
eSim Semester Long Internship Report

On

eSim 2.5 for Ubuntu, Windows and Docker

Submitted by

Jayanth Tatineni
B.Tech in CSE (Cyber Security), GITAM University

Under the guidance of

Sumanto Kar

IIT Bombay

July 4, 2025

Acknowledgment

I sincerely extend my gratitude to the FOSSEE team for providing me with this
significant opportunity to contribute to an open-source project like eSim. I am truly
honored to have been selected for this internship.

I would like to express my heartfelt appreciation to my mentor, Sumanto Kar Sir,
for his invaluable guidance, patience, and support throughout this journey.

This experience has strengthened my motivation to contribute to open-source projects
while enhancing my skills and career.

1

Contents

1 Introduction 4
1.1 FOSSEE: Promoting Open-Source Software for Education 4
1.2 eSim: An Open-Source EDA Tool . 4

1.2.1 Key Features of eSim . 5
1.2.2 Components Integrated with eSim 5

2 Problem Statement 6
2.1 Challenges in eSim . 6

2.1.1 Issues Encountered Across Versions 6
2.1.2 Approach to Address These Challenges 7

3 Version Handling Installation Scripts for Ubuntu 8
3.1 Overview . 8
3.2 Version Detection Mechanism . 8
3.3 Supported Versions . 9
3.4 Error Handling . 9
3.5 Advantages . 9
3.6 Extension to NGHDL . 10
3.7 Conclusion . 10

4 Docker Image for eSim 11
4.1 Overview . 11
4.2 Motivation . 11
4.3 Dockerfile Structure . 11
4.4 Build and Image Creation . 13
4.5 Modifications for Container Usability 13
4.6 Usage Instructions and GUI Setup 14
4.7 Testing and Compatibility . 15
4.8 Upgrade to eSim 2.5 . 15
4.9 Benefits of Containerization . 15
4.10 Conclusion . 16

5 Installer Packaging for eSim 2.5 17
5.1 Overview . 17
5.2 Ubuntu Installer . 17

5.2.1 Packaging Process . 17
5.2.2 Challenges and Observations 17

2

5.2.3 Result . 18
5.3 Windows Installer . 18

5.3.1 Packaging Process . 18
5.3.2 Modifications to PyInstaller Setup 18
5.3.3 Fix for Welcome Page in Windows Executable 19
5.3.4 NSIS Script Fixes and Enhancements 19
5.3.5 Additional Observations . 21
5.3.6 Outcome . 21

5.4 Testing and Validation . 21
5.5 Benefits of Platform-Specific Installers 22
5.6 Conclusion . 22

6 Conclusion and Future Scope 23
6.1 Conclusion . 23
6.2 Future Scope . 23
6.3 Final Remarks . 24

Bibliography 25

3

Chapter 1

Introduction

1.1 FOSSEE: Promoting Open-Source Software

for Education

The Free/Libre and Open Source Software for Education (FOSSEE) project is an
initiative by IIT Bombay under the National Mission on Education through Informa-
tion and Communication Technology (ICT), funded by the Ministry of Education,
Government of India. The project aims to reduce dependency on proprietary soft-
ware in academic and research institutions by promoting the adoption of Free and
Open Source Software (FOSS) alternatives. [1]

FOSSEE works toward this goal through multiple initiatives:

• Development and Enhancement: Creating new open-source tools and improv-
ing existing ones to meet industry and academic needs.

• Workshops and Training: Conducting training programs and workshops to
encourage open-source software adoption.

• Collaborations: Partnering with institutions, researchers, and professionals to
integrate FOSS into mainstream education.

• Translation and Documentation: Converting open-source software documen-
tation into multiple regional languages to enhance accessibility.

Through these efforts, FOSSEE ensures that high-quality software remains freely
available, eliminating the financial barriers associated with proprietary tools and
empowering individuals to learn, contribute, and innovate.

1.2 eSim: An Open-Source EDA Tool

One of FOSSEE’s most significant contributions to the open-source ecosystem is
eSim, a free and open-source Electronic Design Automation (EDA) tool for circuit
design, simulation, analysis, and PCB design. Developed by IIT Bombay, eSim
integrates multiple FLOSS tools to provide a complete design and simulation envi-
ronment for electrical and electronics engineers. [2]

4

1.2.1 Key Features of eSim

eSim is designed to offer similar functionalities to commercially available EDA tools
such as OrCAD, Xpedition, and HSPICE, but without the associated licensing costs.
Some of its key features include:

• Schematic Capture: Users can create detailed circuit schematics using an in-
teractive graphical interface.

• Simulation Support: Integration with NgSpice, allowing transient, AC, and
DC circuit analysis.

• VHDL and Verilog Simulation: Powered by GHDL and Verilator, enabling
mixed-mode simulations.

• PCB Layout and Design: Seamless integration with KiCad, a powerful open-
source PCB design tool.

• Microcontroller Support: Offers features for designing embedded systems by
integrating microcontrollers into circuits.

• Open-Source Licensing: Released under GPL, ensuring unrestricted access and
modification.

1.2.2 Components Integrated with eSim

eSim brings together multiple open-source tools to create a comprehensive EDA
suite:

• KiCad: Used for schematic capture and PCB design.

• NgSpice: A general-purpose circuit simulation program for analyzing AC, DC,
and transient circuits.

• GHDL: A VHDL simulator that allows digital circuit design verification.

• Verilator: A fast Verilog simulator widely used for hardware verification.

By leveraging these tools, eSim provides an affordable, flexible, and powerful al-
ternative to proprietary EDA software, making it a preferred choice for students,
researchers, and professionals in circuit design and simulation.

While eSim continues to be a powerful tool for circuit design and simulation, its
installation process across different Ubuntu versions has presented challenges, neces-
sitating improvements to ensure seamless user experience. These issues are explored
in the following section.

5

Chapter 2

Problem Statement

To enhance the usability, portability, and consistency of eSim across multiple system
environments and Ubuntu versions.

2.1 Challenges in eSim

2.1.1 Issues Encountered Across Versions

Following the resolution of compatibility issues in Ubuntu 23.04, broader challenges
impacting the overall user experience of eSim were observed. These challenges were
primarily associated with version-specific behaviors, environmental inconsistencies,
and the need for updated packages for the 2.5 release. The key issues identified
were:

• Version-Specific Script Limitations: The existing installation scripts were
tightly coupled to individual Ubuntu releases. Attempts to reuse them on other
versions — such as 22.04.4, 22.04.5, 23.04, and 24.04 — resulted in package
conflicts, deprecated dependencies, and execution failures.

• Lack of Automation for Version Detection: There was no unified mech-
anism to dynamically handle version-specific installation flows. Manual se-
lection or script modification was required depending on the system version,
making the process inefficient and error-prone.

• Need for a Containerized Version of eSim: Installation inconsistencies
across different Ubuntu versions, due to environment-specific factors and pack-
age availability, highlighted the need for a portable solution. A containerized
approach was required to ensure consistent setup and execution regardless of
host system configuration.

• Requirement for Updated Installers for eSim 2.5: While eSim 2.4 was
available, the release of eSim 2.5 introduced several changes that necessitated
updated packaging workflows. Dedicated installers for both Ubuntu and Win-
dows were required to streamline deployment for end users.

6

These challenges restricted the ease of installation, maintenance, and accessibility
of eSim. Addressing them required a more generalized, version-agnostic, and user-
friendly approach to deployment.

2.1.2 Approach to Address These Challenges

To overcome the issues outlined, the following solutions were developed and imple-
mented:

• Creation of a Centralized Controller Script: A unified main script was
developed to detect the host Ubuntu version and automatically execute the
appropriate version-specific installer. This automation removed the need for
manual intervention and improved overall usability.

• Development of a Docker-Based Deployment: A Docker image was cre-
ated to encapsulate the eSim environment, providing a consistent and portable
installation independent of the host system’s configuration. This image was
verified across multiple Ubuntu versions, including 25.04.

• Packaging of Installers for eSim 2.5: Updated and tested installers were
created for eSim 2.5. These included a packaged Ubuntu installer as well as
a Windows installer, significantly reducing the setup complexity for users and
ensuring compatibility with the latest software version.

These improvements collectively enhanced the reliability, portability, and acces-
sibility of eSim, making it easier to install and use across a wide range of system
environments.

7

Chapter 3

Version Handling Installation
Scripts for Ubuntu

3.1 Overview

To ensure smooth and consistent installation of eSim across different Ubuntu ver-
sions, a version-aware script was implemented. This script is responsible for detect-
ing the system version and automatically invoking the appropriate version-specific
installation script. This approach eliminates manual steps, reduces compatibility
issues, and improves overall reliability. [3]

3.2 Version Detection Mechanism

The script uses a combination of lsb release and /etc/os-release to determine
both the base and full version of the operating system:

VERSION_ID=$(grep "^VERSION_ID" /etc/os-release | cut -d '"' -f 2)

FULL_VERSION=$(lsb_release -d | grep -oP '\d+\.\d+\.\d+')

Based on the detected version, the script selects the appropriate installer. The
logic is structured using a case statement:

case $VERSION_ID in

"22.04")

if [["$FULL_VERSION" == "22.04.4"]]; then

SCRIPT="install-eSim-22.04.sh"

else

SCRIPT="install-eSim-23.04.sh"

fi

;;

"23.04")

SCRIPT="install-eSim-23.04.sh"

;;

"24.04")

8

SCRIPT="install-eSim-24.04.sh"

;;

*)

echo "Unsupported Ubuntu version: $VERSION_ID ($FULL_VERSION)"

exit 1

;;

esac

3.3 Supported Versions

This version-handling script has been tested and confirmed to work on the following
Ubuntu releases:

• Ubuntu 22.04.4 LTS

• Ubuntu 22.04.5 LTS

• Ubuntu 23.04

• Ubuntu 24.04

3.4 Error Handling

The script performs input validation and provides user-friendly error messages in
the following cases:

• Invalid or missing arguments (e.g., no --install or --uninstall)

• Unsupported Ubuntu versions

• Missing or misnamed install scripts

All critical failures are handled gracefully, with informative messages printed to
the terminal.

3.5 Advantages

This structure offers several key benefits:

• Avoids hardcoding installation steps into a single script

• Makes the installer modular and easier to maintain

• Reduces risk of user error during manual setup

• Enables better compatibility across a range of system configurations

9

3.6 Extension to NGHDL

A similar version-handling script was also implemented for install-nghdl.sh, fol-
lowing the same logic and structure to ensure compatibility with different Ubuntu
versions. [4]

3.7 Conclusion

By using version-handling scripts to manage installer execution, eSim can now be
deployed more reliably across supported Ubuntu versions. This modular and adap-
tive approach improves long-term maintainability and reduces manual effort during
installation.

10

Chapter 4

Docker Image for eSim

4.1 Overview

To ensure consistent functionality and ease of deployment across different Ubuntu
systems, a Docker image for eSim 2.5 was created. The containerized setup addresses
compatibility issues, simplifies the installation process, and eliminates the need for
users to handle dependencies manually. The final image was designed to support a
plug-and-play experience for eSim users on Linux systems with Docker.

4.2 Motivation

Installing eSim on various Ubuntu versions often resulted in dependency conflicts,
environment misconfigurations, or package mismatches. Additionally, newer Ubuntu
releases (such as 25.04) introduced changes that were incompatible with the legacy
scripts. To mitigate these problems, a Docker-based solution was adopted to:

• Provide a consistent, pre-configured runtime environment

• Eliminate the need for version-specific script adjustments

• Offer an easy and reproducible setup method

4.3 Dockerfile Structure

The Docker image was built using ubuntu:22.04 as the base. The following addi-
tional tools and steps were included:

• All required packages and GUI libraries

• PyQt5 installed via pip3 for NGHDL support

• A dedicated non-root user (esimuser) for running the application

• PDF viewer (evince) to open the bundled user manual from within the con-
tainer

11

• A prompt-free, automated installation script to support non-interactive Docker
builds

Dockerfile:

Listing 4.1: Dockerfile for eSim 2.5

1 FROM ubuntu :22.04

2

3 # Step 1: Install system packages

4 RUN apt -get update && apt -get install -y \

5 lsb -release curl wget sudo unzip \

6 python3 python3 -venv python3 -pip \

7 libx11 -dev libxcb1 libx11 -xcb -dev libxcb -util1 \

8 libxcb -xinerama0 libxext6 libxrandr2 \

9 libqt5gui5 libqt5core5a libqt5widgets5 \

10 libglib2 .0-0 libwayland -client0 libwayland -egl1 \

11 libxrender1 dbus -x11 mesa -utils \

12 software -properties -common xdg -utils \

13 evince && apt -get clean && rm -rf /var/lib/apt/lists/*

14

15 # Step 2: Install PyQt5 for NGHDL

16 RUN pip3 install --no -cache -dir PyQt5

17

18 # Step 3: Create a non -root user

19 RUN useradd -m -s /bin/bash esimuser && \

20 echo "esimuser:password" | chpasswd && \

21 usermod -aG sudo esimuser && \

22 echo "esimuser␣ALL=(ALL)␣NOPASSWD:␣ALL" >> /etc/sudoers

23

24 # Step 4: Switch to non -root user

25 USER esimuser

26 WORKDIR /home/esimuser

27

28 # Step 5: Copy eSim source files

29 COPY --chown=esimuser:esimuser ./esim /home/esimuser/esim/

30

31 # Step 6: Make script executable

32 RUN chmod +x /home/esimuser/esim/install -eSim.sh

33

34 # Step 7: Install eSim non -interactively

35 RUN /home/esimuser/esim/install -eSim.sh --install || echo "eSim␣

install␣failed.␣Check␣logs␣during␣runtime."

36

37 # Step 8: GUI support

38 ENV DISPLAY =:0

39

40 # Step 9: Default shell

41 CMD ["bash"]

12

4.4 Build and Image Creation

The Docker image was built using the following command:

docker build -t esim-2.5 .

This generated a pre-installed, self-contained Docker image named esim-2.5

that is ready to run out-of-the-box.

Figure 4.1: Building eSim Docker Image

4.5 Modifications for Container Usability

To ensure the image worked seamlessly in container environments, several application-
level changes were made:

• The installation script was modified to run without user prompts, enabling
unattended installation during image build time.

• The default ”Dev Docs” button in the GUI was commented out, since
containers typically lack a browser. Instead, a message was printed to the
console with the documentation URL so users can open it externally.

• A PDF viewer (Evince) was included so that users can open the bundled
eSim user manual directly from within the Docker container.

• The image was designed with a focus on simplicity and ”plug-and-play” be-
havior — users can launch it without needing to perform any installation steps
inside the container.

13

Figure 4.2: eSim through Docker

4.6 Usage Instructions and GUI Setup

To use the eSim Docker container:

1. Ensure Docker is installed and running on the host system.

2. Load the Docker image (if not built locally):

docker load -i /path/to/esim-2.5.tar

3. Allow Docker access to the host display for GUI support:

xhost +local:docker

4. Run the container using:

docker run -it \

--env DISPLAY=$DISPLAY \

--volume /tmp/.X11-unix:/tmp/.X11-unix \

esim-2.5

14

5. Inside the container, launch eSim:

esim

Note: These steps mount the X11 Unix socket and set the required DISPLAY

variable, allowing the eSim GUI to run inside the container and display on the host
system.

Storage: As of now, no persistent storage or project-sharing folder is configured.
This can be implemented in the future using Docker volume mounts to allow users
to save and retrieve projects outside the container.

4.7 Testing and Compatibility

The containerized version of eSim was tested on select Ubuntu host systems, and it
successfully ran without requiring modifications to the host environment. While full
testing was not conducted across all Ubuntu releases, the Docker image is expected
to work reliably on the following distributions based on their compatibility with
Docker and the image’s base configuration:

• Ubuntu 22.04.4 LTS

• Ubuntu 22.04.5 LTS

• Ubuntu 23.04

• Ubuntu 24.04

• Ubuntu 25.04

Users on these systems should be able to run the image without issues, provided
that Docker and GUI support (via X11 forwarding) are correctly configured.

4.8 Upgrade to eSim 2.5

The Docker image was later updated to include eSim 2.5. The upgrade process
involved updating the copied source files inside the container and modifying the
installation scripts to reflect the new build process and dependencies. This ensures
that the image remains current with the latest official eSim release.

4.9 Benefits of Containerization

• Ensures consistent and reproducible installation across systems

• Eliminates host-level package conflicts and missing dependencies

• Simplifies deployment for academic use, testing, and demonstrations

15

• Requires no manual configuration or version-specific setup steps

• Supports GUI-based usage with minimal host configuration

4.10 Conclusion

The Docker-based deployment of eSim 2.5 provides a streamlined and reliable method
to run the application across diverse system environments. With prompt-free instal-
lation, GUI compatibility, and built-in PDF viewer support, the image is designed
for usability. Future additions such as persistent storage, volume mounting, and
remote documentation access could further enhance its functionality and adoption.

16

Chapter 5

Installer Packaging for eSim 2.5

5.1 Overview

As part of the eSim 2.5 release, dedicated platform-specific installers were created
for both Ubuntu and Windows. These installers were designed to simplify the user
experience by automating the setup process, ensuring correct dependency manage-
ment, and reducing installation errors. The final installers generated through this
effort were included in the official eSim 2.5 release. [5]

5.2 Ubuntu Installer

5.2.1 Packaging Process

The Ubuntu installer was created by following the packaging instructions available
in the official repository. It includes structured installation logic, version-aware
detection, and dependency handling. The package provides both installation and
uninstallation modes and supports multiple Ubuntu versions via internal scripts. [7]

5.2.2 Challenges and Observations

While the base packaging instructions provided in the repository served as a starting
point, they required updates to align with the structural changes introduced in eSim
2.5. In particular:

• The official instructions only mention copying the main installer script (install-eSim.sh)
into the eSim-<version> folder. However, starting from version 2.5, this script
internally depends on a new directory named install-eSim-scripts/, which
contains the version-specific installers.

• Omitting the install-eSim-scripts/ folder leads to script failures during
execution, as version handling is broken without these files.

• This discrepancy was identified during the packaging process. The packaging
steps need to be updated accordingly to include both:

17

– install-eSim.sh (the main entry point)

– install-eSim-scripts/ (required for version-specific logic)

• Additional minor adjustments were required in handling folder structure, per-
missions, and testing the install/uninstall flows.

These updates ensure that the Ubuntu installer functions as expected for eSim 2.5
and above, and that it is aligned with the structural changes made to the installation
framework.

5.2.3 Result

The Ubuntu installer for eSim 2.5 was successfully generated and contributed to the
official release repository. It allows for simplified installation with minimal manual
intervention across supported versions. [6]

5.3 Windows Installer

5.3.1 Packaging Process

The Windows installer was created using a two-step process:

1. Application Bundling: eSim was compiled into a standalone executable
using PyInstaller.

2. Installer Creation: A user-friendly installer was built using NSIS (Nullsoft

Scriptable Install System).

This approach allowed the application and all necessary dependencies to be pack-
aged into a single executable file, followed by the creation of a structured, guided
installer for end users. [8]

5.3.2 Modifications to PyInstaller Setup

The instructions initially provided for generating the PyInstaller executable did not
include all necessary files to support newer features in eSim 2.5. Specifically, support
for the latest schematic converter required additional data paths to be bundled
manually in the .spec file. The datas section was updated as follows:

Listing 5.1: Modified datas entry in eSim.spec

1 datas =[

2 ('src/converter/schematic_converters/lib/PythonLib /*.py', '
converter/schematic_converters/lib/PythonLib '),

3 ('src/converter/LTSpiceToKiCadConverter/src/Windows /*','/
converter/LTSpiceToKiCadConverter/src/Windows ')

4],

18

Without this modification, the PyInstaller build would complete successfully but
result in missing runtime functionality for the converter feature.

Additionally, the TerminalUi.ui file, which was not mentioned in the official
packaging instructions, had to be manually included when compressing the eSim
directory. Omitting it caused runtime UI issues.

5.3.3 Fix for Welcome Page in Windows Executable

The Welcome.py script, responsible for rendering the welcome page in the eSim
GUI, originally used a relative path assumption to locate the welcome.html file.
This approach worked in source environments but failed when the application was
packaged into a Windows executable using PyInstaller. [9]

To resolve this, the file path logic was updated to dynamically locate the directory
of the running executable. The modified block used the sys.executable path (for
bundled apps) or file path (during development) to construct the full absolute
path to welcome.html.

The updated code is shown below:

Listing 5.2: Modified path handling in Welcome.py

1 # Original logic (simplified):

2 init_path = '../../ '
3 if os.name == 'nt':
4 init_path = ''
5 self.browser.setSource(QtCore.QUrl(init_path + "library/browser/

welcome.html"))

6

7 # Modified logic:

8 base_path = os.path.dirname(sys.executable) if getattr(sys , 'frozen
', False) else os.path.dirname(__file__)

9 html_path = os.path.abspath(os.path.join(base_path , "library/

browser/welcome.html"))

10 self.browser.setSource(QtCore.QUrl.fromLocalFile(html_path))

This change ensures that the welcome page displays correctly when eSim is
launched from the packaged Windows executable, regardless of the user’s working
directory or environment.

5.3.4 NSIS Script Fixes and Enhancements

The NSIS script provided [10] for installer generation required multiple adjustments
to support updated paths and file handling behaviors:

• The downloaded KiCad installer had to be renamed manually to kicad-6.0.11-i686.exe
to match the script’s expectations. This requirement was undocumented and
initially caused installation failures.

• The installer logic was updated to correctly extract and place KiCad compo-
nents. The -InstallKiCad section in the NSIS script was modified extensively
to address runtime errors and improve behavior. Key updates included:

19

– Commenting out the failing ZIP extraction and using pre-extracted li-
braries instead

– Creating the KiCad configuration directory

– Copying essential template and configuration files to required paths

– Cleaning up redundant or non-functional lines

The modified NSIS section is shown below, with inline comments to highlight
the changes made:

Listing 5.3: Modified NSIS Section -InstallKiCad

1 Section -InstallKiCad

2

3 SetOutPath "$EXEDIR"
4 File "kicad -6.0.11 - i686.exe" ; Renamed manually to

match this name

5

6 SetOutPath "$INSTDIR"
7 SetDetailsPrint both

8 DetailPrint "Installing:␣KiCad"

9 SetDetailsPrint listonly

10 ExecWait '"$EXEDIR\kicad -6.0.11 - i686.exe" /S /D=$INSTDIR\
KiCad '

11 SetDetailsPrint both

12

13 Goto endActiveSync

14 endActiveSync:

15

16 ; Clean up unnecessary files

17 Delete "$EXEDIR\kicad -6.0.11 - i686.exe"
18 Delete "$PROFILE \..\ Public\Desktop\KiCad*.lnk" ; Added to

remove unwanted desktop shortcuts

19

20 ; Set environment variable for KiCad binary path

21 EnVar :: SetHKLM

22 EnVar :: AddValue "Path" "$INSTDIR\KiCad\bin"
23 Pop $0
24 DetailPrint "EnVar :: AddValue␣returned =|$0|"
25

26 ; The following ZIP extraction was failing , so it was

commented out

27 ; ZipDLL :: extractall "$INSTDIR\eSim\library\kicadLibrary.zip"
"$INSTDIR\eSim\library \"

28

29 ␣␣;␣These␣lines␣were␣commented␣due␣to␣inconsistent␣behavior

30 ␣␣;␣CopyFiles␣"$INSTDIR\eSim\library\kicadLibrary\eSim -symbols
*"␣"$INSTDIR\KiCad\share\kicad\symbols\"

31

32 ␣␣;␣Removed␣previous␣KiCad␣config␣directory␣if␣present␣(

optional)

33 ␣␣;␣RMDir␣/r␣"$PROFILE\AppData\Roaming\kicad \6.0\"
34

35 ␣␣;␣Added␣to␣create␣the␣config␣directory␣manually

36 ␣␣CreateDirectory␣"$PROFILE\AppData\Roaming\kicad \6.0\"

20

37

38 ␣␣;␣Copy␣KiCad␣template␣files␣to␣user␣and␣KiCad␣directories

39 ␣␣CopyFiles␣"$INSTDIR\eSim\library\kicadLibrary\template *"␣"
$PROFILE\AppData\Roaming\kicad \6.0\"

40 ␣␣Delete␣"$INSTDIR\KiCad\share\kicad\template\sym -lib -table"
41 ␣␣CopyFiles␣"$INSTDIR\eSim\library\kicadLibrary\template *"␣"

$INSTDIR\KiCad\share\kicad\template\"
42

43 ␣␣;␣Remove␣extracted␣KiCad␣Library␣(used␣pre -extracted␣version)

44 ␣␣RMDir␣/r␣"$INSTDIR\eSim\library\kicadLibrary"
45

46 SectionEnd

• Few lines were commented out or replaced with manual alternatives due to
inconsistencies in NSIS execution on some systems.

5.3.5 Additional Observations

• Placement instructions for sky130 fd pr.7z within the installer folder were
not clearly documented and required manual trial-and-error.

• The installer had to be rebuilt multiple times and tested across fresh Windows
environments to verify its correctness.

• All changes were made with minimal deviation from the existing structure to
ensure backward compatibility.

5.3.6 Outcome

The final Windows installer includes the full eSim 2.5 application, bundled depen-
dencies, integrated KiCad, and relevant configuration files. It provides a clean graph-
ical setup experience, sets environment variables, and ensures proper application
startup post-installation.

This installer, along with the Ubuntu version, was contributed to the official
eSim 2.5 release. [?]

5.4 Testing and Validation

Both installers underwent repeated test cycles on their respective platforms. The
testing covered:

• Clean installations on fresh systems

• Proper execution of the application post-installation

• Verification of environment setup and GUI behavior

• Functional uninstallation and cleanup

21

5.5 Benefits of Platform-Specific Installers

• Reduces the barrier to entry for non-technical users

• Ensures consistent installation across different systems

• Minimizes dependency-related issues

• Supports distribution through official release channels

5.6 Conclusion

The successful packaging of eSim 2.5 into dedicated Windows and Ubuntu installers
represents a major improvement in its usability and accessibility. The effort involved
fixing outdated configurations, automating environment setup, and performing ex-
tensive testing to deliver reliable, easy-to-use installers. These installers now serve
as the default installation method for eSim users across platforms.

22

Chapter 6

Conclusion and Future Scope

6.1 Conclusion

The work carried out focused on significantly enhancing the installation, compati-
bility, and usability of eSim across a range of platforms and system configurations.
Key contributions include:

• Development of version-handling installation scripts to support multiple Ubuntu
versions without requiring manual modification.

• Creation of a Docker image to provide a consistent, portable runtime environ-
ment that works across host systems — including newer releases like Ubuntu
25.04.

• Packaging of eSim 2.5 installers for both Ubuntu and Windows platforms,
enabling simplified installation with minimal effort from the user.

• Identification and resolution of system-level, packaging, and path-related issues
during the installer creation process.

• Extensive testing of all installers and deployment methods to ensure reliability
and proper functionality.

These efforts collectively improved the distribution and adoption potential of
eSim, particularly for academic, research, and individual users working in diverse
environments.

6.2 Future Scope

While the current work has addressed major usability and deployment challenges
across platforms, several areas remain for future improvement. These enhancements
could further improve the robustness, portability, and accessibility of eSim:

• Persistent Storage and Volume Mounting in Docker: The current
Docker setup does not support persistent project storage. Implementing shared
volume mounts between the host and container would allow users to save and
retrieve their eSim files across sessions.

23

• Adaptations for Headless and Browser-Less Environments: As the
container environment lacks a graphical web browser, the DevDocs button in
the GUI was disabled. Future solutions could include terminal-based docu-
mentation access or serving docs over a lightweight local webserver accessible
from the host browser.

• Cross-Platform GUI-Based Installer: Developing a unified, graphical in-
staller (e.g., using Qt or Electron) for both Windows and Linux systems would
further simplify setup, especially for non-technical users unfamiliar with ter-
minal commands.

• Continuous Integration and Automated Testing Pipelines: Incorpo-
rating CI tools such as GitHub Actions to automate building and testing of
Docker images, Ubuntu installers, and Windows packages would improve re-
lease consistency, reduce manual effort, and catch regressions early.

• Improved and Updated Packaging Documentation: Several undocu-
mented requirements were discovered during the packaging process for eSim
2.5, including critical paths, renamed files, and additional folders. Updat-
ing the official documentation to reflect these changes would support future
contributors and reduce onboarding time.

• Multi-Architecture and OS Support: Future versions could extend sup-
port to ARM-based platforms (e.g., Raspberry Pi), macOS (via Docker or
virtualization), and Linux distributions beyond Ubuntu, thereby broadening
accessibility.

• Automatic Update Mechanism: An optional version checker or auto-
updater could be introduced to notify users of new releases and guide them
through upgrades.

• Windows Path Handling and Portability Enhancements: Improve-
ments can be made to streamline platform-specific path handling logic (e.g.,
detecting relative paths to resources), especially in PyInstaller-built executa-
bles, to reduce hardcoding and increase portability.

Implementing these enhancements would elevate eSim’s usability, maintainabil-
ity, and platform reach—helping it mature as a reliable open-source EDA tool for
both academic and professional use.

6.3 Final Remarks

The efforts undertaken during this phase laid a strong foundation for the sustainable
packaging and deployment of eSim. By resolving compatibility barriers and intro-
ducing modular, tested, and maintainable installer solutions, the software is now
better positioned for widespread usage across both Linux and Windows platforms.

24

Bibliography

[1] FOSSEE Official Website, 2020. Available at:
https://fossee.in/about

[2] eSim Official Website, 2020. Available at:
https://esim.fossee.in/

[3] eSim Ubuntu installer script, 2025. Available at:
https://github.com/FOSSEE/eSim/.../Ubuntu/install-eSim.sh

[4] nghdl Ubuntu installer script, 2025. Available at:
https://github.com/FOSSEE/nghdl/.../Ubuntu/install-nghdl.sh

[5] eSim-2.5 release, 2025. Available at:
https://github.com/FOSSEE/eSim/releases/tag/v2.5

[6] eSim-2.5 Downloads, 2025. Available at:
https://esim.fossee.in/downloads

[7] Ubuntu Installer Packaging documentation, 2022. Available at:
https://github.com/FOSSEE/eSim/.../Ubuntu/README.md

[8] Windows Installer Packaging documentation, 2023. Available at:
https://github.com/FOSSEE/eSim/.../Windows/README.md

[9] Welcome.py, 2025. Available at:
https://github.com/FOSSEE/eSim/.../src/browser/Welcome.py

[10] esim-setup-script.nsi, 2023. Available at:
https://github.com/FOSSEE/eSim/.../Windows/esim-setup-script.nsi

25

https://fossee.in/about
https://esim.fossee.in/
https://github.com/FOSSEE/eSim/blob/installers/Ubuntu/install-eSim.sh
https://github.com/FOSSEE/nghdl/blob/installers/Ubuntu/install-nghdl.sh
https://github.com/FOSSEE/eSim/releases/tag/v2.5
https://esim.fossee.in/downloads
https://github.com/FOSSEE/eSim/blob/installers/Ubuntu/README.md
https://github.com/FOSSEE/eSim/blob/installers/Windows/README.md
https://github.com/FOSSEE/eSim/blob/master/src/browser/Welcome.py
https://github.com/FOSSEE/eSim/blob/installers/Windows/esim-setup-script.nsi

	Introduction
	FOSSEE: Promoting Open-Source Software for Education
	eSim: An Open-Source EDA Tool
	Key Features of eSim
	Components Integrated with eSim

	Problem Statement
	Challenges in eSim
	Issues Encountered Across Versions
	Approach to Address These Challenges

	Version Handling Installation Scripts for Ubuntu
	Overview
	Version Detection Mechanism
	Supported Versions
	Error Handling
	Advantages
	Extension to NGHDL
	Conclusion

	Docker Image for eSim
	Overview
	Motivation
	Dockerfile Structure
	Build and Image Creation
	Modifications for Container Usability
	Usage Instructions and GUI Setup
	Testing and Compatibility
	Upgrade to eSim 2.5
	Benefits of Containerization
	Conclusion

	Installer Packaging for eSim 2.5
	Overview
	Ubuntu Installer
	Packaging Process
	Challenges and Observations
	Result

	Windows Installer
	Packaging Process
	Modifications to PyInstaller Setup
	Fix for Welcome Page in Windows Executable
	NSIS Script Fixes and Enhancements
	Additional Observations
	Outcome

	Testing and Validation
	Benefits of Platform-Specific Installers
	Conclusion

	Conclusion and Future Scope
	Conclusion
	Future Scope
	Final Remarks

	Bibliography

