\ /]

. A
e e r
u n

FOSSEE Semester Internship Report
On
Osdag on Web

Submitted by

Faran Imam
3rd Year Computer Engineering B.Tech Student,
Zakir Husain College of Engineering and Technology
Aligarh Muslim University
Aligarh

Under the Guidance of

Prof. Siddhartha Ghosh
Department of Civil Engineering

Indian Institute of Technology Bombay

Mentors:

Ajmal Babu M S
Parth Karia
Ajinkya Dahale

June 16, 2025

Acknowledgments

I would like to express my sincere gratitude to FOSSEE for providing me with the in-
valuable opportunity to undertake this semester-long fellowship. This experience has
been instrumental in my professional growth and understanding of open-source software
development.

Heartfelt appreciation goes to Prof. Siddhartha Ghosh, Principal Investigator of
the Osdag project, Department of Civil Engineering at II'T Bombay, for his leadership
and guidance throughout this fellowship. His vision for advancing educational resources
through open-source initiatives has made this learning opportunity possible.

Special thanks are due to Parth Karia, my mentor and project staff member at the
Osdag team, whose expert guidance and continuous support were invaluable throughout
my internship. His technical knowledge and encouraging approach enabled navigation
through complex challenges in module development and 3D model rendering for Osdag-
web.

Recognition must also go to my fellow interns, Raghav and Aum Ghelani, who were
excellent collaborators throughout this journey. Working as a team, we were able to
tackle challenging problems and learn from each other’s perspectives.

Finally, appreciation extends to the entire Osdag team for creating a collaborative
environment that fostered learning and innovation. This fellowship has equipped me
with valuable technical skills and a deeper appreciation for the open-source philosophy

in education.

Contents

[Acknowledgments|

(1 _Introduction|

(1.2 FOSSEE Project|

M2.1

Projects and Activities| oL

M2.2

Fellowships|

(1.3 Osdag Software]

M31

Osdag GUI

2 Screening Taskl

P11

Setup and Deployment|

P12

Module Development|

P21

Alternative Development Approachl

R332

Frontend Development|

[2.2.3

Backend API Implementation|

P24

Challenges and Outcome|

[3 Internship Task 1 Title|

BI1

Prerequisites and Initial Setup|.

B12

Environment Configuration]

B1.3

Database Setup and Configuration|

[3.1.4

Project Dependencies and Migration|

B15

Troubleshooting Solutions|

© oo 0o W N O O

10
10

11
11
11
11
12
12
12
12
12
13

4.3 Task 2: Python Codel

A31

Description of the Script|

132

Python Codel

3.3

Explanation of the Python Code

4.3.4

React Ul Codel

35

Explanation of the React Ul Codef.

3.6

JavaScript Code|.

3.7

F.3.1

5.3.2

[b.3.3

B34

[6.3.5

[5.3.6

[b.3.7

[6.3 Task 3: Python and JavaScript Code| .

6.3.1

Description of the Enhancement|

3

17
17
17
18
18
18
20
20
22
22
24
24
24

27
27
27
28
28
28
30
30
31
32
33
33

[6.3.2 Python Code: Design Report APl Enhancement|. 35
[6.3.3 Explanation of the Python Code| 36
[6.3.4 JavaScript Code: File Management Systeml. 36
[6.3.5 Explanation of the JavaScript Code| 37
[6.3.6 JavaScript Code: Screenshot Capture| 37
[6.3.7 Explanation of the Screenshot Code|. 38
6.3.8 Visual Results 38
6.3.9 Task Outcome and Resultsl 38
[7__Module Creationl 40
[f.1 Problem Statementl oo 40
(7.2 Step 1: Basic Setup| 40
[7.2.1 Backend Setup - Module Registration| 40
[7.2.2 Creating Module API' File] 41
[7.2.3 Session Management Setup|. 41
[7.2.4 Creating Output View File[. 41
[7.2.5 Creating Input Data File| 42
(7.2.6 URL Configuration| 42
[7.2.7 Frontend Component Setup| 42
[7.2.8 Module Context Integration| 43
[7.2.9 App Route Configuration| 43

(7.3 Step 2: InputDock Creation| 44
[7.3.1 Finding Input Values from Desktop App| 44
[7.3.2 Setting Up Input Valuesin Code] 45
[7.3.3 Getting Dropdown Lists from Backend| 46
[7.3.4 Setting Up Backend Python Filef 47
[7.3.5 Making Sure Everything Works Together| 47

(7.4 Step 3: OutputDock Creation and Logs/. 48
[7.4.1 Fixing Backend Errors|o 48
[7.4.2 Fixing Module-Specific Backend File] 49
[7.4.3 Setting Up Logs System| 49
[7.4.4 Converting Logger Statements to Logs Array|. 49
[7.4.5 OutputDock Creation| 50

746

Creating Frontend OutputDock Component|

7.5 Step 4: 3D Model Rendering

5.1

Backend CAD Model API Configurationl

752

Determining 3D Model Sections|

[7.5.3

Frontend 3D Rendering Setup|

754

3D Canvas and Model Display|

[7.6 Step 5: Fixing DesignReport Function and File Functionalities|

[76.1

Problem with DesignReport Function|

[7.6.2

Fixing the save_design Function|

[7.6.3

Adding Return True Statement|

[7.6.4

R3.2

Universal Engineering Module|

[8.3.3

Explanation of Universal Component|

R34

Configuration-Driven Module Setup|.

B35

Explanation of Configuration System|

[8.3.6

Simple Module Entry Point|

[8.3.7

Dynamic Output System|

[8.3.8

9__Conclusions|

9.1 Tasks Accomplished| 00

[9.2 Skills Developed|. L

[A Appendix]|

[A.1 Work Reports|

58
o8
58
29
60
60
61
62
63
63
64
65
66
66

67
67
68

69

Chapter 1

Introduction

1.1 National Mission in Education through ICT

The National Mission on Education through ICT (NMEICT) is a scheme under the
Department of Higher Education, Ministry of Education, Government of India. It aims
to leverage the potential of ICT to enhance teaching and learning in Higher Education
Institutions in an anytime-anywhere mode.

The mission aligns with the three cardinal principles of the Education Policy—access,

equity, and quality—by:
e Providing connectivity and affordable access devices for learners and institutions.
e Generating high-quality e-content free of cost.

NMEICT seeks to bridge the digital divide by empowering learners and teachers in
urban and rural areas, fostering inclusivity in the knowledge economy. Key focus areas

include:
e Development of e-learning pedagogies and virtual laboratories.

e Online testing, certification, and mentorship through accessible platforms like EduSAT
and DTH.

e Training and empowering teachers to adopt ICT-based teaching methods.

For further details, visit the official website: www.nmeict.ac.in.

https://www.nmeict.ac.in
https://www.nmeict.ac.in

1.1.1 ICT Initiatives of MoE

The Ministry of Education (MoE) has launched several ICT initiatives aimed at students,

researchers, and institutions. The table below summarizes the key details:

No.| Resource

‘ For Students/Researchers

For Institutions

Audio-Video e-content

1 SWAYAM Earn credit via online courses Develop and host courses; accept
credits
2 SWAYAMPRABHA Access 24x7 TV programs Enable SWAYAMPRABHA
viewing facilities
Digital Content Access
3 National Digital Li- | Access e-content in multiple dis- | List e-content; form NDL Clubs
brary ciplines
e-PG Pathshala Access free books and e-content | Host e-books
Shodhganga Access Indian research theses List institutional theses
e-ShodhSindhu Access full-text e-resources Access e-resources for institu-
tions
Hands-on Learning
7 e-Yantra Hands-on embedded systems | Create e-Yantra labs with IIT
training Bombay
8 FOSSEE Volunteer for open-source soft- | Run labs with open-source soft-
ware ware
9 Spoken Tutorial Learn IT skills via tutorials Provide self-learning I'T content
10 | Virtual Labs Perform online experiments Develop curriculum-based exper-
iments
E-Governance
11 |SAMARTH ERP Manage student lifecycle digi- | Enable institutional e-
tally governance
Tracking and Research Tools
12 | VIDWAN Register and access experts Monitor faculty research out-
comes
13 | Shodh Shuddhi Ensure plagiarism-free work Improve research quality and
reputation
14 | Academic Bank of | Store and transfer credits Facilitate credit redemption
Credits

Table 1.1: Summary of ICT Initiatives by the Ministry of Education

1.2 FOSSEE Project

The FOSSEE (Free/Libre and Open Source Software for Education) project promotes
the use of FLOSS tools in academia and research. It is part of the National Mission on
Education through Information and Communication Technology (NMEICT), Ministry of
Education (MoE), Government of India.

1.2.1 Projects and Activities

The FOSSEE Project supports the use of various FLOSS tools to enhance education and

research. Key activities include:
e Textbook Companion: Porting solved examples from textbooks using FLOSS.

Lab Migration: Facilitating the migration of proprietary labs to FLOSS alterna-

tives.

Niche Software Activities: Specialized activities to promote niche software tools.

Forums: Providing a collaborative space for users.

Workshops and Conferences: Organizing events to train and inform users.

1.2.2 Fellowships

FOSSEE offers various internship and fellowship opportunities for students:

e Winter Internship
e Summer Fellowship

e Semester-Long Internship

Students from any degree and academic stage can apply for these internships. Se-
lection is based on the completion of screening tasks involving programming, scientific
computing, or data collection that benefit the FLOSS community. These tasks are de-
signed to be completed within a week.

For more details, visit the official FOSSEE website.

8

https://fossee.in
https://fossee.in

Scilab Python esim
Osdag DWSIM OpenFOAM

OpenModelica ﬁ,c -r o

FLOSS ARDUING

OpenModelica OpenPLC FLOSS Arduino

e, R QGIS
Coes L

o nat
| e . -!50..
‘ '.:C‘:U._'
. ‘.L-: .
.' '.

O

rocn

Figure 1.1: FOSSEE Projects and Activities

1.3 Osdag Software

Osdag (Open steel design and graphics) is a cross-platform, free/libre and open-source
software designed for the detailing and design of steel structures based on the Indian
Standard IS 800:2007. It allows users to design steel connections, members, and systems
through an interactive graphical user interface (GUI) and provides 3D visualizations of
designed components. The software enables easy export of CAD models to drafting
tools for construction/fabrication drawings, with optimized designs following industry
best practices [?7, 7, ?]. Built on Python and several Python-based FLOSS tools (e.g.,
PyQt and PythonOCC), Osdag is licensed under the GNU Lesser General Public License
(LGPL) Version 3.

1.3.1 Osdag GUI

The Osdag GUI is designed to be user-friendly and interactive. It consists of

e Input Dock: Collects and validates user inputs.
e Output Dock: Displays design results after validation.

¢ CAD Window: Displays the 3D CAD model, where users can pan, zoom, and

rotate the design.

e Message Log: Shows errors, warnings, and suggestions based on design checks.

Beam-Column End Plate - o0 &

File Edit Graphics Database Help

Input dock ® Output dock BE
- 11 by Ly [model [] Beam [] Coumn [] End Plate ‘
Connecting Members Critical Bolt Design
Connectlvity Column Flange-Beam Web Diameter (mm) 20)
End Plate Type Extended One Way - Ireversible Mc + Property Class se 0000]
Shear Demand (kN) 7.92]
Shear Capacity (kN) 58.84 |
Bearing Capacity (kN) 171.78 |
Po o]
Golumn Section * PBP 400 X 1402 BotCap CEN
Tension Due to Moment (kN) [60.97 |
Beam Saction * WB 500 _—
Prying Force (kN) 29.36 |
Material E 300 (Fe 440)
Tension Demand (kN) 0033 |
Factored Loads

Tension Capacity (kN) 9173 |

g o) Combined Capacty, LR [0088)

Shear Force (kN) 95 |

Detailing
Axial Force (kN) 32) No. of Bolts 12 J
Bolt

No. of Columns 2 |
Diameter (mm) Customized

No. of Rows 6 |
Type Bearing Bolt - graveaTOoTTaTTETeT ”y Pitch Distance (mm) 70 |

2020-12-15 11:48:50 - Osdag - ERROR - [Bolt Design] The bolt of 20.0 mm diameter 3

Properly Class Al " | »| | and 5.8 grade fails the combined shear + tension check Gauge Distance (mm) N .4

2020-12-15 11:48:50 - Osdag - ERROR - The Interaction Ratio (IR) of the critical bolt is

1.931
2020-12-16 11:48:50 - Osdag - INFO - Re-designing the connection with a bolt of higher C R

grade and/or diameter
2020-12-15 11:48:50 - Osdag - DEBUG - : Design Status
2020-12-15 11:48:50 - Osdag - DEBUG - : Overall beam to column end plate connection

design is SAFE

2020-12-15 11:48:50 - Osdag - DEBUG - : End Of Design -

Figure 1.2: Osdag GUI

1.3.2 Features

e CAD Model: The 3D CAD model is color-coded and can be saved in multiple
formats such as IGS, STL, and STEP.

e Design Preferences: Customizes the design process, with advanced users able to

set preferences for bolts, welds, and detailing.

e Design Report: Creates a detailed report in PDF format, summarizing all checks,

calculations, and design details, including any discrepancies.
For more details, visit the official Osdag website.

10

https://osdag.fossee.in

Chapter 2

Screening Task

2.1 Problem Statement

The screening task for Web App Development of Osdag was designed to evaluate appli-
cants’ ability to contribute to the development of Osdag’s web-based platform. The task

comprised three main components:

2.1.1 Setup and Deployment

Set up and run Osdag-on-cloud, ensuring proper functionality on local or preferred cloud

environment.

2.1.2 Module Development

Create a Ul for a cloud module of Osdag that resembles its desktop version. Implement
an endpoint in Django/REST for any one of the following modules, mirroring the existing

fin plate or end plate implementations:

e Beam-to-beam splices (end plate)

Beam-to-beam splices (cover plate bolted)

Beam-to-column connections (end plate)

Column-to-column splices (cover plate bolted)

Column-to-column splices (cover plate welded)

11

e Column-to-column connections (end plate)

2.1.3 Frontend and Backend Stack

Develop the UI for the selected module using React and implement endpoints using

Django and Django REST Framework.

2.2 Tasks Done

2.2.1 Alternative Development Approach

Instead of setting up the complete Osdag-on-cloud environment locally, I created a new
Vercel project to focus on demonstrating core development capabilities through rapid

prototyping and streamlined development.

2.2.2 Frontend Development

Selected the beam-to-beam cover plate bolted module for implementation. Successfully

recreated the exact Ul of the desktop application using React, including;:
e Pixel-perfect replication of form controls and input validation
e Responsive design while maintaining consistency with the original interface

e Complete user interaction patterns that mirror the desktop version

2.2.3 Backend API Implementation

Developed backend functionality using Django and Django REST Framework:
e Created RESTful API endpoints for data communication
e Implemented data validation and processing logic

e Established seamless data flow from React frontend to Django backend

12

2.2.4 Challenges and Outcome

While frontend and backend integration was successful, challenges were encountered in
implementing 3D model rendering capabilities. Despite this limitation, the completed
work in UI replication and backend API development demonstrated sufficient technical

competency to secure selection for the fellowship program.

13

Chapter 3

Internship Task 1 Title

3.1 Task 1: Installation Manual Content

The comprehensive installation manual developed covers the complete setup process for
Osdag-web development environment. The manual provides structured guidance to re-

duce installation time from weeks to hours.

3.1.1 Prerequisites and Initial Setup

The installation process begins with essential prerequisites:
e Osdag Desktop application installation (mandatory requirement)
e Anaconda installation for Python environment management
e PostgreSQL database setup with proper configuration

e Visual Studio Build Tools for Windows compatibility

3.1.2 Environment Configuration

The manual details the creation of isolated development environments:

Listing 3.1: Conda Environment Setup

conda create -n osdag python=3.8

conda activate osdag

14

3.1.3 Database Setup and Configuration

PostgreSQL configuration includes role creation and database initialization:

Listing 3.2: PostgreSQL Database Setup

CREATE ROLE osdagdeveloper PASSWORD ’password’ SUPERUSER CREATEDB
CREATEROLE INHERIT REPLICATION LOGIN;
CREATE DATABASE "postgres_Intg_osdag" WITH OWNER osdagdeveloper;

3.1.4 Project Dependencies and Migration
The manual includes dependency installation and database migration steps:

Listing 3.3: Project Setup Commands

pip install -r requirements.txt
python populate_database.py
python update_sequences.py

python manage.py migrate

3.1.5 Troubleshooting Solutions

The manual provides solutions for common installation errors:

e Visual C++ Build Tools requirement for pycosat compilation
e PythonOCC library installation using conda-forge
e Typing extensions compatibility issues for Python 3.8+

e Node.js dependencies for React frontend

3.1.6 Alternative Installation Method

For complex installation failures, the manual includes a pre-configured conda environ-

ment package that can be downloaded and integrated directly into the user’s Anaconda

installation, providing a fallback solution when standard installation encounters persis-

tent issues.

The manual successfully reduces the setup complexity and provides clear guidance for

both standard installation and troubleshooting scenarios.

15

3.1.7 Current Installation Evolution

Following this internship, fellow intern Aum Ghelani has developed an automated instal-
lation method using shell scripting, CLI tools, and Docker containerization. This new
approach eliminates the need for manual configuration and reduces installation time from
hours to minutes.

The Docker-based solution provides:

e Consistent environments across different operating systems
e Automated dependency resolution

e Elimination of platform-specific configuration issues

While the manual installation guide remains valuable for understanding system archi-
tecture and troubleshooting, the automated Docker approach is now the recommended

installation method for new developers joining the Osdag-web project.

16

Chapter 4

CAD Model API and 3D Rendering

Fixes

4.1 Task 2: Problem Statement

The CAD Model Generation API in the Osdag web application was completely non-
functional, failing to generate any CAD models for structural connections. Initially,
the API generated only the complete model assembly but failed to produce individual
component sections like Beam, Column, Plate, and Connector sections. The React Three
Fiber 3D rendering component had geometry parsing issues where all sections appeared

visually identical due to material and texture rendering problems.

4.2 Task 2: Tasks Done

Fixed the Django-based CAD Model API by implementing proper session management for
multiple connection types including FinPlate, CleatAngle, EndPlate, Seated Angle, Cov-
erPlateBolted, CoverPlateWelded, BeamBeamEndPlate, and BeamToColumnEndPlate
connections. Enhanced the iterative section generation process to create individual com-
ponent models based on connection type. Implemented robust BREP to OBJ conversion
using FreeCAD subprocess calls with proper error handling. Restructured the React
Three Fiber component to properly parse multiple OBJ files, extract geometries for each
component, and apply distinct materials with different colors and textures. Added com-

prehensive logging and memory-efficient file handling using BytesIO for JSON responses.

17

o N O Ut e W NN =

4.3 Task 2: Python Code

This section presents the key fixes implemented in the CAD Model Generation API and
3D rendering component. The Python script handles multiple connection session types,
generates component-specific CAD models, and converts BREP files to OBJ format.
The JavaScript component provides interactive 3D visualization with proper material

differentiation between structural components.

4.3.1 Description of the Script

The solution consists of two main components:

e Session Management: The API detects active connection sessions from multiple

cookie types and identifies the specific connection module being used.

e Dynamic Section Generation: Based on connection type, the system generates ap-

propriate component sections using a mapping system.

e File Conversion Pipeline: BREP files are converted to OBJ format using FreeCAD

commands and stored in memory using BytesIO for efficient JSON responses.
e 3D Rendering: React Three Fiber component parses OBJ data, extracts geometries,

and renders with distinct materials for visual differentiation.

4.3.2 Python Code
The key parts of the fixed CAD Model Generation API are shown below:

Listing 4.1: CAD Model API Session Management and Section Generation

Get design session id for all supported connection types
session_cookies = {

"FinPlate": request.COOKIES.get("fin_plate_connection_session"),
"CleatAngle": request.COOKIES.get("cleat_angle_connection_session"),
"EndPlate": request.COOKIES.get("end_plate_connection_session"),
"SeatedAngle": request.COOKIES.get("seated_angle_connection"),
"CoverPlateBolted": request.COOKIES.get ("

cover_plate_bolted_connection_session"),

18

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29

30
31
32
33
34
35
36
37
38
39
40

"BeamToColumnEndPlate": request.COOKIES.get ("

beam_to_column_end_plate_connection_session")

}

Determine sections based on the session type

if session_type == "FinPlate":

sections = ["Model", "Beam", "Column", "Plate"]

elif session_type == "CleatAngle":

sections = ["Model", "Beam", "Column", ”cleatAngle”]
elif session_type == "EndPlate":

sections = ["Model", "Beam", "Column", "Plate"]

elif session_type == "BeamToColumnEndPlate":
sections = ["Model", "Beam", "Column", "Connector"]

Generate models for each section

for section in sections:

try:
path = module_api.create_cad_model (input_values, section,
if not path:
continue
Convert BREP to UBJ wusing FreeCAD
output_obj_path = path_to_file.replace(".brep", ".obj

cookie_id)

ll)

command_with_arg = f’{command} {macro_path} {path_to_file} {

output_obj_path}’

process = subprocess.Popen(command_with_arg.split(),

subprocess.PIPE, stderr=subprocess.PIPE)

Read the generated 0OBJ file into BytesIO
output_obj = BytesIO()
with open(output_obj_path, "rb") as obj_file:

output_obj.write(obj_file.read())

stdout=

output_files[section] = output_obj.getvalue().decode("utf-8")

except Exception as e:
print (f"Exception while generating {section}:

oo ococoooooooooooo end code ---------------

{e}™)

19

4.3.3 Explanation of the Python Code

e Line 2-8: Implements comprehensive session cookie detection for all supported con-

nection types using a dictionary mapping approach to identify active sessions.

e Line 11-19: Dynamic section mapping system that determines required components
based on connection type, enabling module-specific model generation for different

structural connections.

e Line 22-24: Core iterative generation loop that creates CAD models for each section

using the Osdag module API with proper error handling for failed generations.

e Line 27-29: BREP to OBJ file conversion using FreeCAD subprocess calls with

proper command construction and process management.

e Line 31-35: Memory-efficient file handling using ByteslIO to read generated OBJ

files and store them as strings for JSON serialization and response.

e Line 37-38: Exception handling with detailed logging to track generation failures

and continue processing remaining sections.

4.3.4 React Ul Code

The user interface component that handles section selection and renders the 3D canvas:

Listing 4.2: 3D Model UI Component with Section Selection

1 (it L begin code-------------

2 |{/* Middle - 3D Model */}

3 | <div className="superMainBody_mid">

4 <div className="options-container">

5 {options.map ((option) => (

6 <div

7 key={option}

8 className="option-wrapper"

9 onClick={() => setSelectedView (option)}
10 >

11 <div

12 className={ ‘option-box ${

13 selectedView === option 7?7 "selected" : ""

20

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
92

}%
></div>
{option}
</div>
))}
</div>
{loading 7 (
<div className="modelLoading">
<p>Loading Model...</p>
</div>
) : renderBoolean 7 (
<div className="cadModel">
<Canvas
gl={{ antialias: true, preserveDrawingBuffer: true }}
onCreated={({ gl }) => {
gl.setClearColor ("#ADDSE6") ;
1}
>
<PerspectiveCamera
ref={cameraRef}
makeDefault
position={cameraPos}
fov={fov}
near={0.1}
far={1000}
/>
<Suspense
fallback={
<Html>
<p>Loading 3D Model...</p>
</Html>
}
>
<Model
modelPaths={cadModelPaths}
selectedView={selectedView}
key={modelKey}
/>

</Suspense>

21

53
o4
95
56
o7
o8
99

- W N =

</Canvas>
</div>
) = (

<div className="modelback"></div>

4.3.5 Explanation of the React UI Code

e Line 3-15: Dynamic option selection interface that maps through available sections
and provides clickable buttons for switching between Model, Beam, Column, and

Plate views.

e Line 17-21: Loading state management with conditional rendering to display load-

ing messages while models are being processed.

e Line 23-32: Three.js Canvas setup with antialiasing, light blue background color,

and proper drawing buffer preservation for screenshot functionality.

e Line 33-40: Camera configuration with perspective projection, adjustable position

and field of view for optimal model viewing.

e Line 41-49: Suspense wrapper for lazy loading of 3D components with fallback

loading indicators and model path management.

e Line 44-47: Model component integration that receives parsed CAD data and se-

lected view state for dynamic section rendering.

4.3.6 JavaScript Code
The key parts of the fixed React Three Fiber rendering component:

Listing 4.3: 3D Model Geometry Extraction and Material Application

// Parse 0BJ data when modelPaths change
useEffect (() => {
if (modelPaths) {

22

© 0 N O ot

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37
38
39
40
41
42

try {

const loader = new 0BJLoader ();

const parsedData = Object.fromEntries(
Object.entries (modelPaths) .map(([key, objDatal]) => {
return [key, loader.parse(objData)];

b

) s

setParsedModels (parsedData) ;

} catch (error) {

console.error ("Error parsing .obj data:", error);
}

}

}, [modelPaths]);

// Extract geometry from parsed objects

const getGeometry = (obj) => {

let g;

obj.traverse ((c) => {

if (c.type === "Mesh") {
c.material .map = texture;
c.material .needsUpdate = true;

g = c.geometry,;
}
IOl
return g;
};
// Beam Section with distinct gray material
{selectedView === "Beam" && geometryBeam && (
<>
<mesh geometry={geometryBeam} scale={0.008} position={[0,
rotation={[Math.PI / -2, 0, 0]}>
<meshPhysicalMaterial
color="#808080"
metalness={0.25}
roughness={0.3}
opacity={1.0}
transparent={true}
transmission={0.008%}
/>

</mesh>

23

0,

41}

43
44
45
46
47
48
49
50
51
52
53
54
95
o6

<primitive

object=A{

new THREE.LineSegments (

new THREE.EdgesGeometry (geometryBeam, 15),

new THREE.LineBasicMaterial ({ color: "black" 1})
)
}

scale={0.008}
rotation={[Math.PI / -2, 0, 0]}
position={[0, O, 4]}

/>

</>

4.3.7 Explanation of the Code

e Line 3-19: Dynamic section mapping system that determines required components

based on connection type, enabling module-specific model generation.

e Line 20-29: Enhanced OBJ parsing logic using OBJLoader that processes multiple

model sections received from the backend API.

e Line 30-42: Geometry extraction function that traverses Three.js object hierarchy

to locate mesh geometries and applies textures properly.

e Line 43-56: Beam component rendering with distinct gray metallic material and

edge geometry for better visual definition and component differentiation.

4.3.8 Visual Results

The implementation successfully generates distinct visual representations for different

structural components as shown in the following figures:

4.3.9 Task Outcome and Results

The implementation successfully resolved all identified issues in the CAD Model Gener-

ation system:

24

[0 Model [1Beam M Column [Plate

Figure 4.1: Column Section - Bronze colored I-beam column component with distinct
material properties

e Functional API: The CAD Model API now properly generates models for all sup-

ported connection types without failures.

e Component-Specific Generation: Individual sections (Model, Beam, Column, Plate,
Connector) are now generated based on connection type, enabling detailed compo-

nent analysis.

e Improved 3D Visualization: The React Three Fiber component properly renders
different components with distinct materials, making visual differentiation possible

between structural elements.

e Robust Error Handling: Comprehensive error handling ensures the system continues

operation even when individual sections fail to generate.

e Enhanced User Experience: Users can now visualize complete assemblies and indi-

vidual components with proper material representation in the web interface.

The fixed system now supports eight different connection types and generates appropriate
component sections for each, significantly improving the CAD visualization capabilities

of the Osdag web application.

25

O Model B Beam O Column O Plate

Figure 4.2: Beam Section - Gray metallic beam component showing proper geometry
extraction and material application

M Model [1Beam [Column [Plate

Figure 4.3: Complete Model Assembly - Transparent view showing the entire structural
connection with end plate and bolts

Chapter 5

Output Dock Implementation

5.1 Task 3: Problem Statement

The internship task involved fixing existing modules in the Osdag steel connection design
software, specifically addressing issues with four critical modules: FinPlate, CleatAngle,
EndPlate, and SeatedAngle. The primary challenge was resolving the OutputDock func-
tionality where output values were not displaying properly due to incorrect mapping and
data structure inconsistencies. The core problems identified were conflicting key names
between modules despite representing different parameters, inconsistent mapping between
backend calculations and frontend display components, and data formatting mismatches

between API responses and React component expectations.

5.2 Task 3: Tasks Done

The task was approached systematically by analyzing the data flow from backend calcula-
tions to frontend display components. A suffix-based naming convention was implemented
to differentiate between parameters that had similar names but represented different phys-
ical quantities or belonged to different structural components. The React components
were modified to handle the new data structure format, ensuring consistent mapping
between calculation results and display elements. Key methodologies implemented in-
cluded suffix-based key differentiation for duplicate parameter names, structured data
formatting with key-label-value triplets, and modal-based detailed view implementation

for spacing and capacity parameters.

27

= W N =

© o N & Ot

5.3 Task 3: Python Code

This section presents the Python implementation for the output dock functionality, specif-
ically focusing on the Cleat Angle module. The code demonstrates how output values are

generated, formatted, and transmitted to the frontend components for proper display.

5.3.1 Description of the Script

The output generation system is structured as follows:

e Module Creation: The system creates connection modules from input parameters

using the create jrom;nput function. DataExtraction : Multipleoutputsourcesareconsolidatedinc

Key Disambiguation: Suffix-based naming is applied to prevent conflicts between similar

parameter names from different structural components.

Format Standardization: All output parameters are converted to a consistent key-label-

value format for frontend consumption.

Error Handling: The system includes validation and logging mechanisms to track calcu-

lation processes.

5.3.2 Python Code

The Python script for output generation is shown below, demonstrating the backend

processing for the CleatAngle connection module.

Listing 5.1: Output Generation with Suffix-based Key Mapping for CleatAngle Module

def generate_output (input_values: Dict[str, Anyl]l) -> Dictl[str, Any]:

Generate, format and return the input wvalues from the given output
values.

Output format (jsom):

{

"Bolt.Pitch": {

"key": "Bolt.Pitch",

"label": "Pitch Distance (mm)",

28

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

42
43
44
45

"value": 40
}
}

namnn

output = {} # Dictionary for formatted values

module = create_from_input (input_values) # Create module from input
print (’module : °’, module)
print (’type of module : ’, type(module))

Generate output wvalues in unformatted form
raw_output_text = module.output_values (True)

raw_output_spacing = module.spacing(True)

Generate bolt capacity detatls for both supported and supporting legs
raw_bolt_capacity_supported = module.bolt_capacity_details_supported(
True)

raw_bolt_capacity_suporting = module.bolt_capacity_details_suporting(

True)

Add suffizes to duplicate-prone supported keys
raw_supported = [
(f"{key}_supported", label, typ, value, visible)
for key, label, typ, value, visible in raw_bolt_capacity_supported

if key # only <f key is not None

]

raw_supporting = [
(f"{key}_supporting", label, typ, value, visible)
for key, label, typ, value, visible in raw_bolt_capacity_suporting
if key

]

logs = module.logs
raw_output = raw_output_spacing + raw_output_text + raw_supported +

raw_supporting

Loop over all the text wvalues and add them to output dict
for param in raw_output:

if param[2] == "TextBox": # If the parameter <s a text output

29

46
47
48
49
50
o1
92
53
o4
95
56
o7

key = param[0] # id/key
label = param[1] # label text

value = param[3] # Value as string

output [key] = {
"key": key,
"label": label,
"value": value

} # Set label, key and wvalue in output

return output, logs

5.3.3 Explanation of the Python Code

Line 1-13: Function definition and documentation explaining the expected output

format with key-label-value structure for frontend consumption.

Line 14-18: Module initialization from input parameters and debugging output to

track module creation process.

Line 20-23: Raw data extraction from multiple sources including basic output val-

ues, spacing parameters, and bolt capacity details for both structural legs.

Line 25-37: Implementation of suffix-based naming convention to differentiate be-
tween supported and supporting leg parameters, preventing key conflicts in the

output dictionary.

Line 39-41: Consolidation of all raw output data into a single list for unified pro-

cessing.

Line 43-53: Tteration through all parameters, filtering for TextBox type outputs,
and formatting them into the standardized key-label-value structure required by

the frontend components.

5.3.4 Frontend Integration Code
The React component integration handles the formatted output data:

30

© 00 N O Ut e W NN =

NN NN N N N N P P P P R B = = = =
e e R L =R e s RN S e> R, U V=)

Listing 5.2: React useEffect Hook for Output Data Processing

useEffect (() => {
if (displayOutput) {
try {
console.log("Actual Output", designData);
const formatedOutput = {};
for (const [key, value] of Object.entries(designData)) {
const newKey = key;
const label = value.label;

const val = value.value;

if (val !== undefined && val !'== null) {

formatedOutput [newKey] = { label, val };

setOutput (formatedOutput) ;

console.log("formated Output", formatedOutput);
} catch (error) {

console.log(error);

setOutput (null) ;

}

}, [designDatal);

// QOutput component rendering
{<CleatAngleOutputDock output={outputl} />}

fmmmmmm -~ end code ---------------

5.3.5 Explanation of the Frontend Code

e Line 1-2: useEffect hook triggered when displayOutput state changes to process
incoming design data from the backend API.

e Line 4-6: Error handling wrapper with debugging output to track the actual output

data structure received from the backend.

e Line 7-15: Data transformation loop that extracts key, label, and value from each

31

© 00 N O Ut ke W NN =

NONN N NN R R, R R, R, R, R, R R =
T W NN B O © 00NN O Ut e W NNy = O

output parameter while filtering out undefined or null values.

e Line 17-22: State management to update the output data and comprehensive error

handling with fallback to null state.

e Line 25: Component integration where the processed output data is passed to the

Cleat AngleOutputDock component for rendering.

5.3.6 Output Mapping Implementation

The CleatAngleOutputDock component uses a custom mapping system to organize out-

put parameters:

Listing 5.3: Custom Output Parameter Mapping for CleatAngle Module

const customMapping = {
"Cleat Angle": [
{ key: "Cleat.Angle", label: "Cleat Angle Designation" },
key: "Plate.Height", label: "Height (mm)" 1},
key: "Cleat.Shear", label: "Shear Yielding Capacity (kN)" },

{
{
{ key: "Cleat.BlockShear", label: "Block Shear Capacity (kN)" },
{ key: "Cleat.MomDemand", label: "Moment Demand (kNm)" },
{ key: "Cleat.MomCapacity", label: "Moment Capacity (kNm)" 1},
]
"Bolts on Supported Leg": [

key: "Bolt.Line", label: "Bolt Columns (nos)" },

key: "Bolt.OneLine", label: "Bolt Rows (nos)" },

key: "Bolt.Force (kN)", label: "Bolt Force (kN)" I},

{
{
{
{ key: "Bolt.Capacity_sptd", label: "Bolt Value (kN)" 1},
{ key: "CapacityModal_supported", label: "Capacity Details" 1},
{ key: "SpacingModal", label: "Spacing" },
]
"Bolts on Supporting Leg": [
key: "Cleat.Spting_leg.Line", label: "Bolt Columns (nos)" },
key: "Cleat.Spting_leg.0OnelLine", label: "Bolt Rows (nos)" },
key: "Cleat.Spting_leg.Force", label: "Bolt Force (kN)" },

{

{

{

{ key: "Bolt.Capacity_spting", label: "Bolt Value (kN)" },

{ key: "CapacityModal_supporting", label: "Capacity Details" },
{

key: "SpacingModal", label: "Spacing" },

32

26 |1,

27
28

5.3.7 Explanation of the Output Mapping

e Line 1-9: Cleat Angle section mapping that displays fundamental cleat angle prop-

erties including designation, height, and capacity parameters.

e Line 10-17: Supported leg bolt configuration mapping with suffixed keys to differ-

entiate from supporting leg parameters.

e Line 18-25: Supporting leg bolt configuration with distinct key names to prevent

conflicts with supported leg parameters.

e Line 15-16, 22-23: Modal trigger keys for detailed capacity and spacing information
that open popup dialogs with additional technical details.

5.3.8 Task Outcome and Results

The implementation successfully resolved all identified issues in the Output Dock system.
All four modules (FinPlate, CleatAngle, EndPlate, SeatedAngle) now properly display
calculated output values without mapping conflicts. The suffix-based naming convention
eliminated key conflicts between similar parameters from different structural components.
Standardized key-label-value format ensures reliable data transmission between backend
calculations and frontend display components, significantly improving the usability of the

Osdag web application.

33

Chapter 6

Module Enhancement and File Man-

agement System

6.1 Task 3: Problem Statement

The Osdag web application’s module system lacked file management capabilities and
required manual module identification for design report generation. The File menu drop-
down was non-functional, and there was no CAD model download or screenshot capture

functionality for 3D models.

6.2 Task 3: Tasks Done

Enhanced the design report API to automatically detect active module sessions from
cookies. Implemented file management system supporting input operations (.osi format),
design reports, log export, and 3D model download in multiple formats (OBJ, BREP,
STEP, IGES). Developed screenshot capture functionality. Extended support across all
four connection modules: FinPlate, CleatAngle, SeatedAngle, and EndPlate.

6.3 Task 3: Python and JavaScript Code

6.3.1 Description of the Enhancement

The solution consists of three main components:

34

o N O Ut ke W NN =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

e Automatic Module Detection: API identifies active modules through cookie analy-

sis.
e File Management System: Complete file operations and model exports.

e 3D Model Integration: Screenshot capture and CAD download functionality.

6.3.2 Python Code: Design Report API Enhancement

Listing 6.1: Enhanced Design Report API

class CreateDesignReport (APIView):
def post(self, request):
metadata = request.data.get(’metadata’)

Map cookies to create functions

module_cookie_map = {
’fin_plate_connection_session’: fin_plate_create_from_input,
’end_plate_connection_session’: end_plate_create_from_input,
’cleat_angle_connection_session’: cleat_angle_create_from_input
>
’seated_angle_connection’: seated_angle_create_from_input,
X

Automatic module detection
for cookie_key, create_func in module_cookie_map.items():
if cookie_key in request.COOKIES:
cookie_id = request.COOKIES.get(cookie_key)
create_module_func = create_func

break

Get design data from database

designObject Design.objects.get (cookie_id=cookie_id)

input_values designObject.input_values
Generate report
try:
module = create_module_func (input_values)

resultBoolean = module.save_design(metadata_final)

35

28
29
30
31

© 00 N O Ut ke W NN =

e e e e e e T
S U e W NN = O

17

if (resultBoolean):
return Response ({’success’: ’Design report created’l})
except Exception as e:

return Response ({"message": "Error generating report"})

6.3.3 Explanation of the Python Code

e Line 6-11: Module mapping system associating cookies with create functions for

automatic detection.
e Line 14-18: Dynamic cookie detection loop identifying active module session.
e Line 21-22: Database integration to retrieve design parameters.

e Line 25-30: Module instantiation and report generation with file handling.

6.3.4 JavaScript Code: File Management System

Listing 6.2: File Operations Handler

const handleClick = (option) => {
switch (option.name) {

case ’Load Input’:

loadInput () ;

break;

case ’Save Input’:

savelnput () ;

break;

case ’Create Design Report’:
setCreateDesignReportBool (true) ;
break;

case ’Save 3D Model’:

(async () => {

const options = {

types: [

{ description: "O0BJ File", accept: { "application/octet-stream": [".obj
"1 }},

{ description: "BREP File", accept: { "application/octet-stream": [".
brep"] }},

36

18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

=W NN =

{ description: "STEP File", accept: { "application/octet-stream": [".
step"] 1},

1,

suggestedName: "3dmodel",

};
const handle = await window.showSaveFilePicker (options);

const blob = await downloadCADModel (handle.name.split(".").pop());

if (blob) {
const writable = await handle.createWritable();
await writable.write(blob);
await writable.close();
}
PO
break;
case ’Save Cad Image’:
triggerScreenshotCapture () ;

break;

6.3.5 Explanation of the JavaScript Code

e Line 1-28: Switch statement handling file operations including input, design reports,

and 3D model operations.

e Line 11-20: File picker implementation for 3D model downloads supporting multiple

CAD formats.

e Line 26-27: Screenshot capture integration triggering image saving functionality.

6.3.6 JavaScript Code: Screenshot Capture

Listing 6.3: Screenshot Capture System

async function saveImageWithDialog(canvas) {

const options = {

types: [

{ description: "PNG Image", accept: { "image/png": [".png"]l }},

37

© 0 N O ot

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

{ description: "JPEG Image", accept: { "image/jpeg": [".jpeg"]l 1}},
i

suggestedName: "cad_model_snapshot",
};
const handle = await window.showSaveFilePicker (options);

const fileExtension = handle.name.split(".").pop();

const mimeType = fileExtension === "png" ? "image/png" : "image/jpeg";
const blob = await new Promise((resolve) => {

canvas.toBlob(resolve, mimeType) ;

});

const writable = await handle.createWritable () ;

await writable.write(blob);

await writable.close();

}

const ScreenshotCapture = ({ screenshotTrigger, selectedView }) => {
const { gl, invalidate } = useThree();

useEffect (() => {

if (screenshotTrigger && selectedView === "Model") {

invalidate () ;
saveImageWithDialog(gl.domElement) ;
}

}, [screenshotTrigger]);

return null;

};

6.3.7 Explanation of the Screenshot Code
e Line 2-8: File picker configuration supporting multiple image formats (PNG, JPEG).
e Line 10-12: MIME type detection and canvas-to-blob conversion for image output.

e Line 19-23: Screenshot capture logic with view validation and frame synchroniza-

tion.

6.3.8 Visual Results

6.3.9 Task Outcome and Results

The module enhancement implementation successfully resolved the identified issues:

38

File Edit Graphics Database Help
In Load Input

{ Downlead Input

C Save Input
Save Log Messages
Create Design Report
Save 3D Model
Save Cad Image

Ctrl+L] Bean
Cul+D

Alt+N
Alt+M
Alt+C
Alt+3
Alt+1

Figure 6.1: Enhanced File Menu Dropdown with complete file operations

e Automatic Module Detection: Design report API automatically identifies active

modules through cookie analysis.

e File Operations: Complete input file management with load, save, and download

capabilities.

e CAD Export: Multi-format 3D model downloads (OBJ, BREP, STEP, IGES).

e Screenshot Functionality: Image capture in multiple formats (PNG, JPEG, BMP,

TIFF).

e Cross-Module Support: Consistent functionality across all four connection modules.

The enhanced system significantly improves workflow management and provides profes-

sional documentation capabilities.

39

N O Ot e W N

Chapter 7

Module Creation

7.1 Problem Statement

The next task was to create complete new modules. Beam-to-Beam EndPlate and Beam-
to-Beam CoverPlateBolted modules were both created in 5 steps: Basic Setup, InputDock
creation, OutputDock creation and setting logs, rendering 3D models and finally fixing

the design report function along with file functionalities.

7.2 Step 1: Basic Setup

7.2.1 Backend Setup - Module Registration

The basic setup involves creating module-specific files in both backend and frontend
folders. We need to register our new module in the system and create the necessary
file structure. First, go to osdag_api/module_finder.py and add the new module to the

module dictionary:

Listing 7.1: Adding Module to Module Dictionary

module_dict : Dict[str, ModuleApiTypel = {

’Fin Plate Connection’: fin_plate_connection,

’End Plate Connection’: end_plate_connection,
’Cleat Angle Connection’: cleat_angle_connection,
>’Seated Angle Connection’: seated_angle_connection,

>Cover Plate Bolted Connection’: cover_plate_bolted_connection,

40

8

© 0w N O Ot e W

10

11
12

7.2.2 Creating Module API File

Go to osdag_api/modules folder and create a file named cover_plate_bolted_connection.py.
Copy the content from any existing module file in that folder exactly as it is. This file
will handle the APT calls for our module.

7.2.3 Session Management Setup

Navigate to Osdag/web_api/session_api.py and add module details in both CreateSession

and DeleteSession classes:

Listing 7.2: Adding Session Management for Cover Plate Module

elif request.COOKIES.get("cover_plate_bolted_connection_session") is
not None:

print ("cover plate bolted connection is there ")

return JsonResponse ({"status": "set"}, status=200)

cookie_keys = {

"Fin Plate Connection": "fin_plate_connection_session",

"End Plate Connection": "end_plate_connection_session",

"Cleat Angle Connection": "cleat_angle_connection_session",

"Seated Angle Connection": "seated_angle_connection',

"Cover Plate Bolted Connection": "cover_plate_bolted_connection_session

Also add the module details in the developed_modules section of the same file.

7.2.4 Creating Output View File

Create a file named coverplatebolted_outputView.py in the modules folder. Copy code

from any existing module’s outputView.py file and edit the module-specific details:

41

© 0w N S Ot

10
11

Listing 7.3: Module-Specific Output View Configuration

obtaining the session, module_id, input_values

cookie_id = request.COOKIES.get(’cover_plate_bolted_connection_session’
)

module_api = get_module_api(’Cover Plate Bolted Connection’)

input_values = request.data

tempData = {

>cookie_id’: cookie_id,

’module_id’: ’Cover Plate Bolted Connection’,
’input_values’: input_values

}

e it end code --—----—--—-—-——-—----

7.2.5 Creating Input Data File

Go to osdag/web_api/inputdata and create cover_plate_bolted_input.py. Copy code from
any existing module file. This file will be edited in step 2 when we configure dropdown

lists.

7.2.6 URL Configuration

Add the module route in osdag/urls.py:

Listing 7.4: Adding URL Route for Module Access

path(’calculate-output/Cover-Plate-Bolted-Connection’,
CoverPlateBoltedOutputData.as_view() ,name="Cover -Plate-Bolted-

Connection"),

7.2.7 Frontend Component Setup

Go to Osdagclient/src/components/shearConnection/ and create coverplatebolted.jsx.
Copy code from any existing module like finplate.jsx to this file. Edit the session man-

agement code in coverplatebolted.jsx:

42

© 00 N O Ut e W NN =

I S e e
UL R W NN = O

T W NN =

Listing 7.5: Frontend Session Management Configuration

useEffect (() => {

createSession("Cover Plate Bolted Connection");

}, [1);

useEffect (() => {

return () => {

if (

location.pathname !=
"/design/connections/beam-to-beam-splice/cover_plate_bolted"
) {

deleteSession("Cover Plate Bolted Connection");

7.2.8 Module Context Integration

Edit osdagclient/src/context/moduleState.jsx and add the module to createSession and

deleteSession APIs:

Listing 7.6: Module Context API Integration

else if (module_id == "Cover Plate Bolted Connection") {

getBeamMateriallList ("Cover-Plate-Bolted-Connection");

7.2.9 App Route Configuration
Finally, add the component route in App.jsx inside osdagclient folder:

Listing 7.7: Adding Component Route in App.jsx

oo coooococoooooooo begin code-------------

import CoverPlateBolted from "./components/shearConnection/
CoverPlateBolted";

<Route

43

N o ot

path="/design/:designType/beam-to-beam-splice/cover_plate_bolted"
element={<CoverPlateBolted />}

/>

This completes the basic setup for the new module, creating all necessary files and con-

nections between frontend and backend components.

7.3 Step 2: InputDock Creation

7.3.1 Finding Input Values from Desktop App

Beam-to-Beam Cover Plate Bolted Connection
Edit Graphics Database Help
] Load input Ctri+L 2

Save input Ctr+S
Save log messages Ak+M

-

Create design report Alt+C

Save 3D model Alt+3 [Fe How) ~
Save CAD image Alt+1 i
Quit Shift+Q l
SHear Force (KN ™ [70 |
Axial Force (kN) 1100 |
Bolt

Figure 7.1: Save Input option in desktop Osdag application

To create the input form for the web app, we first need to know what input values

the desktop app uses. We do this by:
e Opening the desktop Osdag app
e Going to the Beam-to-Beam Cover Plate Bolted module
e Clicking File ; Save Input to download a .osi file

e Opening this .osi file in notepad to see all the input parameters

44

© 00 N O Ut e W NN =

—
o

11
12
13
14
15
16
17
18
19
20
21
22

7.3.2 Setting Up Input Values in Code

Connector.Material: E 25@ (Fe 41 W)A
Connector.wWeb Plate.Thickness List: *idee1l
Design.Design Method: Limit State Design
Detailing.Corrosive_Influences: 'No’
Detailing.Edge type: Sheared or hand flame cut
Detailing.Gap: '3’

Load.Axial: '1ee’

Load.Moment: '5@°

Load.Shear: '70'

Material: E 25@ (Fe 410 W)A

Member.Designation: MB 300

Member.Material: E 250 (Fe 41@ W)A

Module: Beam-to-Beam Cover Plate Bolted Connection

Figure 7.2: Input values from .osi file opened in notepad

Read the .osi file downloaded above, then edit the input values in the coverplate-

bolted.jsx file, our React component that we created in step 1.

Listing 7.8: Setting Up Input Values for Cover Plate Module in coverplatebolted.jsx

const [inputs, setInputs] = useState ({
bolt_hole_type: "Standard",
bolt_diameter: [],

bolt_grade: [],

bolt_slip_factor: "0.3",
bolt_tension_type: "Pre-tensioned",
bolt_type: "Bearing Bolt",
flange_plate_preferences: "QOutside",
flange_plate_thickness: [],
connector_material: "E 250 (Fe 410 W)A",
web_plate_thickness: [],

design_method: "Limit State Design",
detailing_corr_status: "No",
detailing_edge_type: "Sheared or hand flame cut",
detailing_gap: "3",

load_axial: "100",

load_moment: "70",

load_shear: "50",

material: "E 250 (Fe 410 W)A",
member_designation: "MB 300",

member_material: "E 250 (Fe 410 W)A",

45

23
24
25

1
2

module:

B

"Beam-to-Beam Cover Plate Bolted Connection'",

7.3.3 Getting Dropdown Lists from Backend

Then analyze the list requirements for the input form by checking all dropdown menus

with options like beam sizes, materials, and bolt diameters. We get these lists from the

Input Dock &

Connecting Members
Section Designation®* | MB 300 v

Material * E 250 (Fe 410 W) =
Factored Loads

Bending Moment (kNrr i:5[} I
Shear Force (kN) * i:?[} I

Axial Force (kN) 100 |
Bolt

Diameter (mm) * Customized v
Type * Bearing Bol v
Property Class * Customized v
Flange Splice Plate

Preference * Outside v
Thickness (mm) * Customized v
Web Splice Plate

Thickness (mm) * Customized v

Figure 7.3: Input dock interface showing required dropdown lists

backend using Context API inside the coverplatebolted.jsx file:

Listing 7.9: Getting Required Lists for Dropdown Menus

const {

46

© 0w N O Ot e W

10
11

© 00 N O Ut ke W NN =

[e T e S S O e S S T
N O Ut ke W N = O

beamList,

materiallList,
boltDiameterList,
thicknessList,
propertyClasslList,
createSession,

createDesign,

} = useContext (ModuleContext);

- - end code -----—-———————-——=-

7.3.4 Setting Up Backend Python File

After setting the APIs, we need to edit the file cover_plate_bolted.py inside osdag_api/modules

that we created in step 1. Now create the instance of the BeamCoverPlate class:

Listing 7.10: Creating Backend Module Handler

from design_type.connection.beam_cover_plate import BeamCoverPlate

def create_module() -> BeamCoverPlate:
"""Creates the beam cover plate module"""
module = BeamCoverPlate ()
module.set_osdaglogger (None)

return module

def create_from_input (input_values: Dict[str, Any]) -> BeamCoverPlate:
"""Creates module from user input wvalues"""”
try:
module = create_module ()
except Exception as e:

print(’Error creating module:’, e)

return module

7.3.5 Making Sure Everything Works Together

After setting up the input values, we need to set up the same input values in both the han-

dleSubmit() and saveOutput() functions. This ensures that when a user fills out the form

47

and clicks the design button, all the data gets sent to the backend correctly.RetryClaude

can make mistakes. Please double-check responses.Researchbeta Sonnet 4

7.4 Step 3: OutputDock Creation and Logs

7.4.1 Fixing Backend Errors

When you click the design button after setting input values, you will encounter errors
that need to be fixed in the backend file created earlier.
Go to osdag_api/modules/cover_plate_bolted_connection.py file. First, update the vali-

date_input_new function values according to the input values set in step 2. Then, work

© N S Ot

10

12
13
14
15
16
17
18
19
20

on the create_from_input() function:

Listing 7.11: Setting Input Values in Backend Module

def create_from_input (input_values: Dict[str, Any]) -> BeamCoverPlate:
"""Create an tinstance of the fin plate connection module design class
from input wvalues. """
validate_tinput (input_values)
try
module = create_module() # Create module instance.
except Exception as e
print(’e in create_module : ’ , e)
print (’error in creating module’)
Set the input values on the module instance.
try
print ("INPUT SET FOR FINAL OUTPUT",input_values)
module.set_input_values (input_values)
except Exception as e
traceback.print_exc ()
print(’e in set_input_values : ’ , e)

print (’error in setting the input values’)

return module

48

S Ut e W N

7.4.2 Fixing Module-Specific Backend File

You need to go inside the module-specific backend file (BeamCoverPlate in this case) and
remove self from some functions because we are creating an instance of the module. For

example: Change:
e self.warn_text(self) to self.warn_text()
e self. member_capacity(self) to self.member_capacity()

The exact errors will be visible in the terminal, making it easy to identify which functions

need fixing.

7.4.3 Setting Up Logs System

In the main backend file BeamCoverPlate, you need to create an empty array for logs in

the initialization:

Listing 7.12: Initializing Logs Array in Module

fhp=m=—memssscoosoosssss begin code-------------
def init(self):

super (BeamCoverPlate, self).init ()

self .design_status = False

self.logs = []

fhoomerosoooscoooosooo end EEEe coscoscoooooooo

7.4.4 Converting Logger Statements to Logs Array

Wherever you see logger statements in the entire file, you need to append the same

message to the logs array:

Listing 7.13: Converting Logger Statements to Logs Array

logger .warning(
" You are using a section (in red color) that is not available in
latest version of IS 808")

self.logs.append ({"msg": " : You are using a section (in red color)

that is not available in latest version of IS 808", "type": "warning

ll})

49

[S

© 00 N o ot

10
11
12
13
14
15
16
17
18

logger.info(

" You are using a section (in red color) that is not available in

latest version of IS 808")

self.logs.append ({"msg": " : You are using a section (in red color)
that is not available in latest version of IS 808", "type": "info"})
/el e EL LSS AmE EOEE scccccososoooos

This conversion is necessary because the desktop version of Osdag uses logger, but we
need to append those print statements to an array to display them on the website. The

logs will be returned to the main file for frontend display.

7.4.5 OutputDock Creation

Now check the generate_output function in the cover_plate_bolted_connection.py file, you

have to create the OutputDock in the same way discussed in chapter 5.

Listing 7.14: Generate Output Function for OutputDock

fommemsssoososoasosos begin code-------------

def generate_output (input_values: Dict[str, Any]) -> Dictl[str, Any]:

"

Generate, format and return the input wvalues from the given output
values.

Output format (json): {

"Bolt.Pitch":

"key": "Bolt.Pitch",

"label": "Pitch Distance (mm)"

"value": 40

}

F

"

Print (" kskskskokkkokkokkok "

output {} # Dictionary for formatted wvalues

module = create_from_input (input_values) # Create module from input.
print (’module : ’ , module)

print (’type of module : ’ , type(module))

fommeesssossssoosssos end code ---------------

50

[

7.4.6 Creating Frontend OutputDock Component

Create a module-specific OutputDock file named CoverPlateBoltedOutputdock.jsx inside
osdagclient /src/components. This component will display the calculated results and logs
on the frontend interface. The OutputDock creation process involves formatting the
backend calculation functions results into a user-friendly interface that displays all the
design parameters and their calculated values in an organized manner.

You're right, there’s a LaTeX syntax error. Here’s the corrected version:

7.5 Step 4: 3D Model Rendering

7.5.1 Backend CAD Model API Configuration

To render 3D models, start by configuring the backend CAD model API. Go to Os-
dag/web_api/cad_model_api.py and add the code for the coverplatebolted module. First,

add the session cookie for the new module:

Listing 7.15: Adding Session Cookie for Cover Plate Module

def get(self, request: HttpRequest):

Get design session 1id

fin_plate_cookie_id = request.COOKIES.get("fin_plate_connection_session
"

cleat_angle_cookie_id = request.COOKIES.get ("
cleat_angle_connection_session")

end_plate_cookie_id = request.COOKIES.get("end_plate_connection_session
")

seated_angle_cookie_id = request.COOKIES.get("seated_angle_connection")

cover_plate_bolted_cookie_id = request.COOKIES.get ("

cover_plate_bolted_connection_session")

Then update the session validation check:

Listing 7.16: Session Validation Update

51

© 0 N O Ut e W NN =

N NN N = = e e e e e
W N R O © 00NN O Ut W Ny = O

if not fin_plate_cookie_id and not cleat_angle_cookie_id and not
seated_angle_cookie_id and not end_plate_cookie_id and not
cover_plate_bolted_cookie_id

return JsonResponse ({"status": "error", "message": "Please open a

module"}, status=400)

7.5.2 Determining 3D Model Sections

To understand which sections need to be rendered, examine the original module backend

file design_type/connection/beam_cover_plate.py and search for 3D functions:

Listing 7.17: 3D Components Configuration in Backend Module

def get_3d_components (self):
components = []
tl = (’Model’, self.call_3DModel)

components.append(tl)

t2 = (’Beam’, self.call_3DBeam)

components .append (t2)

t4 = (’Cover Plate’, self.call_3DPlate)

components .append (t4)

return components

def call_3DPlate(self, ui, bgcolor):

from PyQt5.QtWidgets import QCheckBox

from PyQt5.QtCore import Qt

for chkbox in ui.frame.children():

if chkbox.objectName () == ’Cover Plate’:

continue

if isinstance (chkbox, QCheckBox):

chkbox.setChecked (Qt.Unchecked)
ui.commLogicObj.display_3DModel ("Connector", bgcolor)

fommeesssossssoasssos end code ---------------

Based on this analysis, the Cover Plate Bolted module has three sections: Model, Beam,

52

O

N O Ot e W N -

10
11
12
13

T W N

and Connector. Add the section configuration to the CAD model API:

Listing 7.18: Section Configuration for Cover Plate Module

e e it begin code-------------
elif session_type == "CoverPlateBolted":
sections = ["Model", "Beam", "Connector"]
oo ooooooooonooo end code -------—-—-—--—----

7.5.3 Frontend 3D Rendering Setup

Move to the frontend file coverplatebolted.jsx and configure the 3D rendering components:

Listing 7.19: 3D Rendering State Configuration

const [renderBoolean, setRenderBoolean] = useState(false);
const [modelKey, setModelKey] = useState (0);

const [loading, setLoading] = useState(false);

const [selectedView, setSelectedView] = useState("Model") ;
const options = ["Model", "Beam", "Connector"l];

const { position: cameraPos, fov } = useViewCamera("CoverPlateBolted",

selectedView) ;

const cameraRef = useRef ();
const [screenshotTrigger, setScreenshotTrigger] = useState(false);
const triggerScreenshotCapture = () => {

setScreenshotTrigger (true) ;

};

7.5.4 3D Canvas and Model Display
Configure the 3D canvas with section selection and model rendering:

Listing 7.20: 3D Canvas Configuration with Section Selection

<div className="superMainBody_mid">
<div className="options-container">
{options.map ((option) => (

<div

53

NelNe I e

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

key={option}
className="option-wrapper"

onClick={() => setSelectedView(option)}

>
<div
className={ ‘option-box ${
selectedView === option 7 "selected" : ""
}%
></div>
{option}
</div>
))}
</div>

{loading 7 (
<div className="modelLoading">
<p>Loading Model...</p>
</div>
) : renderBoolean 7 (

<div className="cadModel">

<Canvas gl={{ antialias: true, preserveDrawingBuffer:

onCreated={({ gl }) => {
gl.setClearColor ("#ADDBE6") ;
13>
<PerspectiveCamera
ref={cameraRef}
makeDefault
position={cameraPos}
fov={fov}
near={0.1}
far={1000}
/>
<Suspense
fallback={
<Html>
<p>Loading 3D Model...</p>
</Html>

<Model

54

true }}

45
46
47
48
49
50
o1
52
53
o4
55
56
o7
o8
59
60
61

modelPaths={cadModelPaths}
selectedView={selectedView}
key={modelKey}

/>

<ScreenshotCapture
screenshotTrigger={screenshotTrigger}
setScreenshotTrigger={setScreenshotTrigger}
selectedView={selectedView}

/>

</Suspense>

</Canvas>

</div>
) o+ (
<div className="modelback"></div>
)}
</div>
e end code -------—--------

The 3D model rendering system allows users to view different sections of the structural
connection (Model, Beam, Connector) with interactive controls and screenshot capabili-
ties. The implementation follows the same pattern established in Chapter 4 for consistent

3D visualization across all modules.

7.6 Step 5: Fixing DesignReport Function and File

Functionalities

7.6.1 Problem with DesignReport Function

The DesignReport function was not working because the backend API couldn’t determine
if the report generation was successful. The save_design() function in the main module
file was missing a return statement to confirm successful completion. Follow the steps in

Chapter 6 to fix designreport and file functionalities.

95

[R N T R

S Ut e W NN =

10

7.6.2 Fixing the save _design Function

Navigate to the main backend file design_type/connection/beam cover_plate.py and lo-
cate the save_design() function in the BeamCoverPlate class. The function currently

looks like this:

Listing 7.21: Original save_design Function

class BeamCoverPlate (MomentConnection):
def save_design(self, popup_summary):

fname_no_ext = popup_summary[’filename’]

Createlatex.save_latex(Createlatex (), self.report_input, self.
report_check , popup_summary,
self .rel_path, Disp_2d_image, Disp_3d_image,
module=self .module)

fommm——mm—m——————————— end code --—-—---—-—-------—-

7.6.3 Adding Return True Statement

Add a return True statement at the end of the save_design() function. This tells the
backend DesignReport API that the function has successfully created the report:

Listing 7.22: Fixed save_design Function with Return Statement

class BeamCoverPlate (MomentConnection):
def save_design(self, popup_summary):

fname_no_ext = popup_summary[’filename’]

Createlatex.save_latex(Createlatex (), self.report_input, self.
report_check, popup_summary,
self .rel_path, Disp_2d_image, Disp_3d_image,

module=self .module)

return True

56

7.6.4 Understanding File Functionalities

The file functionalities for the Cover Plate Bolted module work the same way as other
modules in Osdag. By following the implementation patterns from Chapter 6, you can

understand how these features work:

e Save Input - saves current design parameters to a .osi file

Load Input - loads design parameters from a saved .osi file

Save Design Report - generates and downloads the complete PDF design report

Save 3D Model - exports the 3D CAD model files

Save CAD Image - saves screenshots of the 3D model views

7.6.5 Backend-Frontend Communication

The return True statement ensures proper communication between the frontend and
backend when generating design reports. Without this return statement, the frontend
cannot confirm whether the report generation was successful, causing the functionality
to appear broken to users. By following Chapter 6’s detailed explanations and adding
this simple return statement, both the DesignReport function and all file functionalities

will work correctly for the Cover Plate Bolted module.

o7

Chapter 8

Modular Component Architecture and

State Management

8.1 Task 3: Problem Statement

The Osdag web application initially had monolithic component files like CoverPlate-
Bolted.jsx (1000+ lines) where each engineering module was implemented as a separate,
complete component. This created major problems: code duplication across modules, in-
consistent behavior, difficult maintenance, and slow development of new modules. Each
module (FinPlate, BeamBeamEndPlate, CoverPlateBolted) had nearly identical patterns

but was written separately, leading to repeated code and inconsistent user experiences.

8.2 Task 3: Tasks Done

Transformed the monolithic structure into a modular, three-tier architecture with shared
components, configuration-driven modules, and reusable hooks. Created universal com-
ponents that work for all modules while allowing complete customization through config-
uration files. Successfully restructured three existing modules to use the new architecture,
reducing code from 1000+ lines per module to under 20 lines while maintaining full func-
tionality. Established a pattern where new modules can be added by simply creating

configuration files without writing new UI components.

o8

10
11

12

13

14
15

16

17
18

19

20
21

8.3 Task 3: Architecture Overview

The new modular structure follows a clear three-tier pattern:

Listing 8.1: Frontend Modular Architecture

src/modules/

shared/ # Universal components &

logtc

components/

EngineeringModule. jsx # Main universal
component
InputSection. jsx # Dynamic input
rendering
BaseOutputDock. jsx # Universal output
with modals
CustomizationModal. jsx # Reusable modal
component
DesignReportModal. jsx # PDF report
generation
hooks/
useEngineeringModule. js # Centralized state
management
coverPlateBolted/ # Module-specific
tmplementations
CoverPlateBolted. jsx # 20-line entry

component
configs/
coverPlateBoltedConfig. js # Input &
validation config
coverPlateBoltedOutputConfig.js # Output &
modal config

components/

CoverPlateBoltedOutputDock. jsx # Output wrapper

component
beamBeamEndPlate/ # Another module
following same pattern
BeamBeamEndPlate. jsx

configs/

39

22
23
24
25
26

© 0 N O Ut e W NN =

—
o

11
12
13
14
15
16
17

beamBeamEndPlateConfig. js
beamBeamEndPlateOutputConfig. js
components/

BeamBeamEndPlateOutputDock. jsx

8.3.1 How the Architecture Works

The modular system has three key layers:
e Shared Layer: Contains universal components that work for all modules
e Configuration Layer: Each module defines its behavior through config files

e Module Layer: Minimal entry components that connect configs to shared compo-

nents

8.3.2 Universal Engineering Module
The core component that handles all modules:

Listing 8.2: Universal Module Component

e e L b begin code-------------

export const EngineeringModule = ({

moduleConfig, // Configuration object defining behavior
OutputDockComponent , // Module-specific output component
menultems, // Navigation menu items

title, // Module title

P o=>{

// Get all state and functions from centralized hook

const A

inputs, setInputs, output, loading, handleSubmit, handleReset

} = useEngineeringModule (moduleConfig) ;

return (

<div className="module_base">

{/* Navigation Menu */}

<div className="module_nav'">
{menultems.map((item, index) => (

<MomentDropdownMenu key={index} {...item} />

60

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44
45
46
47
48

)}
</div>
<div className="superMainBody">
{/* Dynamic Input Section */}
<div className="InputDock">
{moduleConfig.inputSections.map((section, index) => (
<InputSection
key={index}
section={section} // Config defines fields
inputs={inputs}
setInputs={setInputs}
/>
D)}

</div>

{/* 3D Model Viewer x*/}
<div className="superMainBody_mid">
<Canvas >
<Model modelPaths={cadModelPaths} selectedView={selectedView}
/>
</Canvas >

</div>

{/* Output Display x*/}
<div className="superMain_right">
<OutputDockComponent output={outputl} />
</div>
</div>

</div>

8.3.3 Explanation of Universal Component

e Line 1-5: Takes configuration and components as props, making it work for any

module

61

© 00 N O Ut ke W NN =

N N NN N N N N P~ P P P R B =2 = = =
e e R L R N ==l e s BN N e> R, S VU =)

Line 7-9: Uses shared hook for consistent state management across all modules

Line 17-24: Renders input sections dynamically based on module configuration

Line 27-31: Universal 3D model rendering that works with all connection types

Line 34-36: Module-specific output component while maintaining consistent layout

8.3.4 Configuration-Driven Module Setup

Each module is defined through simple configuration objects:

Listing 8.3: Module Configuration Example

export const coverPlateBoltedConfig = {

sessionName: "Cover Plate Bolted Connection",

designType: "Cover-Plate-Bolted-Connection",

// Default values when module loads

defaultInputs: {

bolt_diameter: [],

load_shear: "50",

material: "E 250 (Fe 410 W)A",

member_designation: "MB 300",

e

// Define input validation rules

validateInputs: (inputs) => {

if (!inputs.member_designation || inputs.load_shear === "") {
return { isValid: false, message: "Please input all the fields" e
}

return { isValid: true 1I};

e

// Define input sections and fields

inputSections: [

{

title: "Connecting Members",
fields: [

{

key: "member_designation",
label: "Section Designationx*",
type: "select",

62

28
29
30
31
32
33
34
35
36
37
38
39
40

options: "beamList", // Links to data source
required: true

e

{

key: "load_shear",

label: "Shear Force(kN)",

type: "number"

8.3.5 Explanation of Configuration System

e Line 1-3: Basic module identification and API configuration

Line 5-10: Default input values that initialize the form fields

Line 12-17: Custom validation function specific to this module’s requirements

Line 19-34: Input field definitions that automatically generate the Ul

Line 26-29: Field configuration links to shared data sources like beam lists

8.3.6 Simple Module Entry Point
Each module needs only a minimal entry component:

Listing 8.4: Minimal Module Implementation

import React from ’react’;

import { EngineeringModule } from °’../shared/components/
EngineeringModule’;

import { coverPlateBoltedConfig } from ’./configs/
coverPlateBoltedConfig’;

import CoverPlateBoltedOutputDock from ’./components/

CoverPlateBoltedOutputDock’;

63

NelNe I e

10
11
12
13
14
15
16
17
18

© 00 N O Ut e W NN =

I T T e T T S S
S © 00 N O Ut ke W= O

import { menultems } from ’../shared/utils/moduleUtils’;
function CoverPlateBolted () {
return (

<EngineeringModule

moduleConfig={coverPlateBoltedConfig} // Module behavior
OutputDockComponent={CoverPlateBoltedOutputDock} // Output display
menultems={menultems} // Navigation
title="Cover Plate Bolted Connection" // Page title

/>

);

}

export default CoverPlateBolted;

A end code ---------------

8.3.7 Dynamic Output System

The BaseOutputDock component handles all output display needs:

Listing 8.5: Universal Output Component

h———— begin code-------------
export const BaseOutputDock = ({ output, outputConfig }) => {
const [activeModals, setActiveModals] = useState ({});

const handleDialog = (key) => {
const modalConfig = outputConfig.modals[key];
if (modalConfig) {

openModal (modalConfig.type, key); /7 Open appropriate modal
}
35
const renderModalContent = (modalType, activeSection, output) => {

const config = outputConfig.modalTypes[modalTypel;
if (config.layout === "two-column") {
return (
<div className="spacing-main-body">
<div className="spacing-left-body">
{fieldsData.map (({ key, label }) => (
<div className="spacing-left-body-align">

<h4>{label}</h4>
<Input value={output[key]l?.val || ""} disabled />

</div>

64

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

)}
</div>
<div className="spacing-right-body">

</div>
</div>
)
3
};
return (
<div className="subMainBody scroll-data">
{Object.entries (outputConfig.sections) .map(([sectionName, fields]) => (
<div key={sectionNamel}>
<h3>{sectionName}</h3>
{fields.map((field) => (
<Input
value={output [field.key]l?.val || ""}
onClick={() => handleDialog(field.key)} // Modal trigger
/>
D))}
</div>
)}

</div>

8.3.8 Explanation of Output System

e Line 1-2: Accepts output data and configuration to render any module’s results

Line 4-8: Handles modal opening based on field configuration

Line 10-26: Renders different modal layouts (two-column, single-column, etc.)

based on config

Line 29-38: Dynamically generates output sections and fields from configuration

Line 36: Automatically handles modal triggers for detailed views

65

8.3.9 Benefits of the New Architecture

The modular system provides significant improvements:

e Code Reduction: From 1000+ lines per module to under 20 lines

No Duplication: All modules share the same core components

Easy Addition: New modules require only configuration files

Consistent Experience: All modules behave and look the same

Easy Maintenance: Bug fixes automatically apply to all modules

Better Testing: Shared components can be tested once for all modules

8.3.10 Task Outcome and Results

The modular architecture transformation successfully achieved:

e Successfully Restructured: More modules (FinPlate, BeamBeamEndPlate, Cover-

PlateBolted and many more) now use the shared architecture
e Eliminated Duplication: Removed over 2500 lines of repeated code across modules
e Consistent Ul: All modules share the same look, feel, and behavior patterns

e Fasier Maintenance: Changes to shared components automatically benefit all mod-

ules
e Future-Ready: Easy to add new field types, validation rules, and features

This architecture has transformed development from building complete components to
simply configuring behavior, making the codebase more maintainable and enabling simple

addition of new engineering modules.

66

Chapter 9

Conclusions

9.1 Tasks Accomplished

During this internship, I successfully completed several critical tasks that enhanced the
Osdag web application’s functionality and architecture. 1 developed a comprehensive
PDF installation manual with step-by-step setup instructions, system requirements, and
troubleshooting guides to make the software accessible to users with varying technical ex-
pertise. One of my major accomplishments was fixing the completely non-functional CAD
Model Generation API and implementing a robust 3D rendering system using React Three
Fiber. This involved restoring model generation for all connection types, implementing
proper session management, fixing BREP to OBJ conversion pipeline, and enhancing ge-
ometry parsing with proper material differentiation for visual components. I transformed
the static output display system into a dynamic, configuration-driven BaseOutputDock
architecture that supports multiple modal layouts with automatic field mapping. Ad-
ditionally, I enhanced existing modules with improved validation systems, implemented
comprehensive file management capabilities including upload/download functionality and
CSV export, and integrated customizable design report generation. The most significant
achievement was successfully restructuring the entire application from monolithic compo-
nents to a scalable, modular architecture. I transformed three existing modules (FinPlate,
BeamBeamEndPlate, CoverPlateBolted) into a shared component system, eliminating
over 2500 lines of duplicated code and reducing module implementation complexity from

1000+ lines to under 20 lines per module while maintaining full functionality.

67

9.2 Skills Developed

This internship provided extensive learning opportunities that significantly enhanced my
technical expertise across multiple domains. I gained advanced proficiency in React.js,
mastering component architecture, hooks, state management, and modern React pat-
terns. Working with React Three Fiber introduced me to 3D graphics programming,
geometry manipulation, material rendering, and creating interactive 3D applications for
engineering visualization. My JavaScript skills evolved considerably as I worked with
ES6+ features, asynchronous programming concepts, and functional programming pat-
terns. I also developed strong CSS skills for advanced styling techniques, responsive
design, and component-based styling systems. On the backend side, I learned Django
integration, working with REST APIs, session management, and handling complex data
flows between frontend and backend systems. The project exposed me to crucial soft-
ware engineering concepts including modular architecture design, configuration-driven
development patterns, and component reusability principles. I gained valuable experi-
ence in code refactoring, transforming legacy monolithic code into maintainable, shared
components while implementing centralized state management and optimizing data flow
patterns. Beyond technical skills, I developed strong problem-solving abilities through
system design challenges, performance optimization tasks, and complex integration work
with CAD systems and file format handling. The experience of building and restructur-
ing complex engineering applications has provided me with a solid foundation in modern
web development and software architecture, preparing me for future challenges in software

engineering and technical problem-solving.

68

Chapter A

Appendix

A.1 Work Reports

69

Name
Mentor
Project
Intership

Date

11 February 2025
12 February 2025
13 February 2025
14 February 2025
15 February 2025
16 February2025
17 February 2025
18 February 2025
19 February 2025
20 February 2025
21 February 2025
22 February 2025
23 February 2025
24 February 2025
25 February 2025
26 February 2025
27 February 2025
28 February 2025

1 March 2025

2 March 2025

3 March 2025

4 March 2025

5 March 2025

6 March 2025

InternshipWork

Faran Imam
Mr. Parth
Osdag

FOSSEE Semester Long Internship 2025

Day
Tuesday
Wednesday
Thursday
Friday
Saturday
Saturday
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday
Monday
Tuesday
Wednesday

Task

Joining | Installed Osdag | Did Initial Testing
Reading and understanding Reports and CAD file
Understanding and Report creation
Understanding and Report creation
Understanding and Report creation
Understanding and Report creation

Holiday

Exam Leave(google meet attended)

Exam Leave(google meet attended)

Exam Leave(google meet attended)

Exam Leave(google meet attended)

Exam Leave

Exam Leave

Osdag-web setup on local

Osdag-web setup on local

Osdag-web setup on local

Osdag-web setup on local

Osdag-web setup on local

Creating the Installing Manual of Osdag-web
Creating the Installing Manual of Osdag-web

Leaning react three fibre and understanding the Osdag-web code.
Leaning react three fibre and understanding the Osdag-web code.
Leaning react three fibre and understanding the Osdag-web code.
Leaning react three fibre and understanding the Osdag-web code.

Work Hours
4hrs

4hrs

4hrs

Shrs

8hrs

12hrs

4hrs
4hrs
4hrs
4hrs
4hrs
4hrs
4hrs
4hrs
4hrs
4hrs
4hrs

InternshipWork

Name Faran Imam
Mentor Mr. Parth
Project Osdag
Intership FOSSEE Semester Long Internship 2025
7 March 2025 Thursday Leaning react three fibre and understanding the Osdag-web code. 4hrs
8 March 2025 Friday Leaning react three fibre and understanding the Osdag-web code. 4hrs
9 March 2025 Saturday Fixing Backend API for rendering 3d models 4hrs
10 March 2025 Sunday Fixing Backend API for rendering 3d models 4hrs
11 March 2025 Monday Fixing Backend API for rendering 3d models 4hrs
12 March 2025 Tuesday Fixing Frontend to render the 3d models and design it. 4hrs
13 March 2025 Wednesday Fixing Frontend to render the 3d models and design it. 4hrs
14 March 2025 Thursday Fixing Frontend to render the 3d models and design it. 4hrs
15 March 2025 Friday Finplate model working, fixing cleat angle 4hrs
16 March 2025 Saturday Fixing cleat Angle 4hrs
17 March 2025 Sunday Again fixing the Installation Manual of Osdag-web 4hrs
18 March 2025 Monday Again fixing the Installation Manual of Osdag-web 4hrs
19 March 2025 Tuesday Fixing Seated Angle and End Plate Module 4hrs
20 March 2025 Wednesday Fixing Seated Angle and End Plate Module 4hrs
21 March 2025 Thursday Exam Leave
22 March 2025 Friday Exam Leave
23 March 2025 Saturday Exam Leave
24 March 2025 Sunday Exam Leave
25 March 2025 Monday Exam Leave
26 March 2025 Tuesday Fixing Seated Angle 6hrs
27 March 2025 Wednesday Fixing Seated Angle 6hrs
28 March 2025 Thursday Fixing End Plate 6hrs
29 March 2025 Friday Fixing End Plate 6hrs
30 March 2025 Saturday Fixing End Plate 6hrs

31 March 2025 Sunday Eid Leave

Name
Mentor
Project
Intership
1 April 2025
2 April 2025
3 April 2025
4 April 2025
5 April 2025
6 April 2025
7 April 2025
8 April 2025
9 April 2025
10 April 2025
11 April 2025
12 April 2025
13 April 2025
14 April 2025
15 April 2025
16 April 2025
17 April 2025
18 April 2025
19 April 2025
20 April 2025
21 April 2025
22 April 2025
23 April 2025
24 April 2025
25 April 2025

InternshipWork

Faran Imam
Mr. Parth

Osdag

FOSSEE Semester Long Internship 2025

Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday
Monday
Tuesday
Wednesday
Thursday

Eid Leave

Fixing the whole design of Osdag-web

Fixing the whole design of Osdag-web

Fixing the whole design of Osdag-web

Fixing the whole design of Osdag-web

Fixing the designing of 3d models

Fixing the designing of 3d models

Fixing Output Dock of Seated angle and cleat Angle
Fixing Output Dock of Seated angle and cleat Angle
Fixing Output Dock of Seated angle and cleat Angle
Creating CoverPlateBolted Module

Creating CoverPlateBolted Module

Creating CoverPlateBolted Module

Creating CoverPlateBolted Module

Creating CoverPlateBolted Module

Creating CoverPlateBolted Module

Creating CoverPlateBolted Module

Creating CoverPlateBolted Module

Creating CoverPlateBolted Module

Creating CoverPlateBolted Module

Creating CoverPlateBolted Module

Creating CoverPlateBolted Module

Creating CoverPlateBolted Module

Creating CoverPlateBolted Module

Creating CoverPlateBolted Module

Shrs
5hrs
Shrs
Shrs
Shrs
Shrs
6hrs
6hrs
6hrs
4hrs
4hrs
4hrs
4hrs
4hrs
4hrs
4hrs
4hrs
4hrs
4hrs
4hrs
4hrs
4hrs
4hrs
4hrs

Name
Mentor
Project
Intership
26 April 2025
27 April 2025
28 April 2025
29 April 2025
30 April 2025
1 May 2025
2 May 2025
3 May 2025
4 May 2025
5 May 2025
6 May 2025
7 May 2025
8 May 2025
9 May 2025
10 May 2025
11 May 2025
12 May 2025
13 May 2025
14 May 2025
15 May 2025
16 May 2025
17 May 2025
18 May 2025
19 May 2025
20 May 2025

InternshipWork

Faran Imam
Mr. Parth
Osdag

FOSSEE Semester Long Internship 2025

Friday
Saturday
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday
Monday

Creating BeamtoBeam End Plate Module
Creating BeamtoBeam End Plate Module
Creating BeamtoBeam End Plate Module
Creating BeamtoBeam End Plate Module
Creating BeamtoBeam End Plate Module
Creating BeamtoBeam End Plate Module
Creating BeamtoBeam End Plate Module
Creating BeamtoBeam End Plate Module
Creating BeamtoBeam End Plate Module
Exam Leave

Exam Leave

Exam Leave

Exam Leave

Exam Leave

Exam Leave

Exam Leave

Exam Leave

Exam Leave

Exam Leave

Creating BeamtoBeam End Plate Module
Creating BeamtoBeam End Plate Module
Creating BeamtoBeam End Plate Module
Creating BeamtoBeam End Plate Module
Creating BeamtoBeam End Plate Module
Restructing the Code

4hrs
4hrs
4hrs
4hrs
4hrs
4hrs
4hrs
4hrs
4hrs

4hrs
4hrs
4hrs
4hrs
4hrs
6hrs

InternshipWork

Name Faran Imam

Mentor Mr. Parth

Project Osdag

Intership FOSSEE Semester Long Internship 2025
21 May 2025 Tuesday Restructing the Code 6hrs
22 May 2025 Wednesday Restructing the Code 6hrs
23 May 2025 Thursday Restructing the Code 6hrs
24 May 2025 Friday Restructing the Code 6hrs
25 May 2025 Saturday Restructing the Code 6hrs
26 May 2025 Sunday Restructing the Code 6hrs
27 May 2025 Monday Restructing the Code 6hrs
28 May 2025 Tuesday Restructing the Code 6hrs
29 May 2025 Wednesday Restructing the Code 6hrs
30 May 2025 Thursday Restructing the Code 6hrs

31 May 2025 Friday Restructing the Code 6hrs

	Acknowledgments
	Introduction
	National Mission in Education through ICT
	ICT Initiatives of MoE

	FOSSEE Project
	Projects and Activities
	Fellowships

	Osdag Software
	Osdag GUI
	Features

	Screening Task
	Problem Statement
	Setup and Deployment
	Module Development
	Frontend and Backend Stack

	Tasks Done
	Alternative Development Approach
	Frontend Development
	Backend API Implementation
	Challenges and Outcome

	Internship Task 1 Title
	Task 1: Installation Manual Content
	Prerequisites and Initial Setup
	Environment Configuration
	Database Setup and Configuration
	Project Dependencies and Migration
	Troubleshooting Solutions
	Alternative Installation Method
	Current Installation Evolution

	CAD Model API and 3D Rendering Fixes
	Task 2: Problem Statement
	Task 2: Tasks Done
	Task 2: Python Code
	Description of the Script
	Python Code
	Explanation of the Python Code
	React UI Code
	Explanation of the React UI Code
	JavaScript Code
	Explanation of the Code
	Visual Results
	Task Outcome and Results

	Output Dock Implementation
	Task 3: Problem Statement
	Task 3: Tasks Done
	Task 3: Python Code
	Description of the Script
	Python Code
	Explanation of the Python Code
	Frontend Integration Code
	Explanation of the Frontend Code
	Output Mapping Implementation
	Explanation of the Output Mapping
	Task Outcome and Results

	Module Enhancement and File Management System
	Task 3: Problem Statement
	Task 3: Tasks Done
	Task 3: Python and JavaScript Code
	Description of the Enhancement
	Python Code: Design Report API Enhancement
	Explanation of the Python Code
	JavaScript Code: File Management System
	Explanation of the JavaScript Code
	JavaScript Code: Screenshot Capture
	Explanation of the Screenshot Code
	Visual Results
	Task Outcome and Results

	Module Creation
	Problem Statement
	Step 1: Basic Setup
	Backend Setup - Module Registration
	Creating Module API File
	Session Management Setup
	Creating Output View File
	Creating Input Data File
	URL Configuration
	Frontend Component Setup
	Module Context Integration
	App Route Configuration

	Step 2: InputDock Creation
	Finding Input Values from Desktop App
	Setting Up Input Values in Code
	Getting Dropdown Lists from Backend
	Setting Up Backend Python File
	Making Sure Everything Works Together

	Step 3: OutputDock Creation and Logs
	Fixing Backend Errors
	Fixing Module-Specific Backend File
	Setting Up Logs System
	Converting Logger Statements to Logs Array
	OutputDock Creation
	Creating Frontend OutputDock Component

	Step 4: 3D Model Rendering
	Backend CAD Model API Configuration
	Determining 3D Model Sections
	Frontend 3D Rendering Setup
	3D Canvas and Model Display

	Step 5: Fixing DesignReport Function and File Functionalities
	Problem with DesignReport Function
	Fixing the save_design Function
	Adding Return True Statement
	Understanding File Functionalities
	Backend-Frontend Communication

	Modular Component Architecture and State Management
	Task 3: Problem Statement
	Task 3: Tasks Done
	Task 3: Architecture Overview
	How the Architecture Works
	Universal Engineering Module
	Explanation of Universal Component
	Configuration-Driven Module Setup
	Explanation of Configuration System
	Simple Module Entry Point
	Dynamic Output System
	Explanation of Output System
	Benefits of the New Architecture
	Task Outcome and Results

	Conclusions
	Tasks Accomplished
	Skills Developed

	Appendix
	Work Reports

