
FOSSEE Semester Long Internship
Report

On

Development of an Installer, Tex Manager and

LaTex Testing Suite for Osdag

Submitted by

Steve Sojan

4th Year B.Tech Student, School of Computing Science Engineering and Artificial

Intelligence

Vellore Institute of Technology

Bhopal

Under the Guidance of

Prof. Siddhartha Ghosh

Department of Civil Engineering

Indian Institute of Technology Bombay

Mentors:

Ajmal Babu M S

Parth Karia

Ajinkya Dahale

June 23, 2025

Acknowledgments

• I would like to express my sincere gratitude to the Osdag and FOSSEE team at IIT

Bombay for providing me with this valuable opportunity. This internship has been

an enriching experience, allowing me to expand my knowledge and gain meaningful

insights.

• First and foremost, I extend my sincere thanks to the project staff of the Osdag

team, including Ajmal Babu M. S., Ajinkya Dahale, and Parth Karia, for their un-

wavering support, insights, and expertise throughout the project. Their dedication

and guidance have greatly enriched my learning experience.

• I am deeply grateful to Prof. Siddhartha Ghosh, Principal Investigator of the

Osdag project and a faculty member in the Department of Civil Engineering at IIT

Bombay, for his vision, mentorship, and encouragement. His leadership has been

instrumental in shaping the success of this project.

• I would also like to acknowledge the invaluable support and guidance of Prof. Kan-

nan M. Moudgalya, Principal Investigator of the FOSSEE Project, Department of

Chemical Engineering, IIT Bombay. His passion for fostering open-source initiatives

has been a source of inspiration for me.

• My sincere thanks to the FOSSEE managers, Usha Viswanathan and Vineeta Par-

mar, along with their entire team, for providing exceptional support and creating

an environment conducive to learning and growth.

• This project would not have been possible without the support of the National

Mission on Education through Information and Communication Technology (ICT),

Ministry of Education (MoE), Government of India. Their commitment to advanc-

ing open source software for education has made this opportunity possible and has

1

driven innovation for millions.

• I also extend my gratitude to my colleagues who worked alongside me during this

internship. Their collaboration, ideas, and inputs made the journey all the more

enjoyable and productive.

• I would like to thank my college - Vellore Institute of Technology, my Department

Program Chair, Dr. Rajit Nair for promptly directing me to the available oppor-

tunity and my esteemed professors for supporting me throughout this journey.

2

Contents

1 Introduction 5

1.1 National Mission in Education through ICT 5

1.1.1 ICT Initiatives of MoE . 6

1.2 FOSSEE Project . 7

1.2.1 Projects and Activities . 7

1.2.2 Fellowships . 7

1.3 Osdag Software . 8

1.3.1 Osdag GUI . 9

1.3.2 Features . 9

2 Screening Task 10

2.1 Problem Statement . 10

2.2 Tasks Done . 10

3 Internship Task 1

Osdag LaTex Environment 19

3.1 Task 1: Problem Statement . 19

3.2 Task 1: Tasks Done . 19

3.3 Task 1: Significance of each branch of the texmf tree 20

3.4 Task 1: Python Code . 21

3.4.1 Description of the Script . 21

3.4.2 Python Code . 21

3.4.3 Explanation of the Code in Initializing Environment Variables Snip-

pet . 22

3.4.4 Explanation of the Code Snippet added to SectionModeller Latex.py 22

3.4.5 Explanation of the Code Snippet added to reportGenerator latex.py 23

4 Internship Task 2

Tex Manager -Maintainer’s Workflow 25

4.1 Task 2 Problem Statement . 25

4.2 Task 2: Workflow . 25

3

4.3 Task 2: Setting Up Environment for the Maintainer 27

4.4 Task 2: Implementing Git Submodules 29

4.5 Task 2: To view all available commits in the Submodule 30

4.6 Task 2: To change the commit hash referenced 30

5 Internship Task 3

LaTex Testing Suite 33

5.1 Task 3 Problem Statement . 33

5.2 Task 3: Arrange, Act and Assert Approach 33

5.3 Task 3: Checks Done . 34

5.4 Task 3: Helper Functions . 34

5.5 Task 3: Tests Conducted . 35

5.6 Task 3: Report Generation System . 44

6 Conclusions 46

6.1 Tasks Accomplished . 46

6.2 Skills Developed . 47

A Appendix 49

A.1 Work Reports . 49

Bibliography 52

4

Chapter 1

Introduction

1.1 National Mission in Education through ICT

The National Mission on Education through ICT (NMEICT) is a scheme under the

Department of Higher Education, Ministry of Education, Government of India. It aims

to leverage the potential of ICT to enhance teaching and learning in Higher Education

Institutions in an anytime-anywhere mode.

The mission aligns with the three cardinal principles of the Education Policy—access,

equity, and quality—by:

• Providing connectivity and affordable access devices for learners and institutions.

• Generating high-quality e-content free of cost.

NMEICT seeks to bridge the digital divide by empowering learners and teachers in

urban and rural areas, fostering inclusivity in the knowledge economy. Key focus areas

include:

• Development of e-learning pedagogies and virtual laboratories.

• Online testing, certification, and mentorship through accessible platforms like EduSAT

and DTH.

• Training and empowering teachers to adopt ICT-based teaching methods.

For further details, visit the official website: www.nmeict.ac.in.

5

https://www.nmeict.ac.in
https://www.nmeict.ac.in

1.1.1 ICT Initiatives of MoE

The Ministry of Education (MoE) has launched several ICT initiatives aimed at students,

researchers, and institutions. The table below summarizes the key details:

No. Resource For Students/Researchers For Institutions

Audio-Video e-content

1 SWAYAM Earn credit via online courses Develop and host courses; accept
credits

2 SWAYAMPRABHA Access 24x7 TV programs Enable SWAYAMPRABHA
viewing facilities

Digital Content Access

3 National Digital Li-
brary

Access e-content in multiple dis-
ciplines

List e-content; form NDL Clubs

4 e-PG Pathshala Access free books and e-content Host e-books

5 Shodhganga Access Indian research theses List institutional theses

6 e-ShodhSindhu Access full-text e-resources Access e-resources for institu-
tions

Hands-on Learning

7 e-Yantra Hands-on embedded systems
training

Create e-Yantra labs with IIT
Bombay

8 FOSSEE Volunteer for open-source soft-
ware

Run labs with open-source soft-
ware

9 Spoken Tutorial Learn IT skills via tutorials Provide self-learning IT content

10 Virtual Labs Perform online experiments Develop curriculum-based exper-
iments

E-Governance

11 SAMARTH ERP Manage student lifecycle digi-
tally

Enable institutional e-
governance

Tracking and Research Tools

12 VIDWAN Register and access experts Monitor faculty research out-
comes

13 Shodh Shuddhi Ensure plagiarism-free work Improve research quality and
reputation

14 Academic Bank of
Credits

Store and transfer credits Facilitate credit redemption

Table 1.1: Summary of ICT Initiatives by the Ministry of Education

6

1.2 FOSSEE Project

The FOSSEE (Free/Libre and Open Source Software for Education) project promotes

the use of FLOSS tools in academia and research. It is part of the National Mission on

Education through Information and Communication Technology (NMEICT), Ministry of

Education (MoE), Government of India.

1.2.1 Projects and Activities

The FOSSEE Project supports the use of various FLOSS tools to enhance education and

research. Key activities include:

• Textbook Companion: Porting solved examples from textbooks using FLOSS.

• Lab Migration: Facilitating the migration of proprietary labs to FLOSS alterna-

tives.

• Niche Software Activities: Specialized activities to promote niche software tools.

• Forums: Providing a collaborative space for users.

• Workshops and Conferences: Organizing events to train and inform users.

1.2.2 Fellowships

FOSSEE offers various internship and fellowship opportunities for students:

• Winter Internship

• Summer Fellowship

• Semester-Long Internship

Students from any degree and academic stage can apply for these internships. Se-

lection is based on the completion of screening tasks involving programming, scientific

computing, or data collection that benefit the FLOSS community. These tasks are de-

signed to be completed within a week.

For more details, visit the official FOSSEE website.

7

https://fossee.in
https://fossee.in

Figure 1.1: FOSSEE Projects and Activities

1.3 Osdag Software

Osdag (Open steel design and graphics) is a cross-platform, free/libre and open-source

software designed for the detailing and design of steel structures based on the Indian

Standard IS 800:2007. It allows users to design steel connections, members, and systems

through an interactive graphical user interface (GUI) and provides 3D visualizations of

designed components. The software enables easy export of CAD models to drafting

tools for construction/fabrication drawings, with optimized designs following industry

best practices [1, 2, 3]. Built on Python and several Python-based FLOSS tools (e.g.,

PyQt and PythonOCC), Osdag is licensed under the GNU Lesser General Public License

(LGPL) Version 3.

8

1.3.1 Osdag GUI

The Osdag GUI is designed to be user-friendly and interactive. It consists of

• Input Dock: Collects and validates user inputs.

• Output Dock: Displays design results after validation.

• CAD Window: Displays the 3D CAD model, where users can pan, zoom, and

rotate the design.

• Message Log: Shows errors, warnings, and suggestions based on design checks.

Figure 1.2: Osdag GUI

1.3.2 Features

• CAD Model: The 3D CAD model is color-coded and can be saved in multiple

formats such as IGS, STL, and STEP.

• Design Preferences: Customizes the design process, with advanced users able to

set preferences for bolts, welds, and detailing.

• Design Report: Creates a detailed report in PDF format, summarizing all checks,

calculations, and design details, including any discrepancies.

For more details, visit the official Osdag website.

9

https://osdag.fossee.in

Chapter 2

Screening Task

2.1 Problem Statement

Creating a Windows Installer for the Osdag Software

2.2 Tasks Done

Github Repo for Screening Task - https://github.com/stevesojan/Osdag-exe

Inno Setup extracts the base installation files in a directory which the user selects. These

installation files run automatically, to programmatically install Osdag, complete with a

Startup menu icon and Desktop shortcut.

My approach was to break the problem down into smaller components, as to what

and how I would have to install in a certain order. This I figured out with the steps as

mentioned on Osdag’s official website. It boiled down to 3 steps: TinyTex Miniconda

Osdag(using conda)

TinyTex

Essentially it came down to using alternatives that were lightweight, which was a

core part of the problem statement of the project. With due research, I found TinyTex,

a lightweight alternative to MikTex. The script always downloads the latest available

version of TinyTex-1 which is updated as a daily build, from GitHub.

.bat file from the TinyTex Official Release Page: https:/yihui.org/tinytex/#installation

To install TinyTex as mentioned on its official release page, it offers a .bat file which

10

https://github.com/stevesojan/Osdag-exe
https://yihui.org/tinytex/#installation

when run extracts the files from the TinyTex release on GitHub into the user’s App-

Data/Roaming folder.

This was a challenging bit to work on, because the original .bat file employs 3 methods

to install TinyTex and Method 1 (System.Net.Http) in the order of execution was the

least stable method. System.Net.Http is a low level, more modern API, powerful but far

less stable compared to System.Net.WebClient which is a high level API, being used since

2002. Also, System.Net.Http is used for modern .NET frameworks, i.e it could work well

in newer Win systems but might fail to work in older Win systems. Ideally the far more

stable choice was System.net.WebClient.

Listing 2.1: Python Code for TinyTex Installation

1 %--------------------begin code -------------

2 import os

3 import subprocess

4 def install_tinytex ():

5 """ Installs TinyTeX and configures it , with fallback download

methods."""

6 try:

7 print("Installing TinyTeX ...")

8

9 # Step 1: Define Environment Variables

10 tinytex_url = "https :// github.com/rstudio/tinytex -releases/

releases/download/

11 daily/TinyTeX -1.zip"

12 temp_dir = os.getenv("TEMP")

13 tinytex_dir = os.getenv("APPDATA", "Roaming")

14 downloaded_file = os.path.join(temp_dir , "install.zip")

15

16 # Step 2: Clean up Temporary Files

17 print("Cleaning up any leftover TinyTeX directories ...")

18 tinytex_pattern = os.path.join(tinytex_dir , "TinyTeX*")

19 subprocess.run(f'del /f /s /q "{ tinytex_pattern }" & rmdir /s /q

"{ tinytex_dir }\\ TinyTeX"', shell=True ,

20 check=False)

21

22 # Step 3: Download TinyTeX with Multiple Methods

23 success = False

11

24 print("Downloading TinyTeX ...")

25

26 # Method 1: System.Net.WebClient

27 print("Method 1: Using System.Net.WebClient ...")

28 print(

29 "Do not panic if you see text in red , or if the shell looks

stuck , the installer is working , please wait ;)")

30 download_command = f'powershell -Command "[Net.

ServicePointManager]:: SecurityProtocol = [Net.

SecurityProtocolType]:: Tls12; (New -Object System.Net.

WebClient).DownloadFile (\'{ tinytex_url}\', \'{

downloaded_file }\')"'

31 if subprocess.run(download_command , shell=True).returncode ==

0:

32 success = True

33

34 # Method 2: Invoke -WebRequest

35 if not success:

36 print("Method 1 failed. Trying Method 2: Invoke -WebRequest

...")

37 download_command = f'powershell -Command "[Net.

ServicePointManager]:: SecurityProtocol = [Net.

SecurityProtocolType]:: Tls12; Invoke -WebRequest \'{

tinytex_url }\' -OutFile \'{ downloaded_file }\'"'

38 if subprocess.run(download_command , shell=True).returncode

== 0:

39 success = True

40

41 # Method 3: System.Net.Http.HttpClient

42 if not success:

43 print("Method 2 failed. Trying Method 3: System.Net.Http.

HttpClient ...")

44 download_command = f'powershell -Command "& {{ try {{ Add -

Type -A \'System.Net.Http\'; [Net.ServicePointManager]::

SecurityProtocol = [Net.SecurityProtocolType]:: Tls12;

$response = (New -Object System.Net.Http.HttpClient).

GetAsync (\'{ tinytex_url

45

46

12

47

48

49 }\'); $response.Wait(); $outputFileStream = [System.IO.

FileStream]::new(\'{ downloaded_file }\', [System.IO.

FileMode]::Create , [System.IO.FileAccess]:: Write);

$response.Result.Content.CopyToAsync($outputFileStream).

Wait(); $outputFileStream.Close () }} catch {{ throw $_

}} }}"'

50 if subprocess.run(download_command , shell=True).returncode

== 0:

51 success = True

52

53 # Exit if all download methods fail

54 if not success:

55 print("All download methods failed. Unable to download

TinyTeX.")

56 return

57

58 # Step 4: Unzip the File

59 print("Unzipping TinyTeX ...")

60 unzip_command = f'powershell -Command "& {{ Add -Type -A \'

System.IO.Compression.FileSystem \'; [System.IO.Compression.

ZipFile]:: ExtractToDirectory (\'{ downloaded_file }\', \'{

temp_dir }\'); }}"'

61 subprocess.run(unzip_command , shell=True , check=True)

62 os.remove(downloaded_file)

63

64 # Step 5: Move TinyTeX to Target Directory

65 print(f"Moving TinyTeX to {tinytex_dir }...")

66 tinytex_path = os.path.join(tinytex_dir , "TinyTeX")

67 subprocess.run(f'move /y "{os.path.join(temp_dir , "TinyTeX ")}"

"{ tinytex_path }"', shell=True , check=True)

68

69 # Step 6: Configure tlmgr

70 print("Configuring TinyTeX ...")

71 tlmgr_path = os.path.join(tinytex_path , "bin", "windows", "

tlmgr")

72 subprocess.run(f'"{ tlmgr_path }" path add', shell=True , check=

True)

13

73 subprocess.run(f'"{ tlmgr_path }" option repository ctan', shell=

True , check=True)

74 subprocess.run(f'"{ tlmgr_path }" postaction install script xetex

', shell=True , check=True)

75

76 print("TinyTeX installed and configured successfully.")

77 print("Now Installing additional required packages ...")

78 subprocess.run(

79 [f'{tlmgr_path}', 'install ', 'lastpage ', 'parskip ', '

needspace ', 'fancyhdr ', 'colortbl ', 'multirow '],

80 check=True , shell=True)

81 print("Required Packages Installed Successfully")

82

83 except subprocess.CalledProcessError as e:

84 print(f"An error occurred during TinyTeX installation: {e}")

85

86

87 install_tinytex ()

In testing the .bat file directly, Method 1(System.Net.Http) used to most always fail

and exit the shell abruptly, and only when the user invoked the install-bin-windows.bat file

again would it try Method 2. So I redesigned the logic and invoked System.Net.WebClient

as Method 1, Method -2 to Invoke Web-Requests and Method-3 to System.Net.Https as

fallback mechanisms in a new batch file I created “tinytex bin steve.bat” present in the

repo.

The respective method (generally System.Net.WebClient API) downloads the daily

build(latest version) of TinyTex-1(currently file size of 110 MB) from the url stored in

the variable ”tinytex url”, which is subsequently used by the respective API to down-

load, unzip and store in a temp directory. In the temp directory after unzipping, the

downloaded zip file is deleted and all contents of the temp directory are moved to App-

Data/Roaming/TinyTex.

Now comes configuring TinyTex, i.e adding tlmgr to the system path and directing

tlmgr to use the Comprehensive TeX Archive Network (CTAN) mirror as the source for

downloading or updating TeX packages.

As for the missing packages, necessary for Osdag, I test generated every design report

which would also generate a .tex file, essential in figuring out which package was missing

14

by cross-checking with the \usepackage flag in the .tex file.

Miniconda

For Miniconda installation, I preferred the script to always download the latest Mini-

conda installer, available for Win 64 bit systems, from their official release page(mentioned

below). By doing this, for future installations, the installer would not be pre - bundled

with a version which could become obsolete in the future. But for users who were ex-

isting Miniconda users, would also possibly have everything configured, including other

environments within their existing miniconda installation, the script checks if there is

an existing installation. If there isn’t, only then will it proceed to install a fresh, latest

version of Miniconda. This was achieved by using python’s requests module and the repo

which releases Miniconda’s latest version : https://repo.anaconda.com/miniconda/

Since the file size of the Miniconda setup was 81.7 MB, I set stream = True, which

signals the requests module to download the file in a stream and not all at once, and thus

allows for lesser RAM to be used. For computers with lesser memory, this would be a

boon. The file is downloaded in a stream of chunks, with each chunk, 1024 bytes/1KB

in size.

Listing 2.2: Python Code for Miniconda Installation

1 %--------------------begin code -------------

2 import os

3 import subprocess

4 import requests

5 import time

6

7 def install_miniconda ():

8 upf = os.environ.get('USERPROFILE ')

9 if os.path.exists(r"C:\ miniconda3") == False and os.path.exists(f"{

upf }\\ miniconda3") == False:

10 # os.path.exists(r"C:\ miniconda3 ") == False - checks if

miniconda3 is not installed system wide for all users in C

drive

11 installer_url = "https :// repo.anaconda.com/miniconda/Miniconda3

-latest -Windows -x86_64.exe"

12 installer_name = "Miniconda3 -latest -Windows -x86_64.exe"

13

14

15

15

16 print("Downloading the latest Miniconda installer ...")

17 response = requests.get(installer_url , stream=True)

18 with open(installer_name , "wb") as file:

19 for chunk in response.iter_content(chunk_size =1024):

20 if chunk: # Filter out keep -alive chunks

21 file.write(chunk)

22 print("Download completed.")

23

24 print("Installing Miniconda ...")

25 subprocess.run(["start", "/wait", "Miniconda3 -latest -Windows -

x86_64.exe", "/InstallationType=JustMe", "/RegisterPython =0"

, "/AddToPath =1", "/S"], shell=True)

26 print("Miniconda Installed Successfully")

27 else:

28 print("Miniconda is already installed.")

Osdag

Osdag also installs as a conda package, but I have also designed a start menu button

and Desktop shortcut, which are available post installation. Installing Osdag through the

conda channel, ensures the latest version is being installed and a feature can be integrated

where prior users get the choice to update to the latest version.

Listing 2.3: Python Code for Osdag Installation

1 %--------------------begin code -------------

2 def create_conda_env ():

3 """ Creates the Conda environment and installs Osdag in the same

shell."""

4 upf = os.environ.get("USERPROFILE")

5 conda_bat = os.path.join(upf , "miniconda3", "condabin", "conda.bat"

)

6

7 # Check if conda.bat exists

8 if not os.path.exists(conda_bat):

9 raise FileNotFoundError(f"Conda was not found at {conda_bat }.

Ensure Miniconda is installed.")

10

11 print("Creating Conda environment and installing Osdag ...")

12

16

13 success = False

14 attempt = 1

15

16 while not success and attempt <=10:

17 try:

18 print(f"Attempt {attempt }: Running Conda command to install

Osdag ...")

19

20 # Run the Conda command in the same shell

21 subprocess.run(

22 f'"{ conda_bat }" activate && conda create -n osdag -env

osdag ::osdag -c conda -forge -y',

23 check=True ,

24 shell=True ,

25)

26 print("Osdag was installed successfully.")

27 success = True # Exit the loop if the command succeeds

28

29 except subprocess.CalledProcessError as e:

30 print(f"Attempt {attempt} failed. Retrying ... Error: {e}")

31 attempt += 1

32 time.sleep (10) # Wait 10 seconds before retrying

33

34 except FileNotFoundError as e:

35 print(f"Error: {e}")

36 break # Exit the loop if Conda is not installed and cannot

proceed

37

38 if attempt == 10 and not success:

39 print("Failed to install Osdag after multiple attempts. Please

check your network or Conda setup.")

40

41

42 def main():

43 try:

44 install_miniconda ()

45 #install_tinytex ()

46 create_conda_env ()

47 print("Installation completed successfully. Ready to use.")

17

48 except Exception as e:

49 print(f"Installation failed: {e}")

50

51 if __name__ == "__main__":

52 #makes sure code runs directly from this script and not some external

func

53 main()

54 %-------------------- end code ---------------

18

Chapter 3

Internship Task 1

Osdag LaTex Environment

3.1 Task 1: Problem Statement

Creating Osdag’s own Tex Environment such that Osdag is self-reliant for compiling Tex

reports and generating .pdf’s and now is not reliant on a Tex distribution installation

like MikTex or TinyTex.

3.2 Task 1: Tasks Done

Osdag achieves its own LaTex Environment through a texmf-tree structure. texmf stands
for Tex Metafont. A texmf-tree is a specific directory structure that LaTex understands
when locating packages.
This is the default state of a texmf tree in a Tex installation.

bin

windows.

pdflatex.exe.

other essential binaries

texmf-config

.configuration files - specific to user

ls-R

texmf-dist

bibtex

dvipdfmx

dvips

fonts

makeindex

19

metafont

mft

scripts

tex

texconfig

web2c

texmf-local

texmf-var

3.3 Task 1: Significance of each branch of the texmf

tree

1. bin/

Contains the binaries (executables) for TeX tools like pdflatex, xelatex, lualatex,

kpsewhich etc. and also the .dll files for working with Tex on a Win machine.

When running TeX commands from the terminal, the executables in this folder are

used.

2. texmf-config/

Stores configuration files for the TeX system.

Used for user-specific settings, such as package configurations and font mappings.

texmf-config/ is where TeX system settings can be customized without modifying texmf-

dist/. (if we ever want to include our custom font mappings)

3. texmf-dist/

Contains the default installed TeX packages (such as article.cls, beamer.cls, .sty files).

It is the main package repository of the TinyTeX installation.

4. texmf-local/

A directory meant for locally installed packages and custom TeX files.

This is where maintainer can install additional .sty files that persist even after updat-

ing TinyTeX.

Say we want a specific .sty package that we want to freeze at a specific version, that

a future update does not tamper with, this is where it’ll be.

5. texmf-var/

Stores generated files like font caches and auxiliary data produced when compiling

.tex documents.

20

Consists of format files, (.fmt) that help speed up document compilation by avoiding

the need to regenerate macro definitions every time.

3.4 Task 1: Python Code

The Python Code designed for this task was added to the files - reportGenerator latex.py

and SectionModeller Latex.py.

3.4.1 Description of the Script

The script has two important parts:

• **Initialize Input Variables**: The additional code starts by initializing environ-

ment variables that pylatex uses to identify where the Tex packages are located.

• **Compiler Declaration**: The location to pdflatex.exe engine, used to compile .pdf

reports from .tex source files is declared in the compiler flag of the generate pdf()

command from pylatex.

3.4.2 Python Code

The Python script is shown below. Each section is commented for clarity.

Listing 3.1: Initializing Environment Variables for texmf

1 %--------------------begin code -------------

2

3 os.environ['TEXMFHOME '] = os.path.abspath("data/ResourceFiles/osdag -

latex -env/texmf -dist")

4 sty_pkgs = str(files("osdag.data.ResourceFiles.osdag -latex -env.texmf -

dist")).replace("\\","/")

5 pkg_resources = [f'{sty_pkgs }/ amsmath ',f'{sty_pkgs }/ graphics ',f'{

sty_pkgs }/ needspace ']

6 texinp = os.environ.get('TEXINPUTS ',' ')

7

8 pkg_path = ";".join(pkg_resources)

9 os.environ['TEXINPUTS '] = f'{pkg_path };{ texinp}'

10 %-------------------- end code ---------------

21

3.4.3 Explanation of the Code in Initializing Environment Vari-

ables Snippet

• **Line 3**: Sets the TEXMFHOME environment variable to point to the absolute

path of a custom LaTeX environment.

• **Line 4**: Resolves the filesystem path of the directory containing LaTeX style

files using importlib.resources.files().

• **Line 5**: Prepares a list of paths to specific LaTeX package directories (amsmath,

graphics, needspace) inside the environment.

• **Line 6**: Retrieves the current value of the TEXINPUTS environment variable,

if set, or defaults to a single space ’ ’.

• **Line 8**: Joins the paths in pkg resources into a single string using ; as a sepa-

rator.

• **Line 9**: Sets the updated TEXINPUTS environment variable to include the

custom package directories plus any previously set paths.

Listing 3.2: Declaring Compiler for Pylatex in SectionModeller Latex.py

1 %--------------------begin code -------------

2

3 latex_executable = os.path.abspath("data/ResourceFiles/osdag -latex -env/

bin/windows/pdflatex.exe")

4 doc.generate_pdf(filename , compiler=latex_executable , clean_tex=False)

5

6 %-------------------- end code ---------------

3.4.4 Explanation of the Code Snippet added to SectionMod-

eller Latex.py

• os.path.abspath(...):

Converts the relative path to the pdflatex.exe executable into an absolute path,

assuming the path is correct relative to the current working directory.

22

• doc.generate pdf(...):

This uses the pdflatex.exe located at that absolute path to compile the LaTeX

document.

The filename flag is used to set the name of the .tex file.

compiler=latex executable: Specifies which LaTeX compiler to use.

clean tex=False: Keeps the .tex file after compilation instead of deleting it.

Listing 3.3: Declaring Compiler for Pylatex in reportGenerator latex.py

1 %--------------------begin code -------------

2

3 script_dir = os.path.dirname(os.path.abspath(__file__))

4

5 # Go one level up to reach the parent directory

6 parent_dir = os.path.dirname(script_dir)

7

8 # Construct the path to pdflatex.exe

9 latex_executable = os.path.join(parent_dir , "data", "ResourceFiles", "

osdag -latex -env", "bin", "windows", "pdflatex.exe")

10

11 # Ensure the path is absolute

12 latex_executable = os.path.abspath(latex_executable)

13 doc.generate_pdf(filename , compiler=latex_executable , clean_tex = False

)

14

15 %-------------------- end code ---------------

3.4.5 Explanation of the Code Snippet added to reportGener-

ator latex.py

• script dir

Gets the absolute path to the current script file (file is the path of the currently

running Python script).

• parent dir

Moves one level up in the directory hierarchy (e.g., if the script is in .../scripts, this

goes to .../).

23

• os.path.join(...)

Builds the full path to pdflatex.exe from the parent directory, ensuring that even if

the script is run from a different directory, the compiler path is correctly located.

• os.path.abspath(...)

Ensures the path is absolute (technically redundant here, but good practice).

• doc.generate pdf(...)

Same as in snippet 1: compiles the .tex file using the specified LaTeX compiler and

retains the .tex file.

24

Chapter 4

Internship Task 2

Tex Manager -Maintainer’s Workflow

4.1 Task 2 Problem Statement

The task was to create a Maintainer’s Workflow for managing updates to Tex packages

using Tex Manager, Git and Git Submodules.

4.2 Task 2: Workflow

Say an update rolls out for a .sty package that we have in the 177 MB of files (osdag-

latex-env), referenced as a submodule on a separate git repo.

To check for updates the maintainer, on their local machine with a Tex distro in-

stalled, types in a command on cmd:

Depends the Tex distro the maintainer is using, but for TinyTex:

tlmgr update –list

This will show which .sty packages have updates available.

tlmgr update –all will update all packages to the latest version.

TinyTex by itself is in the form of a texmf tree. So the packages can be updated by

using the package manager(tlmgr) for the maintainer, and maintainer can then decide

which package updates or specific versions need to be pushed to the external repo (which

25

Figure 4.1: tlmgr update –list

is referenced as a submodule by the main Osdag repo).

tlpkg is the folder which contains the Tex Live package manager(tlmgr) and other

dependencies used by TinyTex to keep its packages updated. Tlpkg is retained for the

maintainer and removed for the Osdag user

The maintainer decides which packages get updates by using a .gitignore file to men-

tion the files that are not tracked by git or simply put - don’t get updates.

By using .gitignore, in the maintainer’s TinyTex installed directory, tlpkg folder is

ignored by git while tracking files.

Effectively we’re adding the external repo as a remote to the local directory of TinyTex

of the maintainer, using .gitignore to untrack the files we don’t need to be pushing to

remote repo, updating the packages using tlmgr for the maintainer and then pushing the

updates to remote repo using git.

This removes the step in the initial approach where the maintainer had to first note

which packages need to be updated, and then go off to CTAN to manually download

the updated packages then update the external repo manually by adding all the updated

packages and committing them.

Instead let tlmgr and git do the job.

26

4.3 Task 2: Setting Up Environment for the Main-

tainer

(these steps are required to be executed only once i.e only for the initial setup for the

maintainer)

1.Now since the maintainer has a Tex distro installed, within the directory where

TinyTex is installed for the maintainer, initialize a git repo.

In general cases, TinyTex will be installed for the maintainer on E.g

C:\Users\UserName\AppData\Roaming\TinyTex

Within TinyTex folder, initialize git.

>>git init

>>touch .gitignore

Figure 4.2 shows how the default directory directory structure of a TinyTex installa-

tion looks like: i.e the default structure of a texmf-tree

Figure 4.2: Default structure of the texmf tree

27

2. touch .gitignore creates a .gitignore file. Navigate to the TinyTex folder and open

.gitignore in any editor.

Add all files and folders except:

• bin

• texmf-config

• texmf-dist

• texmf-local

• texmf-var

Figure 4.3: inside .gitignore for the maintainer

into .gitignore. Only the files and folders other than the above mentioned have to be

added to .gitignore.

Open .gitignore and add everything except the folders mentioned above on .gitignore.

Now here I’ve used my Github Repo named ’tex-env-submodule’ as an external repo.

The external repo must be added as a remote to the user’s local repo.

Figure 4.4: Add the external repo (here tex-env-submodule) to this local repo as a remote.

Link to external repo: https://github.com/stevesojan/tex-env-submodule

28

https://github.com/stevesojan/tex-env-submodule

Now our external repo is populated with the texmf tree as per its original structure.

The aim is that this texmf tree is supplied to Osdag’s Tex environment, through an

external repo which is referenced as a submodule to the main repo (osdag-admin/Osdag).

4.4 Task 2: Implementing Git Submodules

Git Submodules is implemented such that updates to Osdag’s Tex Environment can be

handled in a separate repository but the required state of the texmf-tree can be referenced

by the main repository.

I cloned Osdag’s repository(osdag-admin/Osdag) and referenced tex-env-submodule

as a submodule to osdag-admin/Osdag within the src/osdag/data/ResourceFiles¿osdag-

latex-env folder.

The commit hash of the submodule is implicitly stored in the main repo’s commit

history, and git submodule update reads from that.

Navigate into your main repo (osdag-admin/Osdag):

>>cd path/to/Osdag

Add the submodule at the desired path:

Syntax:

>>git submodule add <repository-url> [<path>]

>>git submodule add https://github.com/your-username/tex-env-submodule.git

src/osdag/data/ResourceFiles/osdag-latex-env

Replace https://github.com/your-username/tex-env-submodule.git with your actual

submodule URL.

This will initialize a .gitmodules folder in the main repo.

Make sure in the .gitmodules, the path looks something like in Figure 4.5.

Where the url is replaced with the link of the external repo, that you would want to

reference as the submodule.

The path variable is the path to where the submodule needs to be added with respect

to the root of the main repo.

Commit the changes to osdag-admin:

29

Figure 4.5: Inside .gitmodules in main repo

>>git add .gitmodules src/osdag/data/ResourceFiles/osdag-latex-env

>>git commit -m "Added tex-env-submodule as a submodule"

Say if the packages get updated and the new updates are pushed to the external repo.

Now all we need to do is change the commit hash that is currently being referenced by

osdag-admin/Osdag.git

Now we will look at available commits and hash references.

4.5 Task 2: To view all available commits in the Sub-

module

First, cd into your submodule directory:

>>cd src/Osdag/data/ResourceFiles/osdag-latex-env

Then run:

>>git log --oneline

This will list all the commits in the submodule’s history.

The hash that has HEAD -> mentioned is

the exact commit the main repository is referencing.

4.6 Task 2: To change the commit hash referenced

(navigate to the submodule referenced folder i.e osdag-latex-env, on git bash)

>>cd src/Osdag/data/ResourceFiles/osdag-latex-env

>>git checkout <desired_commit_hash>

30

Figure 4.6: To view the commits made in a submodule

Then return to your main repo root and update the pointer:

Main-repo-root is the folder where Osdag.git is located for the maintainer locally on

their PC.

>>cd <main-repo-root>

>>git add src/osdag/data/ResourceFiles/osdag-latex-env

>>git commit -m "submodule update to another commit"

>>git push

Figure 4.7: Reference hash changed

Here, I changed the commit hash reference to e1f26f3. By following the same steps,

the maintainer can change the commit hash reference to any previous version of the

packages i.e a rollback, in an instant. Say the updated Tex packages are not correctly

compiling the .tex file - the maintainer can change the commit reference to a previous ver-

31

sion and next time Osdag is updated, the right versions of the packages will be reinstated.

Here is a flowchart of the entire workflow. In the flowchart the green blocks are the

steps to execute, the grey blocks are purely comments for the preceding green block.

Figure 4.8: Tex Maintainer’s Workflow

32

Chapter 5

Internship Task 3

LaTex Testing Suite

5.1 Task 3 Problem Statement

The task was to develop a testing suite for LaTeX that performs all necessary checks

to ensure that the dependencies and the entire report generation system are functioning

correctly and remain intact.

5.2 Task 3: Arrange, Act and Assert Approach

The testing suite is configured in the arrange, act and assert pattern:

• Arrange is used to set the dependencies, define helper functions and setting up

environment paths. In short, setting up any dependencies that we may have for the

actual tests

• Act is the test itself, the core logic as to how it tests for a certain criteria using

helper functions and other dependencies.

• Assert is used to check the final decision logic that ‘Act’ has arrived at - whether a

test is Pass or Fail.

33

5.3 Task 3: Checks Done

The script for LaTex Testing Suite is test tex diagnostics.py. Ideally it must be located

in:

\osdag\data\test_tex_diagnostics.py

The script is built to test if files are available in osdag-latex-env. So it must be located

in data folder (within which osdag-latex-env is located).

• Checks if pdflatex exists either globally through cmd path(in the case that a user

already has an existing Tex installation) or in osdag-latex-env

• Checks if Latexmk is available in osdag-latex-env

• Checks if the essential .sty files are present. (also includes all .sty files used by any

.tex file generated by Osdag currently for any module)

• mports and checks functioning of the very essential .sty packages listed in RE-

QUIRED STY FILES used by Osdag. Sets environment variables to help LaTeX

find custom packages.

• The final Osdag Diagnostics Report Compilation.

5.4 Task 3: Helper Functions

The current testing suite for LaTex uses 3 helper functions, which are used by the main

testing functions. They come under the Arrange bracket of the Arrange, Act and Assert

pattern.

They are defined at the top of the script in this order:

1. is pdflatex in path()

Purpose: Checks if pdflatex is available in the system’s environment PATH.

Returns: True if found (i.e., system-wide installation exists or in data/ResourceFiles/osdag-

latex-env/bin/windows/pdflatex.exe), else False.

Listing 5.1: is pdflatex in path()

1 %--------------------begin code -------------

34

2 def is_pdflatex_in_path ():

3 return shutil.which("pdflatex") is not None

4 %-------------------- end code ---------------

2. is pdflatex in osdag env()

Purpose: Checks if a fallback pdflatex.exe exists inside the Osdag-provided LaTeX envi-

ronment directory.

Returns: True if pdflatex.exe is present in osdag-latex-env/bin/windows, else False.

Listing 5.2: is pdflatex in osdag env()

1 %--------------------begin code -------------

2 return os.path.exists(FALLBACK_PDFLATEX_PATH)

3 %-------------------- end code ---------------

3. find sty file(root dir, target file)

Purpose: Recursively searches for a .sty file (LaTeX style file) named target file inside

root dir.

Returns: The full path to the .sty file if found, otherwise None.

Listing 5.3: find sty file(root dir,target file)

1 %--------------------begin code -------------

2 def find_sty_file(root_dir , target_file):

3 for dirpath , _, filenames in os.walk(root_dir):

4 if target_file in filenames:

5 return os.path.join(dirpath , target_file)

6 return None

7 %-------------------- end code ---------------

5.5 Task 3: Tests Conducted

Test 1: test pdflatex available() Checks whether the LaTeX compiler pdflatex is available

either: globally in the system’s PATH, or locally in the osdag-latex-env.

Pass Criteria: pdflatex must be found in at least one location.

Listing 5.4: test pdflatex available()

1 %--------------------begin code -------------

2 def test_pdflatex_available ():

35

3 in_path = is_pdflatex_in_path ()

4 in_env = is_pdflatex_in_osdag_env ()

5 available = in_path or in_env

6 diagnostics_log.append(f"Test {test_counter [0]} - pdflatex

availability: {'PASSED ' if available else 'FAILED '}")

7 test_counter [0] += 1

8 assert available , "pdflatex is not installed globally or in osdag -

latex -env"

9 %-------------------- end code ---------------

Test 2: test latexmk present() Checks if the latexmk.exe executable exists inside the

osdag-latex-env path.

Pass Criteria: The file latexmk.exe should be present in LATEX ENV PATH/bin/windows.

Listing 5.5: test latexmk present()

1 %--------------------begin code -------------

2 def test_latexmk_present ():

3 latexmk_path = os.path.join(LATEX_ENV_PATH , 'bin', 'windows ', '

latexmk.exe')

4 exists = os.path.exists(latexmk_path)

5 diagnostics_log.append(f"Test {test_counter [0]} - latexmk presence:

{'PASSED ' if exists else 'FAILED '}")

6 test_counter [0] += 1

7 assert exists , "latexmk executable not found in osdag -latex -env"

8 %-------------------- end code ---------------

Test 3: test required sty files present() Runs once for each .sty file in REQUIRED STY FILES

using pytest.mark.parametrize. It searches recursively in LATEX ENV PATH for each

.sty file.

Pass Criteria: Each .sty file must be found in the directory structure.

Listing 5.6: test required sty files present(sty file)

1 %--------------------begin code -------------

2 def test_required_sty_files_present(sty_file):

3 found = find_sty_file(LATEX_ENV_PATH , sty_file) is not None

4 diagnostics_log.append(f"Test {test_counter [0]} - {sty_file }: {'

PASSED ' if found else 'FAILED '}")

5 test_counter [0] += 1

6 assert found , f"{sty_file} not found in LaTeX environment"

36

7 %-------------------- end code ---------------

Test 4: test compile latex with pylatex() Imports and checks functioning of the very

essential .sty packages listed in REQUIRED STY FILES used by Osdag. Sets environ-

ment variables to help LaTeX find custom packages.

Generates a.pdf from the packages it uses by the name of ’test4 latex testing suite’.

Compiles it using PyLaTeX.

Pass Criteria: The document compiles without any LaTeX CompilerError.

Listing 5.7: test compile latex with pylatex()

1 %--------------------begin code -------------

2 def test_compile_latex_with_pylatex ():

3

4 os.environ['TEXMFHOME '] = os.path.abspath("data/ResourceFiles/osdag

-latex -env/texmf -dist")

5 os.environ["TEXINPUTS"] = os.path.abspath("data/ResourceFiles/osdag

-latex -env/texmf -dist") + os.pathsep + os.environ.get("TEXINPUTS

", "")

6

7 sty_pkgs = os.path.abspath(os.path.join("data", "ResourceFiles", "

osdag -latex -env", "texmf -dist"))

8 sty_pkgs = sty_pkgs.replace("\\", "/") # Normalize path for LaTeX

on Windows

9 pkg_resources = [f'{sty_pkgs }/ amsmath ', f'{sty_pkgs }/ graphics ', f'{

sty_pkgs }/ needspace ']

10 texinp = os.environ.get('TEXINPUTS ', ' ')

11 pkg_path = ";".join(pkg_resources)

12 os.environ['TEXINPUTS '] = f'{pkg_path };{ texinp}'

13

14 geometry_options = {

15 "a4paper": True ,

16 "top": "2cm",

17 "bottom": "2cm",

18 "left": "2.5cm",

19 "right": "2.5cm"

20 }

21

22 doc = Document(documentclass="article", geometry_options=

37

geometry_options)

23

24 # Import all packages

25 doc.packages.append(Package('inputenc ', options='utf8'))

26 doc.packages.append(Package('fontenc ', options='T1'))

27 doc.packages.append(Package('lmodern '))

28 doc.packages.append(Package('amsmath '))

29 doc.packages.append(Package('graphicx '))

30 doc.packages.append(Package('xcolor '))

31 doc.packages.append(Package('color '))

32 doc.packages.append(Package('fancyhdr '))

33 doc.packages.append(Package('geometry '))

34 doc.packages.append(Package('lastpage '))

35 doc.packages.append(Package('multirow '))

36 doc.packages.append(Package('colortbl '))

37 doc.packages.append(Package('array '))

38 doc.packages.append(Package('longtable '))

39 doc.packages.append(Package('tabularx '))

40 doc.packages.append(Package('needspace '))

41 doc.packages.append(Package('parskip '))

42 doc.packages.append(Package('ltxcmds '))

43 doc.packages.append(Package('kvoptions '))

44 doc.packages.append(Package('kvsetkeys '))

45

46 doc.preamble.append(NoEscape(r'''

47 \usepackage{fancyhdr}

48 \pagestyle{fancy}

49 \renewcommand {\ headrulewidth }{0pt}

50

51 \fancyhead[L]{

52 \begin{minipage }[t]{0.6\ textwidth}

53 \vspace{-1em}

54 {\Large\bfseries Osdag Diagnostics Report - Test 4}

\\[0.5 em]

55 {\small \today}

56 \end{minipage}

57 }

58

59 '''))

38

60

61

62

63 doc.append('This document confirms the successful import and basic

usage of essential .sty files used by Osdag .\n')

64

65 with doc.create(Subsection('amsmath ')):

66 doc.append(NoEscape(r'$\int_0 ^\infty e^{-x^2} dx = \frac{\sqrt

{\pi }}{2}$'))

67

68 with doc.create(Subsection('xcolor & color')):

69 doc.append(NoEscape(r'\definecolor{OsdagGreen }{RGB }{153 ,169 ,36}

'))

70 doc.append(NoEscape(r'\textcolor{OsdagGreen }{This is Osdag

Green Colour}'))

71

72 with doc.create(Subsection('multirow , colortbl , array')):

73 doc.append(NoEscape(r'''

74 \begin{tabular }{|c|c|}

75 \hline

76 \multirow {2}{*}{A} & Row 1 \\

77 & Row 2 \\

78 \hline

79 \end{tabular}

80 '''))

81

82 with doc.create(Subsection('longtable , tabularx ')):

83 doc.append(NoEscape(r'''

84 \rowcolors {2}{ gray !10}{ white}

85 \begin{longtable }{|>{\ raggedright\arraybackslash}p{4cm}|p{9cm}|}

86 \hline

87 Feature & Description \\

88 \hline

89 Color Alternating & Tested with colortbl and xcolor \\

90 Custom Column Align & Tested with array \\

91 Auto Page -Break Table & longtable allows breaking \\

92 \hline

93 \end{longtable}

94 '''))

39

95

96 # Export

97 doc.generate_pdf('test4_latex_testing_suite ', clean=True , compiler=

PDFLATEX_PATH , clean_tex=False)

98 diagnostics_log.append(f"Test {test_counter [0]} - LaTeX compilation

with all .sty files: PASSED")

99 test_counter [0] += 1

100

101

102 %-------------------- end code ---------------

Test 5: test compile latex with pylatex report() The final diagnostics report com-

pilation. The final report named “osdag diagnostics report.pdf” is stored in the same

folder from wherever the script is run.

This includes: Setting up the page geometry and headers.

Drawing a metadata table with system info (hostname, user, etc.).

Listing all test results.

Pass Criteria: If the report compiles and displays the result table, the test passes.

Listing 5.8: test compile latex with pylatex report()

1 %--------------------begin code -------------

2 def test_compile_latex_with_pylatex_report ():

3

4 # Set LaTeX environment paths

5 os.environ['TEXMFHOME '] = os.path.abspath("data/ResourceFiles/osdag

-latex -env/texmf -dist")

6 os.environ["TEXINPUTS"] = os.path.abspath("data/ResourceFiles/osdag

-latex -env/texmf -dist") + os.pathsep + os.environ.get("TEXINPUTS

", "")

7

8 sty_pkgs = os.path.abspath(os.path.join("data", "ResourceFiles", "

osdag -latex -env", "texmf -dist"))

9 sty_pkgs = sty_pkgs.replace("\\", "/") # Normalize path for LaTeX

on Windows

10 pkg_resources = [f'{sty_pkgs }/ amsmath ', f'{sty_pkgs }/ graphics ', f'{

sty_pkgs }/ needspace ']

11 texinp = os.environ.get('TEXINPUTS ', ' ')

12 pkg_path = ";".join(pkg_resources)

40

13 os.environ['TEXINPUTS '] = f'{pkg_path };{ texinp}'

14 base_dir = os.path.dirname(os.path.abspath(__file__))

15 pkg_images = os.path.join(base_dir , "data", "ResourceFiles", "

images")

16 geometry_options = {

17 "a4paper": True ,

18 "top": "4cm",

19 "hmargin": "2cm",

20 "headheight": "100pt",

21 "footskip": "100pt",

22 "bottom": "2.5cm"

23 }

24 imgpath_osdagheader = os.path.join(pkg_images , "Osdag_header_report

.png").replace("\\", "/")

25 doc = Document(documentclass="article", geometry_options=

geometry_options)

26

27 doc.packages.append(Package('inputenc ', options='utf8'))

28 doc.packages.append(Package('graphicx '))

29 doc.packages.append(Package('lmodern '))

30 doc.preamble.append(NoEscape(r'\renewcommand {\ familydefault }{\

sfdefault}'))

31 doc.packages.append(Package('helvet '))

32 doc.packages.append(Package('fancyhdr '))

33 doc.packages.append(Package('xcolor '))

34 doc.packages.append(Package('array '))

35 doc.packages.append(Package('xcolor ', options='table '))

36

37 # Add Osdag green color

38 doc.preamble.append(NoEscape(r'\definecolor{OsdagGreen }{RGB

}{153 ,169 ,36}'))

39

40 # Add Osdag header image

41 doc.preamble.append(NoEscape(r'''

42 \usepackage{fancyhdr}

43 \pagestyle{fancy}

44 \renewcommand {\ headrulewidth }{1pt}

45

46 \fancyhead[L]{

41

47 \begin{minipage }[t]{0.6\ textwidth}

48 \vspace{-3em}

49 {\Large\bfseries Osdag Diagnostics Report} \\[0.5 em]

50 {\small \today}

51 \end{minipage}

52 }

53

54 \fancyhead[R]{

55 \begin{minipage }[t]{0.3\ textwidth}

56 '''))

57

58 # Insert the image with StandAloneGraphic

59 doc.preamble.append(StandAloneGraphic(image_options="width =4.40cm ,

height =1.1cm",filename=imgpath_osdagheader))

60

61 doc.preamble.append(NoEscape(r'''

62 \end{minipage}

63 }

64 '''))

65 current_time = datetime.now().strftime("%d-%m-%Y | %H:%M:%S")

66 # Add metadata table

67 with doc.create(Tabular(r'|>{\ raggedright\arraybackslash}p{5cm

}|| >{\ raggedright\arraybackslash}p{10cm}|')) as table:

68

69 table.add_hline ()

70 table.add_row (('Test', 'LaTex Testing Suite '), color='

OsdagGreen ')

71 table.add_hline ()

72 table.add_row (('Date & Time', current_time), color='OsdagGreen '

)

73 table.add_hline ()

74 table.add_row (('Computer Name', f'{socket.gethostname ()}'),

color='OsdagGreen ')

75 table.add_hline ()

76 table.add_row (('User', f'{os.getlogin ()}'), color='OsdagGreen ')

77 table.add_hline ()

78

79 # Description section

80 with doc.create(Section("Checks Done:", numbering=False)):

42

81 doc.append(NoEscape(r'''

82 The current LaTeX testing suite checks for the presence of

the following dependencies:

83 \begin{itemize}

84 \item Presence of pdflatex.exe either in system path or

present in osdag_latex_env/bin/windows

85 \item Presence of latexmk.exe

86 \item Presence of the essential .sty files. Also

includes all .sty files used by any .tex file

generated by Osdag currently for any module.

87 \item Calls each of the essential .sty files and

compiles a sample report where each package is used.

If compilation is successful it deletes the .tex

file and resultant .pdf , .aux , .log. If compilation

is unsuccessful , the test fails i.e either a .sty

package is corrupt or it is missing.

88 \end{itemize}

89 '''))

90

91 diagnostics_log.append(f"Test {test_counter [0]} - Osdag Diagnostics

Report compilation: PASSED")

92 test_counter [0] += 1

93

94 # Results Table

95 with doc.create(Section("Tests", numbering=False)):

96 doc.append("Each test conducted is listed below along with its

result:")

97 doc.append(NoEscape(r'\newline\newline '))

98

99 with doc.create(Tabular('|l|l|')) as table:

100 table.add_hline ()

101 table.add_row (('Check Performed ', 'Result '))

102 table.add_hline ()

103 for entry in diagnostics_log:

104 if ' - ' in entry:

105 test_name , result = entry.split(":")

106 table.add_row ((test_name.strip (), result.strip ()))

107 table.add_hline ()

108

43

109 # Compile

110 doc.generate_pdf('osdag_diagnostics_report ', compiler=PDFLATEX_PATH

, clean=True , clean_tex=False)

111 %-------------------- end code ---------------

5.6 Task 3: Report Generation System

In Test 4 of the testing script, it generates a .pdf by the name of test4 latex testing suite.

This test checks for the basic import and working of the essential .sty files. The generation

of the .tex file can be toggled True/False using the clean tex flag from doc.generate pdf()

function.

In the script, in Test 5 final report generation is handled by the function test compile latex with pylatex report().

The final report named osdag diagnostics.pdf is stored in the same folder from wherever

the script is run.

Has a metadata table which lists the Testing Framework, Date and Time, Computer

Name and the current User’s name logged-in in the computer.

Has the final test results, which mentions all the files it checks for and whether the

test passes or fails.

44

Figure 5.1: Osdag Diagnostics Report

45

Chapter 6

Conclusions

6.1 Tasks Accomplished

1. osdag-latex-env – texmf Tree Structure

• Set up a custom texmf tree for Osdag’s LaTeX environment under osdag-latex-

env/texmf-dist.

• Organized all required .sty and related files into proper CTAN-compliant directory

structure (e.g., tex/latex/, fonts/, bibtex/).

• Configured environment variables like TEXMFHOME and TEXINPUTS to prior-

itize this custom tree when compiling LaTeX documents.

• Validated the working of packages like amsmath, graphicx, fancyhdr, and others

through controlled .tex document tests.

2. Tex Manager – Maintainer’s Manual Authored a step-by-step Maintainer’s

Manual documenting:

• Initial git setup, cloning, and branching practices and to check for .sty updates and

sync them into the texmf-dist.

• To rebuild or refresh the package index using TeX commands.Guidance on version-

ing, backups, and structure maintenance.

• Added instructions for verifying LaTeX compilation and troubleshooting package

errors using test scripts.

46

3. Pytest – LaTeX Testing Suite Built a comprehensive testing suite using pytest

to:

• Check the presence of pdflatex and latexmk in either system path or the Osdag

LaTeX env. Confirm availability of essential .sty files using recursive directory

search.

• Compile a dummy .tex document that imports and uses each .sty file to ensure

runtime compatibility.

• Generate a detailed Diagnostics Report using pylatex, complete with metadata,

headers, logos, test results, and structured output.

• Implemented custom headers with dynamic date and time, logos using StandAlone-

Graphic, and fancy table formatting using colortbl, array, and longtable.

• Ensured consistent output whether script was run via IDE or cmd, by correcting

path handling and resolving image inclusion issues.

6.2 Skills Developed

LaTeX and TeX System Proficiency

• Gained deep understanding of the TeX typesetting system and LaTeX package

management.

• Worked with custom texmf trees, setting up and organizing .sty files in a CTAN-

compliant structure.

• Mastered LaTeX compilation commands (pdflatex, latexmk) and integration with

Python via pylatex.

• Gained experience in dynamic document generation with logos, styled headers,

custom tables, and automated reports.

Python Development

• Developed Python-based tools for LaTeX diagnostics and reporting using pylatex,

os, subprocess, and environment variables.

47

• Used parameterized testing with pytest.mark.parametrize to validate each .sty file

systematically.

• Managed cross-platform compatibility (IDE vs. CMD) by resolving path resolution,

environment setup, and subprocess management.

Automation and Testing

• Built a modular test suite using pytest to automate validation of LaTeX environ-

ment components.

• Handled test logging and custom assertion messages to improve debugging efficiency.

• Ensured reliable generation and cleanup of .tex, .pdf, .log files during testing.

Git and Version Control

• Practiced clean Git workflows—branching, committing, and syncing changes to the

LaTeX environment repo.

• Learned how to track updates to third-party .sty packages and maintain version

integrity.

Documentation and Technical Writing

• Authored a Maintainer’s Manual with precise, step-by-step instructions, ensuring

ease of adoption for future contributors.

• Improved clarity and structure in writing for technical guides and diagnostic logs.

Problem Solving and Debugging

• Diagnosed complex LaTeX compilation errors and path issues under different envi-

ronments (IDE vs. CMD).

• Used logical strategies to isolate issues (e.g., broken .sty packages, image resolution,

header formatting).

48

Chapter A

Appendix

A.1 Work Reports

49

Record of Work - Semester Long Internship 2025 - Steve Sojan
Name : Steve Sojan
Project: Osdag
Internship: Semester Long Internship 2025

Date Day Task Duration of Work Hours
10/02/25 Monday Orientation | Latest Version of Osdag Installed | Watched Videos of Osdag Installation from User Perspective 2
11/02/25 Tuesday Finding the bugs I encountered while preparing the screening task, listing them out | Meeting at 18:45 3
12/02/25 Wednesday Meeting at 19:15 | Brainstormed new solutions to add to the installer and resolve current issues (stuck installer) 3
13/02/25 Thursday Possible Solutions to a stuck installer - lzma compression method or unpacking in chunks | Worked on Assigned Module 3
14/02/25 Friday Worked on Task - 0 | Assigned Cleat Angle Connection Module | Understanding the codebase 5
15/02/25 Saturday Continued Doumentation on Cleat Angle Connection Module | imports, UI Functions, Calculation Functions, CAD functions 8
16/02/25 Sunday Designed the Final Flowchart for documenting the working of Cleat Angle Connection Module 3
17/02/25 Monday Discussion on Task - 0 at 18:15 3
18/02/25 Tuesday Documentation Team Meeting for Tension Member Bolted Connection | Roadmap | imports discussion scheduled for Thursday 3
19/02/25 Wednesday Git/Github Usage Policy Meeting | Went through the imports section of Tension Member Bolted Connection in detail 3
20/02/25 Thursday imports discussion for Tension Member Bolted connection - Meeting at 19:30 3
21/02/25 Friday Installer Team Meeting | Discussed the Tex packages Osdag needs | Reported the bugs I found and packages inherent with TinyTex 3
22/02/25 Saturday Finding the cause/ solution to the Latex Creation Error bug 3
23/02/25 Sunday WEEKLY OFF 0
24/02/25 Monday Tried to look for the cause of the bug in ui_summary_popup.py and report_generator_latex.py files 2
25/02/25 Tuesday Found the cause for the bug within the source .tex file - a backslash prior to each '_' to escape the subscript operator 4
26/02/25 Wednesday Started work on creating a localized tex engine, that can call userpackages w/out the need of a Tex distro 4
27/02/25 Thursday Listing out all packages, dependencies, macros and binaries 2
28/02/25 Friday Designing the texmf-tree, specifying LaTex to look for the packages in the directory osdag-latex-env 3
01/03/25 Saturday Making respective changes in SectionModeller_Latex.py and reportGenerator_latex.py 4
02/03/25 Sunday Making respective changes in SectionModeller_Latex.py and reportGenerator_latex.py for Osdag to use the texmf-tree to generate pdf reports 3
03/03/25 Monday EXAM BREAK 0
04/03/25 Tuesday EXAM BREAK 0
05/03/25 Wednesday EXAM BREAK 0
06/03/25 Thursday EXAM BREAK 0
07/03/25 Friday EXAM BREAK 0
08/03/25 Saturday EXAM BREAK 0
09/03/25 Sunday EXAM BREAK 0
10/03/25 Monday EXAM BREAK 0
11/03/25 Tuesday EXAM BREAK 0
12/03/25 Wednesday Revising changes in SectionModeller_Latex.py and reportGenerator_latex.py 4
13/03/25 Thursday Meeting at 19:00- 19:30 today to decide on packaging Tex locally or with a Tex distro | Read up on available Tex Distros 3
14/03/25 Friday Documenting the process of creating a localized Tex engine 3
15/03/25 Saturday Completing documentation and submission 2
16/03/25 Sunday WEEKLY OFF 0
17/03/25 Monday Discussed & Reviewed the installer made for the screening task 4
18/03/25 Tuesday Meeting at 17:00 | Tested the installer created for the screening task along with the team 4
19/03/25 Wednesday Discussions on making an offline installer 4
20/03/25 Thursday Completed Documentation on the Localized Tex Engine 4
21/03/25 Friday Research & find ways to keep the TeX packages updates | Transition from being localized to updated 4
22/03/25 Saturday Meeting at 17:45 | Assigned to integrate GitHub Submodules 4
23/03/25 Sunday WEEKLY OFF 0
24/03/25 Monday Meeting at 20:00 | Discussed updates on the revised installer 5
25/03/25 Tuesday Reserached ways to keep Tex packages updated 4
26/03/25 Wednesday Started documentation on keeping Tex packages updated 4
27/03/25 Thursday Researched Git Submodules as an alternative to keeping the Tex pacakages updated 4
28/03/25 Friday Completed documentation on approaches to keep the tex packages updated 4
29/03/25 Saturday Designed the pipeline of keeping the tex packages updated using Github Submodules 4
30/03/25 Sunday WEEKLY OFF 3
31/03/25 Monday Pruning the texmf tree | Removed tlpkg 0
01/04/25 Tuesday Started creating a custom texmf tree with the 11 tex packages as mentioned on the channel 4
02/04/25 Wednesday Debugging each error and adding missing packages manually 4
03/04/25 Thursday Meeting at 18:00 | Discussed on building Osdag's own texmf tree environment 4
04/04/25 Friday Filtering the .sty packages that we need 4
05/04/25 Saturday Monitoring the final size of the Tex Enironment from 300 MB originally to 173 MB 4
06/04/25 Sunday WEEKLY OFF 0
07/04/25 Monday Started work on creating a Maintainer's Manual 4
08/04/25 Tuesday Designed a pipeline for keeping Tex packages updated using Git submodules using Tex Manager and Git Submodules by a Maintainer 4
09/04/25 Wednesday Pruned the final texmf tree and pushed to Git repo - osdag-latex-env 4
10/04/25 Thursday osdag-latex-env is referred to as an external repo using Github Submodules to maintainer's local repo 4
11/04/25 Friday Current script removes the .tex file, found the solution that retains the .tex file while compiling using pylatex 4
12/04/25 Saturday Briefed up on how Git Submodule references a certain commit 3
13/04/25 Sunday Initialize git in TinyTex directory and create .gitignore file. 4
14/04/25 Monday Configure .gitignore to ignore all files except: bin, texmf-config, texmf-dist, texmf-local, and texmf-var. 4
15/04/25 Tuesday Added the external repository (tex-env-submodule) as a remote to the local TinyTex git repository. 5
16/04/25 Wednesday 4
17/04/25 Thursday Push the filtered texmf tree to the external repo preserving TinyTex’s original structure. 4
18/04/25 Friday Tested the new fully online installer that the team had devised 4
19/04/25 Saturday Cloned osdag-admin/Osdag repo and add the submodule (tex-env-submodule) to the intended path (src/osdag/data/ResourceFiles/osdag-latex-env) 4
20/04/25 Sunday WEEKLY OFF 3
21/04/25 Monday Validate and edit the .gitmodules file in the main repo to confirm the submodule path and URL are correct. 4
22/04/25 Tuesday Use tlmgr update --list to check for available package updates inside the maintainer’s TinyTex. 4
23/04/25 Wednesday Ran a full test run of pipeline using Git Submodules and Tex Manager with existing packages 4
24/04/25 Thursday Updated packages and pushed to repo referred to as submodule 4
25/04/25 Friday Ran a complete test run with updated packages and updated commit reference successfully 5
26/04/25 Saturday EXAM BREAK 0
27/04/25 Sunday EXAM BREAK 0
28/04/25 Monday EXAM BREAK 0
29/04/25 Tuesday EXAM BREAK 0
30/04/25 Wednesday EXAM BREAK 0

01/05/25 Thursday EXAM BREAK 0
02/05/25 Friday EXAM BREAK 0
03/05/25 Saturday EXAM BREAK 0
04/05/25 Sunday EXAM BREAK 0
05/05/25 Monday EXAM BREAK 0
06/05/25 Tuesday EXAM BREAK 0
07/05/25 Wednesday EXAM BREAK 0
08/05/25 Thursday EXAM BREAK 0
09/05/25 Friday EXAM BREAK 0
10/05/25 Saturday EXAM BREAK 0
11/05/25 Sunday EXAM BREAK 0
12/05/25 Monday Completed documentation for the Tex Manager - Maintainer's Manual Approach and shared the same. 4
13/05/25 Tuesday Set up the initial LaTeX test environment and verified pylatex installation with basic compilation. 4
14/05/25 Wednesday Designed a minimal .tex document and tested manual compilation using pdflatex from command line. 4
15/05/25 Thursday Explored the structure of osdag-latex-env and located the internal pdflatex.exe 4
16/05/25 Friday Developed functions to detect pdflatex in system PATH or fallback to osdag-latex-env 5
17/05/25 Saturday Integrated conditional logic to assign the correct path to PDFLATEX_PATH 4
18/05/25 Sunday WEEKLY OFF 0
19/05/25 Monday Created pytest tests to verify existence of pdflatex and fallback behavior 5
20/05/25 Tuesday Listed and confirmed core .sty files required by the LaTeX compiler 4
21/05/25 Wednesday Implemented pytest.mark.parametrize to automate checks for all required .sty files. 4
22/05/25 Thursday Added a specific test for verifying presence of latexmk.exe in the internal LaTeX environment 4
23/05/25 Friday Manually constructed a diagnostic .tex file using all required packages. 5
24/05/25 Saturday Programmed the compilation of this .tex file via pylatex.Document with a custom compiler path. 4
25/05/25 Sunday WEEKLY OFF 0
26/05/25 Monday Handled CompilerError exceptions during LaTeX execution and added verbose error reporting. 4
27/05/25 Tuesday Refined file cleanup operations post-compilation for .pdf, .log, .aux, and .tex. 4
28/05/25 Wednesday Applied Arrange–Act–Assert (AAA) testing methodology to all existing test cases. 6
29/05/25 Thursday Validated that all tests passed under both system and bundled pdflatex configurations. 4
30/05/25 Friday Optimized the codebase for modularity, reusability, and logical flow of execution. 5
31/05/25 Saturday Finalized a diagnostic framework for LaTeX compilation in Osdag 4
01/06/25 Sunday WEEKLY OFF 0
02/06/25 Monday Incorporated testing logic, if all tests should pass - script returns 0 else even if 1 test fails return 1. 4
03/06/25 Tuesday Designed the strutcure of a Diagnostics Framework Report that lists the status of all tests using pylatex 4
04/06/25 Wednesday Worked on report generation system of the LaTex testing suite 5
05/06/25 Thursday Meeting at 19:00 | Shared updates on LaTex testing suite | Further tune testing and Diagnostics Report Compilation 4
06/06/25 Friday Tuned the Osdag Diagnostics Report to use packages from osdag-latex-env for generating reports 5
07/06/25 Saturday Added custom Osdag header and footer to the Diagnostics Report Generation 4
08/06/25 Sunday WEEKLY OFF 0
09/06/25 Monday Worked on the Final Developer Manual that combines work from the entire Installer Team 4
10/06/25 Tuesday Experimented with calling osdag-latex-env as a module to make minimal changes in codebase 4
11/06/25 Wednesday Started drafting the report for designing the LaTex Testing Suite through a user-friendly guide 5
12/06/25 Thursday Completed documentation that describes the entire LaTex testing suite | Bugs fixed suggested during mentor review 4
13/06/25 Friday Finalized layout of the Diagnostics Report header and metadata table formatting 5
14/06/25 Saturday Integrated remaining unused packages into the report with PyLaTeX usage examples 5
15/06/25 Sunday WEEKLY OFF 0
16/06/25 Monday Final review and started work on the Final Internship Report 4
17/06/25 Tuesday Prepared Final Internship Report and compiled all work done during the report 4
18/06/25 Wednesday Final meeting with mentor to discuss internship performance and next steps 5
19/06/25 Thursday Presented the final internship report to the mentor 4

Bibliography

[1] Siddhartha Ghosh, Danish Ansari, Ajmal Babu Mahasrankintakam, Dharma Teja

Nuli, Reshma Konjari, M. Swathi, and Subhrajit Dutta. Osdag: A Software for

Structural Steel Design Using IS 800:2007. In Sondipon Adhikari, Anjan Dutta, and

Satyabrata Choudhury, editors, Advances in Structural Technologies, volume 81 of

Lecture Notes in Civil Engineering, pages 219–231, Singapore, 2021. Springer Singa-

pore.

[2] FOSSEE Project. FOSSEE News - January 2018, vol 1 issue 3. Accessed: 2024-12-05.

[3] FOSSEE Project. Osdag website. Accessed: 2024-12-05.

52

	Introduction
	National Mission in Education through ICT
	ICT Initiatives of MoE

	FOSSEE Project
	Projects and Activities
	Fellowships

	Osdag Software
	Osdag GUI
	Features

	Screening Task
	Problem Statement
	Tasks Done

	Internship Task 1 Osdag LaTex Environment
	Task 1: Problem Statement
	Task 1: Tasks Done
	Task 1: Significance of each branch of the texmf tree
	Task 1: Python Code
	Description of the Script
	Python Code
	Explanation of the Code in Initializing Environment Variables Snippet
	Explanation of the Code Snippet added to SectionModeller_Latex.py
	Explanation of the Code Snippet added to reportGenerator_latex.py

	Internship Task 2Tex Manager -Maintainer's Workflow
	Task 2 Problem Statement
	Task 2: Workflow
	Task 2: Setting Up Environment for the Maintainer
	Task 2: Implementing Git Submodules
	Task 2: To view all available commits in the Submodule
	Task 2: To change the commit hash referenced

	Internship Task 3LaTex Testing Suite
	Task 3 Problem Statement
	Task 3: Arrange, Act and Assert Approach
	Task 3: Checks Done
	Task 3: Helper Functions
	Task 3: Tests Conducted
	Task 3: Report Generation System

	Conclusions
	Tasks Accomplished
	Skills Developed

	Appendix
	Work Reports

	Bibliography

