_—r L . 3 - a ¥ _:-:
e tt er
/] n

W R

Semester Long Internship Report

On

A Comprehensive Framework for Scope 3
Data Systems, Event Reporting, and
Brightway2 Modeling

Submitted by

Hakesh Kadapa

Bharatiya Engineering Science and Technology Innovation University

Under the guidance of

Prof. Kannan M. Moudgalya
Chemical Engineering Department, IIT Bombay

Mentors

Mr. Shubham Sonkusare
Mr. Nikhil Sharma

Under Supervision of

Mr. Sumanto Kar
(Asst. Project Manager)

July 8, 2025

Chapter 1

Acknowledgment

First and foremost, I would like to take this opportunity to express my sincere gratitude
to the FOSSEE team at IIT Bombay for granting me the privilege of participating in
the Semester-Long Internship Program. This internship has been a valuable experience
that strengthened my technical knowledge and helped me explore the intersection of
open-source technology and sustainability.

I am deeply thankful to my mentors — Mr. Shubham Sonkusare, Mr. Sumanto
Kar, and Mr. Nikhil Sharma — for their unwavering support, timely feedback, and
continuous encouragement throughout the internship. Their guidance was instrumental in
shaping my project work and enhancing my learning.

I also extend my gratitude to my home institution, Bharatiya Engineering Science
and Technology Innovation University, for the academic and logistical support that
enabled me to participate in this internship.

Lastly, I am grateful to my peers, colleagues, and the wider FOSSEE community, whose
collaborative spirit and dedication inspired me to contribute effectively to this impactful
initiative.

Contents

1 Acknowledgment 2
2__Introduction| 5
1 About FOSSEE, 5
22 Importance of Open-dource Tools. 5
2.3 Overview of Fnvironmental Fmissions, 6

[3 About The Internship| 7
3.1 Internship Title and Domain| 7
8.2 Selection Process 7
[3.3 Internship Duration|. 000 8
[3.4 Objectives of the Internship| 8

4 Internship Project-1 (Realtime Emissions Dashborad for Events)| 9
u1 Research and Data Collection] 9
“.1.1 Fmission Factor's Researchl 9

M41.2 Data Collection] 10

4.2 Database and Product design| 10
[4.2.1 Product Design| 11

4.3 Product Development|. 12
[4.3.1 Main dashboard development{ 13

[4.3.2 Scoped Emission calculator and Dashboard development| 15

4.3.3 Form Development(Travel-Form and Dashboard| 16

ua lesting 19
us Deployment|. 20
[4.5.1 Deployment Using Streamlit| 20
[4.5.2 Other Deployment Considerations| 21
[5 Project-2 Ecolnsight (LCA Predictions Using Brightway)| 22
51 Project Work Flow| 22
5.2 Understanding About LCA, Ecoinvent, Brightway2 |. . 22
5.3 Loading Ecoinvent3.9 into Brightway?| 23
5.4 Pertorming LCA operations| 26
(5.5 Displaying All Widgets| 29
5.6 Performing Dynamic LCA Operations 29
6 Key Learnings| 38
6.1 Technical Skills Gainedl 38
6.2 Domain Knowledge Acquired (Climate Science & Emis-
SIONS)[© o oo 38
6.3 Communication and lTeam Collaboration 39
[7_Conclusion| 40
I8 References| 41

Chapter 2

Introduction

2.1 About FOSSEE

The Free/Libre and Open Source Software for Education (FOSSEE) project is
an initiative by the Indian Institute of Technology (IIT) Bombay, supported by

the National Mission on Education through Information and Communication
Technology (NMEICT), Ministry of Education, Government of India.

FOSSEE promotes the use of open-source software in education and research to reduce
dependency on proprietary tools and to provide high-quality alternatives accessible to
all. It supports a variety of open-source platforms including Python, Scilab, eSim,
OpenFOAM, R, and DWSIM, among others.

FOSSEE also runs Semester-Long Internships (SLI), SummerFellow ships, Winter
Interships Textbook Companions, and Lab Migration projects to provide hands-on
learning opportunities for students and educators across the country.

For more information, visit: https://fossee.in

2.2 Importance of Open-Source Tools

Open-source tools play a vital role in democratizing access to technology. They are
cost-effective, highly customizable, and supported by active communities. In academic
and sustainability projects, open-source platforms enable trans-parency, reproducibility,
and flexibility. During this internship, tools like Python, Streamlit, SQLite, and
Brightway2 were utilized extensively to build and visualize emission tracking systems
and perform life cycle assessments.

https://fossee.in

2.3 Overview of Environmental Emissions

Environmental emissions refer to the release of pollutants into the air, water, and soil from
natural or human activities. These emissions include greenhouse gases (GHGs) such as
carbon dioxide (CO3), methane (CHy), and nitrous oxide (N2O), as well as air pollutants
like sulfur dioxide (SO2) and particulate matter (PM).

Human-induced emissions primarily originate from industrial processes, transportation,
agriculture, and energy production. These emissions contribute to global warming, acid
rain, smog formation, and degradation of air and water quality. To evaluate their impact,
emissions are typically categorized into three scopes:

Scope 1: Direct emissions from owned sources (e.g., company vehicles).

Scope 1 Emissions = Z (A; x EF;)

=1

where:

e A, = Activity data (e.g., liters of fuel, tons of waste)

e EF; = Emission factor for activity i (e.g., kg COsqe per liter of diesel)

Scope 2: Indirect emissions from purchased energy (e.g., electricity use).

Scope 2 Emissions = £ X EF

where:

e F = Electricity consumption (in kWh)

e E'F = Emission factor of electricity (in kg COqe/kWh)

Scope 3: All other indirect emissions (e.g., supply chain activities).

Scope 3 Emissions = Z (A; x EF;)

j=1
where:

e A; = Activity data for Scope 3 category j (e.g., distance traveled, money spent)

o I = Emission factor for activity j

Chapter 3

About The Internship

3.1 Internship Title and Domain

Title: “Scope 3 Emission Data Collection, Analysis, and Dashboard Devel-

opment using Open Source Tools”

This internship was offered under the Sustainable Computing domain of the FOSSEE
project at II'T Bombay. It focused on the analysis and visualization of greenhouse gas
emissions, particularly Scope 3 emissions, using Python and open-source libraries.
The project also included the design and development of a real-time web dashboard
using Streamlit, alongside work related to Life Cycle Assessment (LCA) using

Brightway2.

3.2 Selection Process

Stage

Description

Application Submis-
sion

Interested candidates applied through the FOSSEE in-
ternship portal.

Screening Task

Applicants completed a task focused on Scope 3 emis-
sions data collection, analysis using Python, and
report submission.

Review and Evalua-
tion

Submissions were evaluated based on code quality, data
handling, documentation, and understanding of emission
concepts.

Final Selection

Selected students were notified via email and onboarded
to begin the internship.

3.3 Internship Duration

Start Date: February 2025.
End Date: July 2025.

Mode: Remote (Online).
Type: Semester-long Internship.

3.4 Objectives of the Internship

The internship aimed to build a strong understanding of Scope 1, 2, and 3 emissions,
emphasizing the significance of structured data collection for Scope 3 categories. It
involved analyzing emission data using Python and presenting insights through effective
visualizations. A key objective was to develop a Streamlit-based web application for
tracking event-related emissions. The work also included exploring Brightway2, an open-
source LCA tool, and contributing to open-source solutions promoting environmental
sustainability.

Tools and Technologies Used:

Python

Core programming language used for data analysis and application development.
Install: sudo apt install python3 or download from https://www.python.org

SQLite3

Lightweight SQL database engine storing data as a single file on disk.
Install: pip install sqlite3 or https://sqlite.org/download.html

Pandas and NumPy

Used for data manipulation and numerical computation.
Install: pip install pandas numpy

Streamlit and seaborn

Web framework for interactive dashboards.
Install: pip install streamlit seaborn

Brightway2 and matplotlib

Open-source LCA tool used for life cycle assessment modeling.
Install: pip install brightway2 matplotlib, setup:
https://docs.brightway.dev

Chapter 4

Internship Project-1 (Realtime
Emissions Dashborad for Events)

Work Flow of Implementation

Research & Data

L ! Collection

Design th
Product and
Data Base

Developlemnt

Figure 4.1: Project implementation workflow

4.1 Research and Data Collection

4.1.1 Emission Factor’s Research

: The project began with a comprehensive study of Emission Factors (EFs), which repre-
sent the average emission rate of a given pollutant relative to a specific activity. Scope
3 emissions, being the most complex and indirect in nature, were prioritized. Research

focused on identifying standard EF's from trusted sources such as the IPCC, GHG Protocol,
India articles, Indian Blogs and publicly available academic databases. Special emphasis
was given to categories like business travel, accommodation, commuting, and procurement.
Differences in methodologies and units required careful normalization to ensure consistency
and comparability.

4.1.2 Data Collection

. structured data collection templates were designed to capture real-world activity data.
Includes travel details, vendor purchases, event participation, and electricity usage. A key
challenge was the variation in data availability and format across sources. CSV templates
were created for users to enter data, which were later cleaned and validated using Python
scripts. Data validation involved checks for missing fields, outliers, and inconsistencies to
ensure high data integrity before further analysis.

4.2 Database and Product design

3.2.1 Database Design and Architecture Planing: A modular design approach was
adopted to make the system scalable and maintainable. The architecture was divided into
four layers: data input, processing, EF mapping, and visualization. The backend focused
on robust processing logic while the frontend emphasized usability. Database design was
created in form of snowflake scheme to handle to connections between tables for entered
data. and output in detailed reports and charts.

Scipe1 Emissions

Food Emissions

Electricity Emissions
v Travel Emissions

Emission Summary

HVAC Emissions
Logistic Emissions

Material Emissions

User registerations

Figure 4.2: Database schema Design

Most of the required tables were created using standard CREATE TABLE syntax, with

10

customized entity names and attributes based on the context of emissions tracking.

Below is an example of the schema for the EmissionsSummary table:

CREATE TABLE EmissionsSummary (
id INTEGER PRIMARY KEY AUTOINCREMENT,
Event TEXT NOT NULL,
Category TEXT CHECK (Category IN (’Scopeyl’, ’Scope,2’, ’
<~ Scopey3’)) NOT NULL,
SourceTable TEXT NOT NULL,
Emission REAL NOT NULL,
FOREIGN KEY (Event) REFERENCES Events (name) ON UPDATE CASCADE

)

To automate data flow and ensure consistency across tables, triggers were implemented.
These triggers transfer data from category-specific emission tables into the centralized
EmissionsSummary table upon insertion.

The following is an example trigger that inserts data from the logistics emissions
table into the EmissionsSummary table upon new data entry:

CREATE TRIGGER insert_scope3_logistics
AFTER INSERT ON logistics_emissions
FOR EACH ROW
BEGIN
INSERT INTO EmissionsSummary (Event, Category, SourceTable,
— Emission)
VALUES (NEW.event, ’Scopey3’, ’logistics_emissions’, NEW.
<~ total_emission) ;
END;

To enhance the performance of both insertion and retrieval operations, indexes were
created on key columns. Indexing allowed for faster lookups, particularly in reporting
modules that require grouped or filtered emissions data.

Example syntax for creating an index:

CREATE INDEX index_name ON table_name (columnl, column2, ...);

4.2.1 Product Design

The below diagram represents the structural flow and functional design of a web-
based Emissions Dashboard application. It is divided into two main modules: the Main
Dashboard and the Form Module.

11

The user journey begins at the 1st Interface, which introduces emissions and educates
users through a chatbot. From there, the user proceeds to the Login Page, accessible via
a Sidebar, enabling user authentication. Once logged in, users are redirected to the Home
Page, which includes Top and Bottom Navigation panels. The top navigation facilitates
event creation, while the bottom navigation provides access to the Scope 1, Scope 2, and
Scope 3 Emission Calculators and Dashboards.

From the Home Page, users can navigate to Home Page 2, which focuses on dashboard
visualizations and report generation. This ensures that users can view and export emission
data based on their inputs.

The second major section, the Form Module, handles data entry. The Home Screen
includes user registration and a sidebar. Users can navigate to various Form Screens such
as Travel Data, Food Data, a Dashboard, and a Contact Us page. All forms are directly
linked to the emission calculators in the main module, enabling real-time updates and
seamless data integration.

Overall, the design emphasizes modularity, user guidance, and data-driven navigation.

Main Dashboard
= Home Page 2

Dash Board

Report generafion

Home Page
Side Bar
= Ist Interface Top

Login P
Explain about the e Botoom M fi
A 9
emissions Chat Bot

Events creation

= Boftom Navigation

Scope1 Calculator and
D

Scope2 Calculator and
Dashboard
Scope3 Calculator and
Dashboard

= Form Screens

= » Travel Data
Home Screen
Food data form

Dashboard

Side Bar

User registeration

”| Contact US

Figure 4.3: Product Design

4.3 Product Development

My Contribution: my main contributions in this phase was developing the Main dash-
board, scope3 emission calculator and visualization, report generator, database
design and implementation, Travel data collection form, Form dashboard.,

12

which formed the backbone of data collection.

4.3.1 Main dashboard development

: The Main Dashboard serves as the central interface of the emissions tracking system,
allowing users to visualize, monitor, and analyze emission data interactively. It aggregates
data collected from various user-submitted forms (e.g., travel, food) and presents it
through dynamic visual elements like bar charts, pie charts, and tables.

The Emissions Dashboard is built using Streamlit, SQLite3, Pandas, and Plotly. It
connects to a local SQLite database (emissions.db) and retrieves event-specific data
from the EmissionsSummary table:

conn = sqlite3.connect (DB_PATH)
df = pd.read_sql_query("SELECT *_FROM_EmissionsSummary WHERE Event =,?", conn,
< params=(event_name,))

The dashboard displays:

The below image shows the “Emissions Dashboard” interface of a Streamlit web application
designed to track carbon footprints. It features a dark-themed navigation bar with three
tabs: Overview, Analysis (active), and Reports. Below, the dashboard displays the total
emissions in bold on a styled card to the left. A prominent “Refresh Data” button on the
right allows users to reload data dynamically. The layout is clean and responsive, with
visually distinct sections that enhance usability and help users monitor and manage their
environmental impact effectively.

& Emissions Calculators

Overview Analysis Reports

Emissions Dashboard

Track Your Goooow Carbon Footprints

Total Emissions Refresh Data

e Metrics: Total CO2 emissions in tCO2e in above image.

Donut Chart: Distribution of emissions by Scope categories (Scope 1, 2, 3).

Bar Chart: Top 5 source tables with the highest emissions.

What-If Simulator: Sliders simulate CO2 reduction scenarios using;:

— HVAC, Electricity (Scope 2)

— Direct emissions (Scope 1)

13

Emissions Analysis - Activities

otalEmissonsperiranspertens Top Highest Emissions Recorded In this Event Goooow

Emission

O soper [0 swopez M scopes 68 20

HVACEmissions food_choices logistics_emissions. transport_data

SourceTable

— Materials, Transport, Logistics, Food (Scope 3)

Emissions are recalculated:

savings = scopel * (sliderl / 100.0) +
new_total = actual_total - savings

e Gauge Chart: Real-time projection of reduced emissions using plotly.graph_objects.

£ What-If Scenario Simulator Projected Emissions (tCOe)
1500

Simulate alternative greener choices and see potential CO, savings!

Scope 1 Reductions

® % Reductionin Scope 1 Emissions

Scope 2 Reductions
Scope 3 Reductions

@ Original Emissions

¥ Projected Emissions (If Actions Taken)

The Ul is styled using custom embedded CSS, enhancing readability and aesthetics. A
refresh button is used to update data dynamically, and the dashboard ends with an
embedded PDF report trigger:

from visualizations.report import report
report ()

This modular, interactive dashboard offers a real-time, customizable interface to monitor
event-based carbon emissions effectively.

14

Executive Emissions Report Generator

L3 Export Report

B Download Executive Report (PDF)

The Main Part of Report:

Emissions Summary

Category Emission (kg COm)

Scope 1 16.72
Scope 2 6.77
Scope 3 2875.70

Impact Equivalent

W Trees needed to offset: 138.1
W Homes powered for 1 month: 7.5
W Kilometers driven by a car: 14495.9 km

Top 5 Emitting Sources

Top 5 Emitting Sources

food_choices | 2.02 kg cO

HVACEmissions | 877 kg GO

Category
r - = Scope 1
16 72 kg CO
Scope1 | a s 2
e Scope 3

fransport_data 675.89 kg CO
- Highest: 2197 78 ko CO
3)

(Scope

astios_emissions _ AT e

0 500 1000 1500 2000
Emissions (kg COT)

Source

Carbon Reduction and Seauestration Strateaies

Total report can be generated from the dashboard.Above image shows the main part of
the report.

4.3.2 Scope3d Emission calculator and Dashboard development

: Below Figure illustratesUser Interface of Scope 3 Material Emission Calculator. This
module allows users to input material-specific data such as category (e.g., trophies),
weight in kilograms, and quantity. Upon clicking Calculate & Save, the application

15

computes the carbon emission using pre-defined emission factors and stores the result in
the database. The tabs allow switching between material-based and logistics-based Scope
3 sources and other scope3 data can be collected from Form. All emissions are linked to
the latest event using:

def get_latest_event():
conn = sqlite3.connect (DB_PATH)

Scope 3 Emission Calculator

Materials Calculator Logistics Calculator

¥ Material Emission Calculator
Select a category

Trophies

Enter trophy weight (kg):

1.00

For How many Trophies do you want to find emission?

1

Calculate & Save

The stored data is then visualized under the “Visualization” analysis tab using pie charts
and tables, enabling real-time insights.

The Emission Analysis User Interface (Ul) is designed to provide insights into the carbon
footprint generated through transportation activities during an event. It allows users
to track, analyze, and visualize emissions data interactively. The UI displays real-time
statistics such as total, average, and peak emissions. It also supports data refreshing
and dynamic graph generation based on user-selected metrics (e.g., distance). This
enables organizations to make informed decisions for emission reduction and promotes
sustainability by identifying emission hotspots and optimizing travel plans accordingly.

Emission Analysis

Transportation Logistics Materials Foods and Vegetables

4% Transport Emission Data

Event: Goooow

Descriptive Analysis

Total Emission (kg CO) ission (kg CO,) Highest Recorded Emission (kg CO,)

Select the column for analysis:

Pigraph v Distance (km)

4.3.3 Form Development(Travel-Form and Dashboard

This is a web-based emission calculator that estimates carbon emissions for multi-modal
travel using Python and Streamlit. The calculator integrates Google Maps API to compute

16

real-time distances and matches them to emission factors for various transport modes.

It supports: Road, Rail, Air and Manual Distance entry, Real-time geolocation and route
queries via Google Maps APIs, Pie-chart based visual analysis of emissions and distances,
Persistent storage using SQLite Sample Code: Getting Latitude and Longitude

def get_lat_lon(city):
2 url = £
C%
response = requests.get(url).json()
if responsel[==
location = responsel[1001L 1L]
6 return location[], location[]
7 return None, None

Listing 4.1: Function to get coordinates using Google Maps API

Distance Calculation The application uses geodesic distance for air routes and the
Google Distance Matrix API for road and transit modes:

def get_distance(origin, destination, mode):
url = £
params = {

w N

] . £ s

5 . f s

6 : mode,

7 : GOOGLE_MAPS_API_KEY

S

9 response = requests.get(url, params=params).json()
10 if in response:
11 return response[100]L 1001¢L 1L]
12 return

Listing 4.2: Calculate Distance Between Two Coordinates

Visualization Using Plotly Once calculations are complete, emissions are visualized
using Plotly pie charts.

fig = px.pie(

2 emission_df,

names= ,

values= s

5 title= >
6 hole=0.7

1)
st.plotly_chart(fig, use_container_width=True)

0

Listing 4.3: Pie Chart for Mode-wise Emissions

Air Distance CalculationNearest Airports: For both origin and destination
cities, the app uses Google Maps API to find the nearest airports within a 50
km radius. Air Distance Options:

e — [t first tries to compute the air distance using city names and a real-world
aviation database (airports.csv from OpenFlights).

17

— If that fails, it falls back to calculating the geodesic (straight-line) distance
between the two airport coordinates using the geopy library.

e Additional Road Distances: The app adds driving distances from:

— Origin — Origin Airport

— Destination Airport — Destination

e Emission Calculation: Final emission is calculated using the core air segment distance
with a factor of 1.58 kg CO per km.

air_distance_result = get_air_distance_by_city(origin_city, dest_city)
if air_distance_result is None:
air_distance = geodesic(origin_airport_coords, dest_airport_coords) .km
else:
5 air_distance = air_distance_result

S N

~

Add driving to/from airport
to_airport = extract_distance(get_distance(origin_coords, origin_airport_coords,

w0

—)
ol from_airport = extract_distance(get_distance(dest_airport_coords, dest_coords,
—))

10
11|distance_value = round(to_airport + air_distance + from_airport, 2)
>| emission_dist = round(air_distance * 1.58, 2)

Listing 4.4: Air Distance Calculation Logic

User Interface:

%° Multi Travel Calculator & Distance Finder

Mode 1: Type 1: Origin 1: Destination 1:

Add Another Travel Entry

Remove

Calculate Distance

The ‘visualize data‘’ function is a crucial component of the application that presents carbon
emissions data for a particular user during a specific event. It fetches transport and
food-related data from an SQLite database and uses modern data visualization techniques
to provide meaningful insights.

Key Features Displays total emissions from transport and food choices, Provides
interactive bar and pie charts for transport data (distance or emission-wise), Generates
word clouds that visually emphasize key emission-related terms, Supports selection of
specific columns (e.g., Distance vs Emission) and graph type, Gracefully handles missing
data and errors

18

|’c.execute(‘

2

[}

— , (Event, name,))
transport_data = c.fetchall()

Listing 4.5: Transport Data Fetch from SQLite

fig_transport = px.bar(
transport_df,
x= .
y=columns,
color= s
title=f ,
text=columns

Listing 4.6: Plotly Bar Graph

5|) .generate_from_frequencies(words)

wordcloud = WordCloud(
mask=cloud_mask,
contour_color= s
colormap=

Listing 4.7: WordCloud Visualization

Output and Usage The user selects the type of graph (Pie or Bar) and metric (Distance
or Emission) to analyze their transportation footprint. ,The tool also visualizes food
choices using pie charts categorized by frequency and emission value. ;A customized word
cloud is generated to highlight the overall carbon footprint with a cloud shape.

4.4 'Testing

Unit Testing:
Each function such as get_distance(), get_lat_lon(), and insert_transport_into_db()
was tested in isolation using test data. The correctness of outputs was manually verified.

Integration Testing:

The full data flow—from user input in Streamlit, through API interactions and database
storage, to visualization—was tested with realistic end-to-end scenarios. Focus was placed
on ensuring consistency between calculation and chart data.

Boundary Testing: Edge cases such as:

e Blank or malformed origin/destination
e Extremely small/large distances

e Unsupported countries (for road/rail modes)

19

were tested to check system stability and appropriate warning handling.

API Response Testing: Google Maps and OpenFlights-based functions were tested
with both valid and invalid queries to handle cases like:

e No nearby stations
e Rate limiting

e Unavailable distances

Database Verification: The data inserted into emissions.db was validated using
SQLite viewers to ensure proper logging of.

UI Testing: Various components such as dropdowns, graphs, and word clouds were
tested interactively through Streamlit to verify responsiveness and correctness.

Testing Outcomes All major functionalities behaved as expected under standard and
edge-case conditions.

No data loss or misrepresentation occurred in visual outputs.

Word clouds and plots scaled correctly for different emission sizes.

User warnings and messages helped avoid miscalculations.

Tools Used for Testing

Streamlit rerun and debug console

SQLite database browser

Postman for testing external API endpoints

pytest (optional for unit tests)

Conclusion The system passed all functional and visual validations. It is reliable for
educational and semi-formal use cases involving awareness of carbon emissions.

4.5 Deployment

4.5.1 Deployment Using Streamlit

The project was deployed using Streamlit, a Python framework that transforms data
scripts into shareable web applications. Deployment involved converting the local develop-
ment version into an accessible online tool for users to input travel and food data and
view their carbon emissions interactively.

The deployment steps followed were:

20

1. Project Structure: All Python scripts, supporting image files, and datasets were
organized into a single directory with proper relative paths. The SQLite database
(emissions.db) was placed in a data/ folder.

2. Requirements File: A requirements.txt file was created using:

pip freeze > requirements.txt

to ensure all Python dependencies like streamlit, geopy, plotly, and pandas are
installed during deployment.

3. Streamlit Sharing: The project was uploaded to a GitHub repository and linked
to Streamlit Cloud (https://streamlit.io/cloud). The app was configured with the
entry-point script and deployed with a click. Secret keys such as the Google Maps
API key were managed securely using Streamlit’s secrets.toml configuration.

4. Testing Post Deployment: The deployed app was tested for responsiveness, API
reliability, and database operations. Visualizations rendered accurately and data
inserted into the hosted database successfully.

4.5.2 Other Deployment Considerations
e Docker: For consistent local and cloud environments, Docker containers can
encapsulate the app and dependencies.

e Heroku/Render/Vercel: Other platforms like Heroku or Render can be used for
more flexible server control or background tasks.

e Custom Domain: A domain can be mapped for a professional interface.

e Security: Sensitive keys should never be hardcoded. Use environment variables or
encrypted secret managers.

e Database Hosting: SQLite can be replaced with PostgreSQL or Firebase for
multi-user scalability.

21

Chapter 5

Project-2 Ecolnsight (LCA
Predictions Using Brightway)

5.1 Project Work Flow

Loading Performing Performing
ecoinvent into static LCA dynamicLCA
brightway2 Operations Operations

Predictions and
Visualization

Ecoinvent, Brightway2

AboveFigure illustrates the workflow of comparison between energies in terms of their
Global Warming Potential (GWP) over a span of years. The analysis was performed using
the Brightway2 framework, leveraging the ecoinvent 3.9 life cycle inventory database. This
dynamic evaluation model was created by integrating scenario data (such as SSP2-19)
and modifying the background database.

5.2 Understanding About LCA, Ecoinvent, Bright-
way 2

During the project, significant effort was invested in understanding and working with
Brightway2, a Python-based life cycle assessment (LCA) framework. Unlike GUI-based
tools, Brightway2 provides full flexibility and control over datasets, calculation methods,
and scenario modeling.

We began by setting up the Brightway2 environment and importing the ecoinvent 3.9
database. This database served as the foundation, providing high-quality, regionally
differentiated inventory data for products and processes across industries.

22

N

Key learning outcomes include:

e Understanding how to initiate and manage Brightway?2 projects using bw2data.

e Querying and modifying datasets and processes using Python code, enabling efficient
preprocessing and data exploration.

e Using LCA() and Method () functions to compute environmental impact scores for
specific functional units.

e Integrating scenario data (e.g., SSP2-19) to modify background datasets dynamically.

e Handling uncertainty and performing Monte Carlo simulations for probabilistic
LCA.

¢ Visualizing output impacts over time, especially for sectors like energy, transportation,
and materials.

Compared to traditional LCA tools, Brightway2 offered greater learning potential by
requiring direct interaction with data structures and computations. We used it to model
systems like EV vs ICEV, varying grid mix, and country-specific emissions, linking data
with real-world policy scenarios.

Overall, this technical exposure enhanced our skills in environmental data science, re-
producible research, and dynamic life cycle modeling—crucial for modern sustainability
assessments.

5.3 Loading Ecoinvent3.9 into Brightway?2

Loading ecoinvent follow the workflow as described in the below image.

Matching Loading
Import X Ecoinvent ~_ ecoinvent into
Biosphere3 . acﬁvites with . sqglite)
Biosphere3 4 database with

Brightway2 is a modular framework for life cycle assessment in Python. During our project,
we extensively used three essential modules—bw2io, bw2data, and bw2calc—each serving
a distinct role in the LCA workflow.

Below is a sample Python code snippet demonstrating the import of these modules:

import bw2io as bi
import bw2data as bd
import bw2calc as bc

23

Setting Up the Biosphere Database in Brightway?2

To begin using Brightway2 with Ecoinvent 3.9, we first set the current project and ensure
the biosphere database is present. The following Python code checks if a biosphere
database exists, and if not, it initializes the core data using ‘bw2setup()‘ from the ‘bw2io*
package.

1| bd.projects.set_current()
2|if any(in db for db in bd.databases):
print ()
i|else:
5 bi.bw2setup()

Upon successful execution, Brightway?2 creates the biosphere3 database and initializes
762 LCIA methods with over 227,000 characterization factors. This step is critical as it
sets up the foundational flows and methods necessary for life cycle impact assessment
(LCIA) calculations in Brightway?2.

OUTPUT:

Creating default biosphere

N

3|Writing activities to SQLite3 database:

Applying strategy: normalize_units

s|Applying strategy: drop_unspecified_subcategories
¢| Applying strategy: ensure_categories_are_tuples
7|Applied 3 strategies in 0.01 seconds

s| 0% [ttt AR R] 1007, | ETA: 00:00:00
ol Total time elapsed: 00:00:00

0| Title: Writing activities to SQLite3 database:

11| Started: 06/17/2025 22:20:40

12| Finished: 06/17/2025 22:20:41

31 Total time elapsed: 00:00:00

14| CPU %: 94.30

5| Memory %: 43.56

16| Created database: biosphere3

17| Creating default LCIA methods

19| Wrote 762 LCIA methods with 227223 characterization factors
20| Creating core data migrations

Note: To use the Ecoinvent 3.9 database in Brightway2, one must first obtain a
valid license from the official [Ecoinvent website|(https://ecoinvent.org). In this project
Ecospold2 format is utilized.

Importing Ecoinvent 3.9.1 Cutoff Database

The next step is to import the Ecoinvent 3.9.1 cutoff version. The following code snippet
ensures the database is only imported if it hasn’t already been added to the project.

| if in bd.databases:
2 print()

24

3lelse:

ei = bi.SingleOutputEcospold2Importer (
dirpath= 5
db_name=

ei.apply_strategies()
ei.statistics()
ei.write_database()

Before importing the Ecoinvent 3.9.1 cutoff database into Brightway2, it’s important to
check whether it has already been added to avoid duplication. The code below performs this
check. If the database is not found, the SingleOutputEcospold2Importer is initialized
with the directory path containing the dataset.

This code initializes the importer, applies standard data-cleaning strategies, checks dataset
statistics, and writes the processed data into the Brightway?2 project environment.

Output for importing the Ecoinvent-3.0 as Follows:

)

Extracting ecospold2 files:
0% [#HH#HHHHHFHHRARHARERHHEHEH##] 1007, | ETA: 00:00:00 | Item ID: fff9fe74-
— £099-5

3| Total time elapsed: 00:06:52

Applied 22 strategies in 7.86 seconds
Writing activities to SQLite3 database:
21255 datasets

676292 exchanges

0 unlinked exchanges

Created database: ev391cutoff

We ca check the avaiable databases with the following command

databases

[

2

Output:

Databases dictionary with 2 object(s):
biosphere3
ev391cutoff

To use the ecoinvent databse we need to set it up as a database

bd.databases[’ev391cutoff’]

Output:

{’overwrite’: False,
>format’: ’Ecoinvent XML’,
’depends’: [’biosphere3’],

25

’backend’: ’sqlite’,

’number’: 21255,

’modified’: ’2025-06-17T22:28:34.758547°,
’searchable’: True,

’processed’: ’2025-06-17T22:30:52.623529°}

™

This confirms that:

The dataset format is Ecoinvent XML.

It contains 21,255 activities.

It depends on the biosphere3 database.

The import was successful and the dataset is searchable.

5.4 Performing LCA operations

Here LCA stands for Life cycle assessment. We use these opertaions on the activites
of ecoinvent using the loaded methods to find the Global warming potential(GWP).
Let’s explore the ecoinvet first.

The below code snippet allow us to see the first 5 activites in ecoinvent 3.9.

list(bd.Database(’ev391cutoff’)) [:5]

Output:

[’heat and power co-generation, wood chips, 6667 kW’ (megajoule, IN-AP,
— None),
’market for waste graphical paper’ (kilogram, ZA, None),
'market for protein pea’ (kilogram, GLO, None),
’electricity production, natural gas, combined cycle power plant’ (kilowatt
< hour, BG, None),
’natural gas, high pressure, import from NO’ (cubic meter, GB, None)]

Extracting and Cleaning Ecoinvent Activities

The following Python code snippet demonstrates how to extract relevant information
from the ev391cutoff database in Brightway2. It retrieves each activity’s name, location,
and reference product, and stores the data in a structured pandas DataFrame. Duplicate
entries based on these three columns are removed to ensure uniqueness.

activities = [{
: act[1,
: act.get(s),
: act.get(,),

26

6|} for act in db]

7|df = pd.DataFrame(activities)

s|df _unique = df.drop_duplicates(subset=[s , .
— reset_index(drop=True)

This process helps in:

e Extracting structured metadata from the Brightway2 database.
e (Cleaning the dataset by removing redundant entries.

e Preparing data for further analysis, visualization, or filtering.

Interactive LCA Tool Using IPyWidgets

This section describes the development of an interactive Life Cycle Assessment (LCA)
interface using Brightway2, pandas, and ipywidgets. The goal is to allow users to select
a life cycle activity and multiple LCTA methods, and then compute environmental impacts
in real-time.

Step 1: Generating Activity Dropdown

We first build a list of user-readable activity options by combining the activity name,
location, and reference product.

i|activity_options = [f
—>

for i, row in df_unique.iterrows()]
s|activity_dropdown = widgets.Dropdown (
options=activity_options,
description= 5
layout=widgets.Layout (width=)

N

Step 2: Preparing Method Selector

A list of all available LCIA methods is fetched from Brightway2. These methods are
displayed in a SelectMultiple widget to allow multi-selection.

methods_list = list(bw.methods)

2|method_labels = [f for i, m in enumerate(methods_list)]
s|method_selector = widgets.SelectMultiple(

4 options=method_labels,

description= 5
6 rows=10,
7 layout=widgets.Layout (width= , height=)

27

N

Step 3: Adding a Button and Output Area

We include a button to trigger the LCA calculation and an output area to print the

results.

run_button = widgets.Button(description=)
output = widgets.Output()

Step 4: Callback Function for LCA Computation

Upon clicking the button, the following function:

e Retrieves the selected activity.
e Parses the selected methods.
e Runs LCI and LCIA for each method.

e Prints the LCA results (impact scores).

def on_button_clicked(b):
with output:
clear_output ()

activity_index = int(activity_dropdown.value.split(":")[0])
selected_activity_info = df_unique.iloc[activity_index]
selected_activity = [act for act in db

if act[] == selected_activity_infol[

and act.get(,) ==
— selected_activity_infol[]

and act.get(, ==
— selected_activity_infol[]1([0]

selected_method_indexes = [int(m.split(":")[0]) for m in
<+ method_selector.value[:20]]
selected_methods = [methods_list[i] for i in selected_method_indexes]

for method in selected_methods:

try:
lca = LCA({selected_activity: 1}, method)
lca.1lci(Q)
lca.lcia()
print (f

=)

except Exception as e:

print (f)

28

5.5 Displaying All Widgets

Finally, the Ul is rendered with the dropdown, multi-selector, and output.

run_button.on_click(on_button_clicked)
2| display(activity_dropdown, method_selector, run_button, output)

This tool streamlines the LCA process, enabling users to interactively explore multiple
environmental impact categories for selected supply chain activities.

Output:

Activity: | 447 electricity, high voltage, aluminium industry, production mix (CA) - electricity, high voltage, aluminium industry

Methods: |3 "IMPACT 2002+ (Midpoit cosystem quality’, ‘aquatic acidification’)
PACT 2002+ (Midpoint)’, ‘ecosystem quality’, ‘aquatic eutrophication’)
CC 2013 no LT, ‘climate change no LT, 'global temperature change pofential (GTP100) no LT’}
013 no LT', ‘climate change no LT, ‘global temperature change potential (GTP20) no LT)
013 no LT', ‘climate change no LT", 'global warming potential (GWP100) no LT')
'climate change no LT', 'global warming potential (GWP20) no LT)
5 C 2013’ te change', ‘global temperature change potential (GTP100)')
333 (IPCC 2013 te change', ‘global temperature change potential (GTP20)")
334 ('IPCC 2013 lobal warming potential (GWP100)")
C 2013, 'climate change', 'global warming potential (GWP20)")
, ‘climate change no LT", 'global temperature change potential (GTP100) no LT")
' 'climate change no LT', ‘global temperature change potential (GTP50) no LT)
. “climate change no LT", ‘global warming potential (GWP100) no LT)
' “climate change no LT", ‘global warming potential (GWP20) no LT)
' “climate change no LT", ‘global warming potential (GWP500) no LT)
, ‘climate change: biogenic no LT, ‘global temperature change potential (GTP100) no LT)
3 , 'climate change: biogenic no LT', 'global temperature change potential (GTP50) no LT")
. ___]

RunLCA

Then the Final output after clicking the on the button Run LCA

IPCC 2013 (climate change global temperature change potential (GTP168)) = ©.836775
IPCC 2013 (climate change global temperature change potential (GTP20)) = ©.043801

IPCC 2013 (climate change global warming potential (GWP168)) = ©.839480
IPCC 2013 (climate change global warming potential (GWP20)) = ©.045642

These scores represent the environmental burden (in kg CO-eq) of producing 1 unit of the
selected activity. The values help compare short-term vs long-term climate impacts and
show how the choice of assessment method can influence the reported result. The closer
the score is to 1, the greater the climate impact of the activity.

5.6 Performing Dynamic LCA Operations

Activity Selection for Electricity Sources in Brightway2

To perform a comparative Life Cycle Assessment (LCA) of electricity generation from
different sources, we begin by retrieving relevant datasets from the Ecoinvent 3.9.1
database. The following Python code uses the Brightway2 framework to search for
electricity production activities using specific keywords.

29

%)

import pandas as pd
db = Database()

def safe_search(db, keyword):
results = db.search(keyword)
if not results:
print (f)
return None
return results[0]

sources = {
safe_search(db,),
safe_search(db,
— "),
safe_search(db,),
safe_search(db,),
safe_search(db,),
safe_search(db,),

This function safe_search() searches for datasets containing the given keyword and
returns the first match found. The sources dictionary maps common electricity generation
types (e.g., Coal, Gas, Solar, etc.) to their corresponding Brightway2 activity. These
activities can later be used to compute environmental impacts using various LCIA methods.

to see the sources just run the

sources

Output as follows

N

{’Coal’: ’hard coal mine operation and hard coal preparation’ (kilogram,
< RoW, Nome),
’Gas’: ’electricity production, natural gas, conventional power plant’ (
— kilowatt hour, CO, None),
’Solar’: ’photovoltaic slanted-roof installation, 3kWp, a-Si, panel, mounted,
— on roof’ (unit, RoW, None),
’Wind’: ’market for wind turbine, 4.5MW, onshore’ (unit, GLO, None),
’Hydro’: ’market for hydropower plant, run-of-river’ (unit, GLO, None),
’Nuclear’: ’market for nuclear power plant, pressure water reactor, 650MW’ (
<~ unit, GLO, None)}

SSP TAM Dataset Integration: The Shared Socioeconomic Pathways (SSP) database
provides scenario-based projections for demographic, economic, and energy variables.
The CSV file used in our project, named SSP_IAM V2 201811.csv, contains global model
output data under various SSP scenarios, such as SSP1-SSP5.

1

L

ssp = pd.read_csv(
—)

30

This file can be downloaded from the official ITASA SSP Database at:

https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=welcome

It is primarily used to analyze long-term emission trends and energy demand scenarios
and can be integrated into Brightway2 models to align LCA results with future climate
pathways.

Filtering SSP2-Baseline Electricity Data from IMAGE Model

To extract relevant data from the SSP IAM dataset, we filtered the dataset to include
only projections from the IMAGE integrated assessment model, under the SSP2-Baseline
scenario, and for the World region. This allows for a focused analysis on global electricity
generation trends under a moderate development pathway.

Filter just IMAGE model, SSP2-Baseline, and World region
filtered = sspl

%)

(sspl] ==) &
| (sspl ==) &
5 (sspl ==)
6[]
s|# Show available electricity variables
o|print (filtered[filtered[].str.contains(
— , regex=True)] [] .unique())

This step helps identify the available electricity-related variables, such as different sources
(coal, wind, solar, etc.), within the filtered dataset. These variables can then be aligned
with Brightway2 electricity production activities for scenario-based LCA simulations.

Electricity Mix Extraction from SSP2-Baseline Scenario

To understand future electricity production shares, we extracted and transformed specific
variables from the filtered SSP2-Baseline scenario data. The goal was to isolate projections
for electricity generation from major sources and convert them into a normalized share (

|| print ()
| print (filtered[filtered[].str.contains()1 L]
— unique())
1| # Extract rows for selected electricity types and years

5| selected = filtered.set_index() .loc[

6 [
10]
11]
12
1]:

31

https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=welcome

17| # Transpose and rename columns
simix = selected.T
o|mix.columns = [) s S S s]

21| # Normalize each row to sum to 100Y%
mix.div(mix.sum(axis=1), axis=0) * 100
, mix_percent.index.astype(int))

22|mMix_percent =
23| mix_percent.insert (0,

This code prepares a normalized electricity mix for each decade from 2020 to 2080,
useful for dynamic LCA studies using models like Brightway2. Each row of mix_percent
shows the percentage contribution of different electricity sources, enabling scenario-based
environmental impact forecasting. Output as follows:

Available electricity variables:

2| [’Capacity|Electricity’ ’Capacityl|Electricity|Biomass’
’Capacity|Electricity|Coal’ ’Capacity|Electricity|Gas’
’Capacity|Electricity|Hydro’ ’Capacity|Electricity|Nuclear’

5| ’Capacityl|Electricity|0il’ ’Capacity|Electricity|QOther’

6| ’Capacityl|Electricityl|Solar’ ’Capacity|Electricity|Solar|CSP’

7| ’Capacity|Electricityl|Solar|PV’ ’Capacity|Electricity|Wind’

s| ’Capacity|Electricity|Wind|0ffshore’ ’Capacity|Electricity|Wind|Onshore’
o| ’Final Energyl|Electricity’ ’Secondary Energyl|Electricity’

10| ’Secondary Energyl|Electricity|Biomass’

11| ’Secondary Energyl|Electricity|Biomass|w/ CCS’
.| ’Secondary Energy|Electricity|Biomass|w/o CCS’
’Secondary Energyl|Electricity|Coal’

’Secondary
’Secondary
’Secondary
’Secondary
’Secondary
’Secondary
’Secondary
’Secondary
’Secondary
’Secondary

Energy|Electricity|Coal|w/ CCS’
Energy|Electricity|Coallw/o CCS’
Energy|ElectricitylGas’
Energy|Electricity|Gas|w/ CCS’
Energy|Electricity|Gas|w/o CCS’
Energy|Electricity|Hydro’
Energy|Electricity|Non-Biomass Renewables’
Energy|Electricity|Nuclear’ ’Secondary Energy|Electricity|0il’
Energy|Electricity|Solar’ ’Secondary Energyl|Electricity|Wind’
Energy|Hydrogen|Electricity’]

Transforming Electricity Mix Data

The following Python code performs transformation and normalization of the electricity
generation data across various sources (Coal, Gas, Solar, Wind, Hydro, Nuclear) for
selected years. It prepares the dataset for visualization or further analysis.

mix =

selected.T # Transpose to get years as rows
mix.columns = [. . , , ,]

o

Normalize each row so that values sum to 100%
mix.div(mix.sum(axis=1), axis=0) * 100

mix_percent =

32

6

7|# Add the Year column to the front
s|mix_percent.insert (0, , mix_percent.index.astype(int))

N

Explanation:

mix = selected.T transposes the DataFrame so that each year becomes a row and each
energy source becomes a column. Column names are explicitly assigned to reflect the
energy types.

mix.div(...) calculates the percentage share of each energy source per year by normal-
izing the row values to 100%.

The Year column is inserted at the start for clarity in further plotting or reporting.

This normalized mix is suitable for energy scenario modeling and time-series visualization
of global electricity production trends under SSP2-Baseline projections.

Now Let’s see the mix data:

mix_data = pd.DataFrame(mix_percent)
mix_data

Output as Follows

Coal Gas Solar Wind Hydro Nuclear

41.648488 23.364785 1.744802 4.662266 17.311218 11.268441

43.807002 21.339435 3.500143 5911775 15.244947 10.196699

47.297169 18.829873 5.307967 6.383325 14.069778 8.111887

48767720 17.928141 7.320965 7.400336 12.533527 6.049311

48.312122 18112909 9.299205 7.019769 11.131398 6.124597

49.262517 16.159974 12310516 6457119 9914510 5.895363

50.765236 12968368 15.488641 6473705 8.941186 5.362863

Running LCA on Electricity Technologies and Grid Mix (2020-2080)

The following Python code evaluates life cycle impacts of electricity generation technologies
across multiple years using Brightway2. It utilizes the IPCC 2021 GWP100 LCIA method,
focusing on global warming potential.

33

%)

from bw2calc import LCA
from bw2data import Method

Filter only relevant IPCC 2021 GWP100 methods

ipcc = [m for m in bd.methods if in str(m) and in str(m)
and in str(m) and not in str(m)
and not in str(m) and not in str(m)
and not in str(m) and not in str(m)]

results = []

for _, row in mix_data.iterrows():
year = int(row[D
print (f)

for method in ipcc:
1. LCA for each individual technology (e.g., Coal, Wind)
for tech, activity in sources.items():
fu_single = {activity: 1}
lca = LCA(fu_single, method)

lca.lci()
lca.lcia()
results.append ({
: year,
: tech,
: method[1],
lca.score
b

2. LCA for the full grid mix for the year
fu_mix = {sources[tech]: row[tech] / 100 for tech in sources}
lca_mix = LCA(fu_mix, method)
lca_mix.lci()
lca_mix.lcia()
results.append ({
: year,

: method[1],

b

lca_mix.score

b

s|results_df = pd.DataFrame(results)

print (results_df)

Explanation ipcc filters for the appropriate climate change impact methods from IPCC
2021 (GWP100).
The code loops through each year (2020-2080) and:

e Calculates LCA for each energy source individually.

34

e Calculates LCA for the total energy mix using fractional contributions.

Each result stores the impact in kg COy-eq/kWh. Output as Follows:

Year | Technology | Impact Category Type Impact (per kWh)
2020 Coal climate change Per Technology 2.877946e-01
2020 Gas climate change Per Technology 5.778449¢-01
2020 Solar climate change Per Technology 6.749898e+03
2020 Wind climate change Per Technology 4.166939¢e4-06
2020 Hydro climate change Per Technology 5.571410e
2020 Nuclear climate change Per Technology 6.330581e+08
2020 Grid Mix climate change Grid Mix 1.036009e4-09
2030 Coal climate change Per Technology 2.877946e-01
2030 Gas climate change Per Technology 5.778449e-01
2030 Solar climate change Per Technology 6.749898e+03
2030 Wind climate change Per Technology 4.166939e+06
2030 Hydro climate change Per Technology 5.571410e+09
2030 Nuclear climate change Per Technology 6.330581e+08
2030 Grid Mix climate change Grid Mix 9.141561e+08
2040 Coal climate change Per Technology 2.877946e-01
2040 Gas climate change Per Technology 5.778449¢-01
2040 Solar climate change Per Technology 6.749898e+03
2040 Wind climate change Per Technology 4.166939e+06
2040 Hydro climate change Per Technology 5.571410e+09
2040 Nuclear climate change Per Technology 6.330581e+08
2040 Grid Mix climate change Grid Mix 8.355044e+08
2050 Coal climate change Per Technology 2.877946e-01
2050 Gas climate change Per Technology 5.778449¢-01
2050 Solar climate change Per Technology 6.749898e+03
2050 Wind climate change Per Technology 4.166939e+06
2050 Hydro climate change Per Technology 5.571410e+09
2050 Nuclear climate change Per Technology 6.330581e+08
2050 Grid Mix climate change Grid Mix 7.368987e+08
2060 Coal climate change Per Technology 2.877946e-01
2060 Gas climate change Per Technology 5.778449e-01
2060 Solar climate change Per Technology 6.749898e+03
2060 Wind climate change Per Technology 4.166939e+06
2060 Hydro climate change Per Technology 5.571410e+09
2060 Nuclear climate change Per Technology 6.330581e+08
2060 Grid Mix climate change Grid Mix 6.592412e+08
2070 Coal climate change Per Technology 2.877946e-01
2070 Gas climate change Per Technology 5.778449¢-01
2070 Solar climate change Per Technology 6.749898e+03
2070 Wind climate change Per Technology 4.166939e+06
2070 Hydro climate change Per Technology 5.571410e+09
2070 Nuclear climate change Per Technology 6.330581e+08
2070 Grid Mix climate change Grid Mix 5.899690e+08

35

Continued on next page

w o

Table 5.1 — continued from previous page

Year | Technology | Impact Category Type Impact (per kWh)
2080 Coal climate change Per Technology 2.877946e-01
2080 Gas climate change Per Technology 5.778449¢-01
2080 Solar climate change Per Technology 6.749898e+03
2080 Wind climate change Per Technology 4.166939e+06
2080 Hydro climate change Per Technology 5.571410e+09
2080 Nuclear climate change Per Technology 6.330581e+08
2080 Grid Mix climate change Grid Mix 5.323710e+08

Visualization of Climate Impact Trends Over Time

To analyze the evolution of climate change impacts over time, the following Python code
snippet is used. It iterates through each unique impact category and distinguishes between
two types of emissions data: *Per Technology* and *Grid Mix*. For each case, it generates
a line plot of impact values across different years using the seaborn and matplotlib
libraries.

for category in results_df[
for result_type in [
plt.figure(figsize=(14, 8))
df _plot = results_df[
(results_df[
(results_df[

].unique():

, 1:

] == category) &

] == result_type)

]
sns.lineplot(
data=df_plot,
X= >
y= >
hue= s
marker=
)
plt
plt.
plt.
plt.
plt.

.title(f)
ylabel()

grid(True)

tight_layout ()

show ()

This code allows us to visually compare the climate impact of various energy technologies
over a span of decades (2020-2080). The use of colored lines and markers helps to
distinguish each technology’s trajectory. By separating the two result types, it effectively
contrasts the individual technology emissions versus the aggregated grid mix emissions
over time.

36

Output as Follows:

109 climate change (Grid Mix) Impact per kWh (2025-2075)
Technology
-, —ea= Grid Mix
104
\
%1 \
.
.
2
o8
g
H
E
!
0.7 \
!
0.6 \
!
2020 2030 20‘40 20‘50 2060 2070 2080
Year
Figure 5.1: Grid Mix Impact Graph
1e9 climate change (Per Technology) Impact per kWh (2025-2075)
5
o
Technology
.
s —e— Coal
25 —o— Gas
g —e— solar
g —e— Wind
g —e— Hydro
- —e— Nuclear
2
N
0
2020 2030 2040 2050 2060 2070 2080
Year

Figure 5.2: Technology Impact Graph

37

Chapter 6

Key Learnings

6.1 Technical Skills Gained

During this internship, I acquired and strengthened several technical skills:

1. Developed scripts for data analysis, emission calculations, and backend logic using
Python.

2. Built interactive dashboards with forms, charts, and real-time data display with
Streamlit.

3.Used SQLite for storing and retrieving structured data with CRUD opera-tions.
4.Created visual outputs (bar charts, pie charts, tables) using Matplotlib and Plotly.
5.Configured, used, and interpreted life cycle models and outputs using the Brightway?2
framework in Python.

6.Pandas to clean, preprocess, and standardize raw datasets for emission calculations.

6.2 Domain Knowledge Acquired (Climate Science
& Emissions)

This internship provided in-depth exposure to the domain of climate science, carbon
emissions, and sustainable computing:

e Understanding of Scope 1, 2, and 3 Emissions
e Life Cycle Assessment (LCA)

e product lifecycles

e Emission Factors and Reporting

— Gained familiarity with open-source tools and principles through FOSSEE’s workflow.
— Contributed to an open-source aligned dashboard tool for emission tracking. —Followed
reproducible and transparent coding practices suitable for public sharing.

38

6.3 Communication and Team Collaboration

1. Participated in regular progress check-ins and coordinated with mentors and peers.

2. Maintained task documentation and version control to stay aligned with shared goals.
3. Improved clarity in reporting technical and environmental data for both technical and
non-technical audiences.

39

Chapter 7

Conclusion

6.1 Overall Experience

The FOSSEE internship gave me a meaningful opportunity to merge tech-nology with
climate action. Through this project, I was able to go beyond basic development and
explore how digital tools can contribute to real-world sustainability.

From understanding emissions to actually calculating and visualizing them, every step of
the internship felt connected to a larger environmental goal.

6.2 What Worked Well

e Building a working dashboard from scratch using open tools

e Creating a user-friendly form system that functioned both online and on mobile
e Mapping real data to emission factor models

e Exploring the potential of carbon sequestration in future tools

e Independently managing code, research, and reporting.

e LCA calculations using brightway?2.

e Predictions and visualizations.

6.3 Scope for Future Work

e Add user login system and allow attendee profile editinge Fetch emission factors from
real-time APIs

e Use carbon sequestration offsets to calculate net emissionse Expand dashboard to
include more Scope 3 categories

e Incorporate national policy targets (e.g., India’s National Electricity Plan or Net Zero
targets) to replace or supplement SSP projections.

eProvide error bars or distributions instead of point estimates to improve decision robust-
ness

eDesign the dashboard to act as a learning tool for students and policymakers to under-
stand the role of lifecycle assessment in energy planning.

40

Chapter 8

References

Data Sources

1.
2.
3.

Intergovernmental Panel on Climate Change (IPCC) Emission Factor Guidelines
Food and Agriculture Organization (FAO) — Global Emission Statistics
UK Department for Environment, Food & Rural Affairs (DEFRA) — GHG Conversion

Factors

© oo

Government of India — Ministry of Road Transport and Highways (MoRTH) Reports

Indian Railways Passenger Emission Estimations
Ecoinvent Database Documentation (as applicable)

National Renewable Energy Laboratory (NREL) — LCA Data Sources

Brightway2 and OpenLCA Toolkits

Academic Journals on Carbon Sequestration (Elsevier, Springer)

Libraries / Tools

oo W

Python 3.10

Streamlit

Pandas, NumPy, Matplotlib, Plotly

SQLite

Brightway2 (bw2data, bw2calc, bw2io)

OpenLCA (optional reference)

Qrcode, UUID, Time libraries for session and form utilities

Research Papers and Links

SN oUW

GHG Protocol Corporate Standard: Click Here
IPCC Reports Archive: |[Click Here

Brightway2 Documentation: Click Here
Activity Browser: Click Here

OpenLCA Software: Click Here

Ecoinvent: Click Here

Life Cycle Assessments Click Here

FOSSEE Resource PortalClick Here

41

https://ghgprotocol.org/
https://www.ipcc.ch/reports/
https://learn.brightway.dev/en/latest/content/chapters/BW2/BW2_introduction.html
https://github.com/LCA-ActivityBrowser/activity-browser
https://greendelta.github.io/openLCA2-manual/introduction/index.html
https://support.ecoinvent.org/e-learning-fundamentals-database
https://en.wikipedia.org/wiki/Life-cycle_assessment
https://fossee.in/resources

	Acknowledgment
	Introduction
	About FOSSEE
	Importance of Open-Source Tools
	Overview of Environmental Emissions

	About The Internship
	Internship Title and Domain
	 Selection Process
	 Internship Duration
	 Objectives of the Internship

	Internship Project-1 (Realtime Emissions Dashborad for Events)
	Research and Data Collection
	Emission Factor's Research
	Data Collection

	 Database and Product design
	 Product Design

	 Product Development
	 Main dashboard development
	 Scope3 Emission calculator and Dashboard development
	 Form Development(Travel-Form and Dashboard

	Testing
	Deployment
	Deployment Using Streamlit
	 Other Deployment Considerations

	 Project-2 EcoInsight (LCA Predictions Using Brightway)
	Project Work Flow
	Understanding About LCA, Ecoinvent, Brightway2
	Loading Ecoinvent3.9 into Brightway2
	Performing LCA operations
	 Displaying All Widgets
	Performing Dynamic LCA Operations

	 Key Learnings
	Technical Skills Gained
	Domain Knowledge Acquired (Climate Science & Emissions)
	Communication and Team Collaboration

	 Conclusion
	 References

