pr

• Conda Recipe Repository: https://github.com/lakshanashreee/osdag-conda-recipe/

tree/feature-branch

7.3.2 Summary

• Developed a validation framework for .osi files, ensuring structural and semantic

correctness.

• Extended the framework to validate parameters against hardcoded expected values

from a reference spreadsheet.

• Created test suites for the Tension bolted module using mocks to simulate behav-

ior.

• Implemented a test suite to mimic Fin Plate GUI inputs, validating against database

values and handling legacy compatibility.

57

https://github.com/lakshanashreee/Osdag/tree/testing-framework-pr
https://github.com/lakshanashreee/osdag-conda-recipe/tree/feature-branch
https://github.com/lakshanashreee/osdag-conda-recipe/tree/feature-branch

Chapter 8

Appendix

8.1 Work Reports

58

Internship Work Report
Name: Lakshana Shree S
Team: Osdag
Internship: Semester Long Internship 2025
Date Day Task Hours Worked
13-02-2025 Thursday Installation of Osdag [Not completed]. 6
14-02-2025 Friday Installation of Osdag [Completed] and did initial testing. 5
15-02-2025 Saturday Explored the code files [Task-0] 4
16-02-2025 Sunday Worked on the report [Task-0] 5
17-02-2025 Monday Attended meeting and then explored the code files again 4
18-02-2025 Tuesday Learning how osdag works 5
19-02-2025 Wednesday GitHub Discipline Meet and revised all the content taught 4
20-02-2025 Thursday Study Break 0
21-02-2025 Friday CLI & Unit Testing meeting & started working on the task 4
22-02-2025 Saturday Study Break 0
23-02-2025 Sunday Downloaded all the osi files from sample design 4
24-02-2025 Monday Imported and tested the osi files on osdag gui 6
25-02-2025 Tuesday Created modified OSI files with intentional errors. 4
26-02-2025 Wednesday Wrote a batch script to automate to test the osi files. 5
27-02-2025 Thursday Did the initial testing and execution. 4
28-02-2025 Friday Developed a Python script to detect and specify error. 5
01--03-2025 Saturday Ran multiple OSI files through the validation process. 6
02--03-2025 Sunday Setting (overview) of the task. 4
03--03-2025 Monday Debugged and improved error detection for accuracy. 4
04--03-2025 Tuesday Finalized the process, ensured all scripts function correctly. 5
05--03-2025 Wednesday Worked further on the task and had a meeting to review the task. 4.5
06--03-2024 Thursday Presented my task and worked on the correction. 5
07--03-2025 Friday Started working on the modified task. 5
08--03-2025 Saturday Finalized my modified code. 4
09--03-2025 Sunday Automated the testing process. 4
10–03-2025 Monday Worked on the accuracy. 4

11--03-2025 Tuesday Finalized my modified task and pushed the code to my git repo. 5
12--03-2025 Wednesday Had a meeting to present my modified task & worked on the corrections. 4
13--03-2025 Thursday Study Break 0
14--03-2025 Friday Study Break 0
15--03-2025 Saturday Study Break 0
16--03-2025 Sunday Study Break 0
17--03-2025 Monday Study Break 0
18--03-2025 Tuesday Attended the meeting and started working on the insights. 6
19--03-2025 Wednesday Explored about writing test in python. 4
20--03-2025 Thursday Testing the test files written in python. 4
21–03-2025 Friday Installed FreeCAD explored their interfaces. 5
22–03-2025 Saturday Explored about FreeCAD. 5
23–03-2025 Sunday Learning how to write test in Free CAD. 4
24–03-2025 Monday Reviewed FreeCAD’s Testing Framework to understand FreeCAD. 5
25-03-2025 Tuesday Meeting with mentors and working on the corrections 5
26-03-2025 Wednesday Studied pytest detailly 4
27-03-2025 Thursday Learned how to write test files using pytest 6
28-03-2025 Friday Wrote test files using pytest 6
29-03-2025 Saturday Created a repo in GITHUB and arranged all the files neatly 4
30-03-2025 Sunday Was waiting for the OSI files to proceed further 0
31-03-2025 Monday Was waiting for the OSI files to proceed further 0
01--04-2025 Tuesday Was waiting for the OSI files to proceed further 0
02--04-2025 Wednesday Had a meeting and Got the OSI files and the excel sheet values, started working on them7
03--04-2025 Thursday Read through the files (related to pytest) my mentor sent 6
04--04-2025 Friday Started working on the newly assigned task. (to write tests for those OSI files)7
05--04-2025 Saturday Forked the Osdag repo and cloned it. Then, created a new branch called automation-testing and added my testing scripts. After staging and committing the changes, I pushed the branch to my forked Github repo6
06--04-2025 Sunday Worked on writing the tests for those OSI files. 7
07--04-2025 Monday Study break 0
08--04-2025 Tuesday Study break 0
09--04-2025 Wednesday Study break 0
10--04-2025 Thursday Study break 0

11--04-2025 Friday Study break 0
12--04-2025 Saturday Study break 0
13--04-2025 Sunday Study break 0
14--04-2025 Monday Study break 0
15--04-2025 Tuesday Meeting with mentors and started working on the corrections 4
16-04-2025 Wednesday Started modifying my tests using pytest with proper assert statements 5
17-04-2025 Thursday Started exploring my new task (runs during pip and conda installations) 4
18-04-2025 Friday Created a setup.py file to try running my tests 7
19-04-2025 Saturday Worked on automating tests during conda build 7
20-04-2025 Sunday Studied about toml formatted files 5
21-04-2025 Monday Study break 0
22-04-2025 Tuesday Study break 0
23-04-2025 Wednesday Study break 0
24-04-2025 Thursday Study break 0
25-04-2025 Friday setup.py file to define a custom install command that automatically runs pytest after installation6
26-04-2025 Saturday Had a meeting and got a new task (testing during conda build) 4
27-04-2025 Sunday Then deleted setup.py file and explored about pyproject.toml file 7
28-04-2025 Monday Had a meet and explored how to run the tests when making the conda build 7
29-04-2025 Tuesday Forked the Osdag-Conda-Recipe and cloned it and created a new branch to make changes on the meta file to make tests run during conda build.8
30-04-2025 Wednesday Study break 0

1-5-2025 Thursday Study break 0
02-05-2025 Friday Study break 0
03-05-2025 Saturday Study break 0
04-05-2025 Sunday Study break 0
05-05-2025 Monday Study break 0
06-05-2025 Tuesday Study break 0
07-05-2025 Wednesday Study break 0
08-05-2025 Thursday Study break 0
09-05-2025 Friday Study break 0
10-05-2025 Saturday Study break 0
11-05-2025 Sunday Study break 0

12-05-2025 Monday Study break 0
13-05-2025 Tuesday Worked on the automated tests while conda build 9
14-05-2025 Wednesday Had a 1 hour meet with the installer team and relfected on the meet 6
15-05-2025 Thursday Started working on the documentation: testing modules 5
16-05-2025 Friday Had a meet with the unit testing team and worked on the insights 4
17-05-2025 Saturday Worked on the documentation: testing modules 5
18-05-2025 Sunday Finished working on the document: testing modules 5
19-05-2025 Monday Finished all the minor pending changes: change branch name from testing to tests, created a feature branch for conda build repo, and worked on the conda build task.6
20-05-2025 Tuesday Worked on the requested changes of my mentor in documentation: 5
21-05-2025 Wednesday Had a meet with the new interns and worked on the insights. 6
22-05-2025 Thursday Worked on rearranging my git repo for better usage for the new interns 4
23-05-2025 Friday Finished working on the requested changes in the document: testing modules6
24-05-2025 Saturday Worked on the conda build task: trying resolving the prolonged error 5
25-05-2025 Sunday Worked on the conda build task: trying resolving the prolonged error 4
26-05-2025 Monday Finished the conda build task. 5
27-05-2025 Tuesday Had a meet with the unit testing team and got a new task, to write python test to validate osi files of tension_bolted5
28-05-2025 Wednesday Started working on the new task that is to create a unit test to check the following: values, output field getting populated, CAD is being generated, and report is being generated.7
29-05-2025 Thursday Working on the new task: unit test 6
30-05-2025 Friday Working on the new task: unit test 5
31-05-2025 Saturday Working on the new task: unit test 7

01-06-2025 Sunday Working on the new task: unit test 4
02-06-2025 Monday Had a meeting and a review of my work: started worked on the modified task 6
03-06-2025 Tuesday Working on the modifed task: unit test 5
04-06-2025 Wednesday Had a meeting and a review of my work: started worked on the modified task 6
05-06-2025 Thursday Working on the modifed task: unit test 5
06-06-2025 Friday Had a meeting with Aum, tried troubleshooting the errors i faced 6
07-06-2025 Saturday Worked on the tradition approach: fin plate unit testing 5
08-06-2025 Sunday Worked on the tradition approach: fin plate unit testing 6
09-06-2025 Monday Got a lots of errors while working on the traditional approach 10
10-06-2025 Tuesday Had a meeting with Aum, tried troubleshooting the errors i faced 4
11-06-2025 Wednesday Worked on the tradition approach: fin plate unit testing 6

12-06-2025 Thursday Had a meeting with Aum and was assigned to work on a new approach: mimicry approach6
13-06-2025 Friday Worked on the mimicry approach from scratch 10
14-06-2025 Saturday 2 osi files were validated successfully but two failed, we had a meet and tried to debug the error4
15-06-2025 Sunday Tried to make the remaining 2 osi files validate too 5
16-06-2025 Monday Resolved some database path issues to make the remaining 2 osi files to validate too6
17-06-2025 Tuesday Tried to make the remaining 2 osi files validate too 6
18-06-2025 Wednesday Tried to debug the errors I got 4
19-06-2025 Thursday Finally, debugged that 4 of my osi files validate successfully 4
20-06-2025 Friday Had a meet with my mentor explaning my current progress 4
21-06-2025 Saturday Worked on mimicing the calculations part 6
22-06-2025 Sunday Worked on mimicing the calculations part 4
23-06-2025 Monday Worked on the report and the calculations part 7
24-06-2025 Tuesday Worked on the report 4
25-06-2025 Wednesday Had a meet with my mentor for discussing my current git repo 5
26-06-2025 Thursday Worked on the report 5

Chapter 9

Conclusions

9.1 Tasks Accomplished

The internship focused on enhancing the reliability and automation of Osdag’s OSI file

validation process. The following tasks were successfully completed:

• Task 1: OSI File Validation Framework: Developed a Python-based frame-

work (osi validate.py) to validate .osi files, checking for the presence of required

keys, valid module names, and correct numeric field types. Created Pytest test cases

(test osi validate.py) to verify valid and invalid files, organized test files into

valid osi files and invalid osi files folders, and implemented a batch script

(run tests.bat) for one-click test execution.

• Task 2: Parameter Validation Against Expected Values: Extended the vali-

dation framework to compare .osi file parameters (e.g., beam depth, column size)

against hardcoded values from a reference spreadsheet. Implemented validation

functions and corresponding Pytest test cases to ensure compliance with design

standards.

• Task 3: Conda Build Integration: Integrated the OSI validation tests into the

Conda package build process by creating a meta.yaml file. Configured the recipe

to run Pytest during the build, ensuring test failures halt the process. Forked the

Osdag repository, created an automation-testing branch, and pushed changes to

the forked repository.

64

• Task 4: Testing Tension Bolted Module with Mocks: Developed a unittest-

based test suite (test tension bolted mock.py) to validate the Tension bolted

module using mocks. Simulated the module’s behavior with predefined outputs to

test parameters like section designation, tension capacity, and bolt properties.

• Task 5: Mimicking Fin Plate GUI Inputs: Created a test suite (test fin plate mimicry.py)

to mimic the Osdag GUI input process for the Fin Plate Connection module. Vali-

dated inputs against database values, handled custom material grades, and ensured

compatibility with legacy keys.

9.2 Skills Developed

The internship provided opportunities to develop a range of technical and professional

skills, including:

• Technical Skills:

– Python Programming: Gained proficiency in writing modular, reusable

Python code for validation and testing, using libraries like json, pytest,

unittest, and unittest.mock.

– Testing Frameworks: Mastered Pytest and unittest for creating auto-

mated test suites, including the use of fixtures and mocks to isolate dependen-

cies.

– Conda Packaging: Learned to create and configure Conda recipes (meta.yaml)

for package building and test integration, enhancing CI/CD compatibility.

– Database Interaction: Developed skills in querying SQLite databases to

validate input parameters and retrieve design data.

– Version Control: Improved expertise in Git and GitHub workflows, including

forking, branching, committing, and pushing changes to a repository.

• Professional Skills:

– Problem-Solving: Tackled complex validation challenges, designing robust

solutions to ensure software reliability.

65

– Documentation: Enhanced technical writing skills by creating clear, detailed

documentation for code, test cases, and processes.

– Time Management: Managed multiple tasks within deadlines, prioritizing

deliverables to meet project goals.

– Attention to Detail: Ensured precision in validation logic and test case

design to catch errors and maintain high-quality standards.

66

Bibliography

[1] Siddhartha Ghosh, Danish Ansari, Ajmal Babu Mahasrankintakam, Dharma Teja

Nuli, Reshma Konjari, M. Swathi, and Subhrajit Dutta. Osdag: A Software for

Structural Steel Design Using IS 800:2007. In Sondipon Adhikari, Anjan Dutta, and

Satyabrata Choudhury, editors, Advances in Structural Technologies, volume 81 of

Lecture Notes in Civil Engineering, pages 219–231, Singapore, 2021. Springer Singa-

pore.

[2] FOSSEE Project. FOSSEE News - January 2018, vol 1 issue 3. Accessed: 2024-12-05.

[3] FOSSEE Project. Osdag website. Accessed: 2024-12-05.

67

	Introduction
	National Mission in Education through ICT
	ICT Initiatives of MoE

	FOSSEE Project
	Projects and Activities
	Fellowships

	Osdag Software
	Osdag GUI
	Features

	Screening Task
	Problem Statement
	Objective

	Methodology
	Design Calculations
	Input Parameters
	Weld Strength
	Shear Strength of the Weld
	Number of Welds
	Design Distances
	Length of the Connection

	Expected Outcomes
	Flowchart
	Full code

	Conclusion
	References

	Internship Task 1: OSI File Testing and Automation in Osdag
	Internship Task 1: Problem Statement
	Internship Task 1: Tasks Done
	Directory Structure
	Task Instructions: Writing Python Test Files
	Example Validation Code
	Example Test Code

	Internship Task 2: Validation Against Expected Parameters
	Internship Task 2: Problem Statement
	Internship Task 2: Tasks Done
	Task Instructions: Writing Python Test Files with Hardcoded Inputs
	Example Validation Function
	Example Test Case

	Internship Task 3: Integration with Conda Build Process
	Internship Task 3: Problem Statement
	Internship Task 3: Tasks Done
	Task Instructions: Setting Up and Integrating with Conda
	Example Conda Recipe

	Internship Task 4: Testing Tension Bolted Module with Mocks
	Internship Task 4: Problem Statement
	Understanding Mocks

	Internship Task 4: Tasks Done
	Task Instructions: Writing Tests with Mocks
	Full Code

	Internship Task 5: Mimicking Fin Plate GUI Inputs
	Internship Task 5: Problem Statement
	Internship Task 5: Tasks Done
	Task Instructions: Mimicking Fin Plate GUI Inputs
	Full Code

	Documentation and Contribution
	GitHub Repository Links
	Summary

	Appendix
	Work Reports

	Conclusions
	Tasks Accomplished
	Skills Developed

	Bibliography

