

1

Summer Internship Report

on

ElectroBlocks Meets Python: A Powerful Upgrade

Submitted by:

Utkarsh

Amity University, Lucknow

Zoha Faiyaz

Jamia Millia Islamia

M. Boobalan

Kongu Engineering College

V. Abinaya

Anna University, MIT Campus

V. Anushiya

Anna University, MIT Campus

Under the guidance of:

Prof. Kannan M. Moudgalya

Department of Chemical Engineering

IIT Bombay

Noah Glaser

Developer, ElectroBlocks

Mr. Rajesh Kushalkar

Senior Project Manager, FOSSEE Project

IIT Bombay

Mr. Pratik Bhosale

Project Research Associate

FOSSEE Project, IIT Bombay

June 2025

2

Acknowledgement

We would like to take this opportunity to express our heartfelt gratitude to everyone who played

a pivotal role in making our summer internship with FOSSEE – ElectroBlocks (Arduino) an enriching

and memorable experience.

First and foremost, we extend our deepest thanks to Noah Glaser, developer of the

Electroblocks simulation platform, Mr. Rajesh Kushalkar, Senior Project Manager at FOSSEE, IIT

Bombay, and Mr. Pratik Bhosale, Project Research Associate at FOSSEE, IIT Bombay, for believing

in our abilities and giving us the opportunity to work on this invaluable project. Their unwavering

support and constant encouragement were the driving force behind our progress.

We are also deeply grateful to our mentors, whose guidance, patience, and expertise were

instrumental throughout the internship. Their timely advice not only helped us overcome challenges

and complete our tasks successfully, but also strengthened both our technical and interpersonal skills.

Lastly, we would like to thank our fellow interns and colleagues working on various projects.

Their collaboration, constructive feedback, and thoughtful insights significantly contributed to our

growth and made the entire experience all the more meaningful.

Utkarsh, Amity University, Lucknow

Zoha Faiyaz, Jamia Millia Islamia

Abinaya V, Anna University, MIT Campus

Anushiya V, Anna University, MIT Campus

Boobalan M., Kongu Engineering College

3

Declaration

We declare that this written submission represents our ideas in our own words. Whenever the

ideas or words of others have been included, we have properly cited and referenced the original sources.

We affirm that all sources used in the preparation of this thesis have been accurately acknowledged.

We also declare that we have strictly followed the principles of academic honesty and integrity,

and have not misrepresented, fabricated, or falsified any idea, data, fact, or source in this submission.

We understand that any violation of these principles may result in disciplinary action by the Institute

and could also lead to legal consequences from the original sources if proper citations or permissions

have not been provided.

Utkarsh, Amity University, Lucknow

Zoha Faiyaz, Jamia Millia Islamia

Abinaya V, Anna University,MIT Campus

Anushiya V, Anna University,MIT Campus

Boobalan M, Kongu Engineering College

4

Index

1. Introduction

1.1. Project Overview

2. Feature Additions

2.1. Dropdown menu for language selection.

2.2. Main Python code generator for translating blocks to Python Code.

2.3. Python Generators for various blocks:

2.3.1. Generator for Logic Block.

2.3.2. Generator for Variables Block.

2.3.3. Generator for Text block.

2.3.4. Generator for Math block.

2.3.5. Generator for Colour Block.

2.3.6. Generator for Pins Block.

2.3.7. Generator for Analog sensor blocks.

2.3.8. Generator for Stepper motor

2.3.9. Generator for Servo motor.

2.3.10. Generator for passive buzzer block.

2.3.11. Generator for RFID block.

2.3.12. Generator for motion sensor block.

2.3.13. Generator for joystick block.

2.3.14. Generator for button blocks.

2.3.15. Generator for digital sensor block.

 2.4. Uploader Transition: Avrgirl to UploadMultiTool

 2.5. Switching Compilation Backend: ElectroBlocks to Duino

 2.6. Development of Custom Upload Library for ElectroBlocks.

 2.7. Dropbox for ESP32 microcontroller selection

 2.8. Toolbox Visibility.

 2.9. Restriction Of Compilation to C.

 2.10. Jupyter Notebook for ElectroBlock Demo

 2.11. Electroblocks companion app

2.11.1. Endpoint that shows available ports.

 2.11.2. Build an offline Electroblocks setup

 2.11.3. Arduino compilation system for the Electroblocks

 2.12. Update the the colors of the blocks based on language selection

5

3. Bug fixes

3.1. Fixed the generation of duplicate board Python setup code.

4. Conclusion

5. Future Work

List Of Figures

2.1: Added a Drop-down menu for language selection in settings.

2.2: Main Python code generator for translating blocks to Python Code.

2.3: Implemented Python generators for various blocks.

2.3.1: Logic Block

2.3.2: Colour Block

2.3.3: Math Block

2.3.4: Text Block

2.3.5: Loop Block

2.3.6: Pins Block

2.3.7: Stepper Motors and Analog sensor Blocks

2.3.8: Servo Motor block

2.3.9: Passive Buzzer Block

2.3.10: Generator for RFID block.

2.3.11: Generator for motion sensor block.

2.3.12: Generator for joystick block.

2.3.13: Generator for button blocks.

2.3.14: Generator for digital sensor block.

2.4: Uploader Transition: Avrgirl to UploadMultiTool

 2.5. Switching Compilation Backend: ElectroBlocks to Duino

 2.6. Development of Custom Upload Library for ElectroBlocks.

 2.7. Dropbox for ESP32 microcontroller selection.

2.8.1: Shows the selected board type

2.9.1: Shows the current language selection

2.9.2: After implementing showing error for python language selection

2.10.1: Arduino UNO is connected to PC

2.10.2: Shows Firmware is uploaded to Arduino UNO

2.10.3: Jupyter notebook is created with three examples

6

2.10.4: ElectroBlock Structure of experiment Led Blink

2.10.5: Generated Python Code for Led Blink

2.10.6: ElectroBlock Structure of experiment RGB led Cycle

2.10.7: Generated Python Code for RGB led Cycle

2.10.8: ElectroBlock Structure of experiment Servo motor Cycle

2.10.9: Generated Python Code for Servo motor Cycle

2.10.10: Jupyter notebook Checklist

2.11: Electroblocks companion app

2.11.1 :Endpoint that shows available ports

2.11.2:Build an offline Electroblocks setup

2.11.3:Arduino compilation system for the Electroblocks

2.12: Change block colours

3.1: Fixed the generation of duplicate board setup Python code

7

Chapter 1: Introduction

Electroblocks is a practical and innovative platform aimed at making electronics and

programming with Arduino more accessible and engaging. It features modular, plug-and-play

components that connect easily, removing the need for complex wiring setups. Fully compatible with

the Arduino ecosystem, users can program their projects using the Arduino IDE. With a clean, user-

friendly interface and clearly labeled modules, Electroblocks is suitable for learners of all experience

levels. It's particularly well-suited for STEM education, supporting a variety of projects—from basic

circuits to more advanced systems. By blending the flexibility of Arduino with a modular, simplified

hardware design, Electroblocks encourages exploration, creativity, and easy prototyping for both

beginners and seasoned makers.

1.1 Project Overview

During the internship, we collaborated on an existing Electroblocks project that was already

in development but required new features and improvements. Our main focus was on extending

existing functionalities and translating them into Python-based implementations. Alongside this, we

also brainstormed and introduced additional features to enhance the overall usability of the platform.

Debugging and testing were a continuous part of the process, helping us refine the code and improve

stability.

8

Chapter 2: Feature Additions

During the Internship, we added a lot of features to the project, most of these features

aimed at extending the already existing blocks to generate code in Python language on the

ElectroBlocks platform.

2.1 DROPDOWN MENU FOR LANGUAGE SELECTION

When we access the platform, we require a means/option to switch between different languages

offered by the platform. This dropdown also dynamically enables and disables specific blocks

that don’t work with the pyFirmata protocol.

Fig 2. 1

Here’s how the code handles the language change:

Fig 2. 2 Changes to the `workspace.helper.ts`

Language Switching Process:

1. User Settings

● The language preference is stored in `settingsStore` and persists in the database.

● A dropdown in the settings UI allows the user to choose between C and Python.

9

2. Code Generation

Fig. 2.1 1 Changes to the `register.ts`

● In workspace.helper.ts and registerEvents.ts, the settings.language value

determines which language's code is generated:

● C code is generated using Blockly["Arduino"].workspaceToCode.

● Python code is hardcoded for invalid blocks print("Hello, World!")

3. Displaying the Code

● In `code/+page.svelte`, the `settings.language` value is used to:

● Highlight the correct code syntax using `highlight.js`.

● Dynamically update the ` <code> ` block to match the selected language.

● Ensure the correct code is displayed to the user.

4. Reactive Updates

● Subscriptions to `settingsStore` ensure that any changes to the selected language

immediately reflect in:

● The displayed code.

● The generated code.

● The clipboard functionality.

2.2. MAIN PYTHON CODE GENERATOR

For generating the Python Code, we required a main Python generator to handle the conversion

of Blockly blocks. It is achieved by defining reserved keywords, operator precedence and

various utility methods for generating syntactically correct and semantically meaningful Python

code.

Key features and functionality:

1. Initialization of Python Generator:

▪ The file initializes a new Python generator through

`Blockly["Python"]`.

▪ Reserved Python keywords and built-in names are added to avoid

naming conflicts in the generated code.

2. Operator Precedence:

▪ Operator precedence levels specific to Python are defined. These

levels help ensure that the generated code respects Python's

precedence rules when combining multiple operations.

▪ References:

10

▪ https://neil.fraser.name/blockly/custom-blocks/operator-

precedence

▪ https://docs.python.org/3/reference/expressions.html#operato

r-precedence

3. Initialization of Workspace:

▪ The `init` method prepares the generator for use in a Blockly

workspace.

▪ It:

▪ Sets up variable mapping and initializes them based on types

such as numbers, strings, booleans, and colors.

▪ Prepares dictionaries to store imports, setup code, and

function names.

4. Code Finalization:

▪ The `finish` method is responsible for compiling the final Python

code.

▪ It combines:

▪ Libraries (imports)

▪ Setup code

▪ Variable initializations

▪ User-defined code

▪ Functions

▪ Special development variables are added if certain features

like Bluetooth or Serial are used.

5. Utility Methods:

▪ quote_: Properly escapes strings to create valid Python string literals.

▪ scrub_: Handles comments and processes connected blocks to

generate a seamless Python code sequence.

▪ scrubNakedValue: Adds a newline to values that aren't part of a

larger expression.

6. Dynamic Typing and Variable Initialization:

▪ Variables are initialized dynamically based on their types (e.g.,

numbers default to 0, strings to "", booleans to False, and colors to

(0, 0, 0)).

7. Comment Management:

▪ The scrub_ method ensures that comments on Blockly blocks are

appropriately translated into Python comments.

2.3 IMPLEMENTING PYTHON GENERATORS FOR VARIOUS BLOCKS

Once the main generator (`python.ts`) was completed, individual generators were to be

implemented for individual blocks and categories for blockly, to generate their equivalent

Python code.

2.3.1 Logic Block

https://neil.fraser.name/blockly/custom-blocks/operator-precedence
https://neil.fraser.name/blockly/custom-blocks/operator-precedence
https://docs.python.org/3/reference/expressions.html#operator-precedence
https://docs.python.org/3/reference/expressions.html#operator-precedence

11

Fig. 2.3 1 Logic Block

1. logic_boolen

● Before: Only Arduino code generation was defined for `logic_boolean`

blocks.

● Added: Python code generation for `logic_boolean`:

● Python `True` and `False` values are returned based on the 'bool ' field

value of the block.

2. logic_compare

● Before: Only Arduino code generation was defined for `logic_compare`

blocks.

● Added: Python code generation for `logic_compare`:

● This generates Python comparison operators (==, !=, <, <=, etc.) for

logical comparisons.

12

● It uses the `OP` field to determine the operator and constructs a Python-

compliant comparison expression.

3. logic_operation

● Before: Only Arduino code generation was defined for `logic_operation`

blocks.

● Added: Python code generation for `logic_operation`:

● This generates Python comparison operators (==, !=, <, <=, etc.) for

logical comparisons.

● It uses the `OP` field to determine the operator and constructs a Python-

compliant comparison expression

4. control_if

● Before: Only Arduino code generation was defined for `control_if`

blocks.

● Added: Python code generation for `control_if`:

13

● Handles Python `if`, `elif`, and `else` statements.

● The `IF` and `DO` fields are used to generate conditions and their

corresponding code blocks.

● Supports multiple conditions (`if`, `elif`) and an optional `else`.

5. Similarly, we implement `control_ifelse`, `logic_negate`.

The changes ensure that Blockly can now generate Python code for these blocks in addition to

Arduino code. Proper handling of operator precedence, default values, and conditional logic is

included.

14

2.3.2 Variables Block

Fig. 2.3 2 Variables Block

This block defines how variable related blocks, such as those for setting and

getting numbers, Booleans, strings and colours —are translated into executable

code.

While creation of the blocks, the code ensures that when a user assigns a value

to a variable in Blockly, it generates the corresponding code line (eg., ̀ variable

= value`; for Arduino or `variable = value` for Python), using a predefined

value if no specific input is provided.

15

2.3.3 Text Block

Fig. 2.3 3 Text Block

This block defines how text related functions are handled by Electroblocks, it

handles various functions such as:

● Parsing input to text based on a regex expression, such as:

● Joining multiple text blocks or sentences,

● Retrieve text: based on multiple parameters such as the ‘separating character’

and position of a word.

● Conversion of text to numbers, like:

● Finding out whether a string is empty or not.

● Converting a string to Uppercase or Lowercase.

It utilizes functions like `text_join`, ‘text_length’, ‘text_isEmpty’,

‘number_to_string’, ‘text_changeCase’, ‘parse_string_block, which are

defined at [1] along with all the code as well as several in-built functions from

Python itself such as `.lower()`, `.upper()` etc.

In summary, these Python generators take the user’s Blockly visual blocks and

turn them into valid, readable Python code that mirrors the intended text

operations. This allows non-programmers to build text-manipulating programs

visually, while the system handles the translation into correct Python syntax

behind the scenes.

16

2.3.4 Math Block

Fig. 2.3 4 Math Block

This block defines various mathematical operation functions that are supported

by ElectroBlocks through Python’s in-built `math` module, it handles

functions such as:

● Setting a variable for an integer

● Finding out whether a number is even or odd.

● Handling basic arithmetic operations (add, subtract, multiply,

divide power) between two inputs.

● Rounding a number to the nearest whole number using

Python functions like: `round()`, `math.ceil()`, `math.floor()`

from Python’s `math` module.

17

2.3.5. Color Block

Fig. 2.3 5 Color Block

This block adds the ability for the system to work with colors in ElectroBlocks.

It allows users to pick, create, and use random colors in their projects using

Python code.

The Python Generators work by creating a special color object (called RGB)

for you from the `RGB` dataclass.

● Picking Custom colors: When the user picks a color from the

color palette it gets parsed by the `hexToRgb` function [2(a)],

which then returns a valid numerical value and is then passed

to the `RGB` dataclass, which returns the equivalent Python

tuple for it.

● Random Colors: When the user wants a random color in

ElectroBlocks. The Python generator used the `random`

module to assign a random value from 0-255 for the R,G,B

components of the color [2(b)].

18

2.3.6. Pins Block

Fig. 2.3 6 Pins Block

This block controls an Arduino pin, letting you turn it on or off. It's like

flipping a light switch, but for a piece of the Arduino.

The Python generators take this block and turn it into Python code that an

Arduino understands. They look at what you set in the block (which pin, on

or off) and write the correct Python commands so your Arduino does exactly

what you want.

As we need pyFirmata, we first initialize pyFirmata for the board setup:

● Digital Write: To write or give input to a specific pin we use

pyFirmata’s methods like `board.digital[pin].write(state)` or

`board.get_pin('d:pin:p').write(value)`, so the Arduino can

follow the commands.

● In Later parts, we utilize the ElectroBlocks library for digital

and analog writes as we face some limitations with pyFirmata.

[2]

19

2.3.7. Analog Sensor

Fig. 2.3 7 Analog Sensor Block

This code adds new features to a project that helps control electronics using

blocks (like LEGO pieces, but for programming). Now, users can set up and

read sensors not only for Arduino devices but also for Python-based boards.

The update makes it easy to use both types of devices, making the system work

for more people and different hardware.

● analog_read_setup: Generates Python setup code for analog input pins,

creating a pin variable and enabling reporting (required for reading

analog values). Uses the `board.get_pin(a:pin:mode)` from

`pyFirmata`.

● analog_read: Generates Python code to read the value from the

specified analog pin variable.

20

2.3.8. Stepper Motor

Fig. 2.3 8 Stepper Block

This code helps a visual programming tool (like Blockly) turn “blocks” that

represent stepper motor actions into real code for Arduino and Python. It lets

users set up and control a stepper motor by dragging blocks, and then

automatically creates the code needed to run the motor in either Arduino or

Python.

● stepper_motor_setup: it extracts user-specified settings (step count,

speed, pin numbers) and generates borad initialization code:

● stepper_motor_move: it generates code to move the stepper motor by

a given number of steps that are specified by the user.

21

2.3.9. Servo Motor

Fig. 2.3 9 Servo Block

This block defines how a servo motor connected to a specified pin is controlled

by ElectroBlocks based on the degree of movement specified by the user.

● rotate_servo: It generates the code to move the motor itself based on the pin

it’s connected to and uses the degree block to rotate to the specified degree. It

also records the most recent degree value so that other blocks can access the

last known angle set by `rotate_servo`.

● servo_read_degrees:It generates a variable that keeps track of the angle that

was sent to the servo, as the physical servos don’t usually support position

feedback, i.e., allow us to read the value directly from it.

● Servo_move_adafruit_tico: This generates the code specifically for Adafruit

servos, through `servo_adafruit(pin)` from pyFirmata.

6. RFID:

The RFID blocks allow Blockly to generate code (for Arduino or Python) that:

22

● rfid_setup: Initializes the RFID reader on specified TX/RX pins.

● rfid_scan: Checks if an RFID tag is present.

● rfid_tag: Reads the raw tag data as a string.

● rfid_card: Extracts the numeric card number from the tag.

7. Motion Sensor:

ultra_sonic_sensor_setup

● Sets up the Trig and Echo pins for an ultrasonic sensor.

● Adds Python code to:

▪ Import pyfirmata, time

▪ Initialize the board and start iterator

▪ Configure pin modes (OUTPUT for Trig, INPUT for Echo)

▪ Define the ultra_sonic_distance() function that sends a pulse and

measures the echo time to calculate distance.

ultra_sonic_sensor_motion

● Returns the result of calling the ultra_sonic_distance() function — i.e., the

measured distance in cm.

8. Joystick:

joystick_setup

● Sets X and Y pins (analog) and button pin (digital).

● Enables analog reporting for joystick movement.

● Sets digital input for button.

● Defines helper variables and a function set_joystick_values() that:

● Calculates joystick angle and distance.

● Updates:

o internal_variable_degrees → direction (0–360°)
o internal_variable_isJoyStickEngaged → joystick moved or not
o internal_variable_isJoystickButtonPressed → button pressed

(LOW) or not

joystick_angle

● Returns:

The joystick angle in degrees (0–360°), or 0 if not engaged.

joystick_button

23

● Returns:

True if joystick button is pressed, otherwise False.

 joystick_engaged

● Returns:

True if joystick has been moved beyond a threshold, otherwise False.

9. Buttons:

button_setup

● Sets up a GPIO pin as a button input.

● Uses INPUT or INPUT_PULLUP depending on user setting.

● Adds appropriate pinMode() (Arduino) or btn_pin.mode = INPUT (Python

using pyFirmata).

is_button_pressed

● Returns a boolean expression checking if the button is pressed.

● Uses digitalRead(pin) == LOW if INPUT_PULLUP, or == HIGH otherwise

(Arduino).

● Uses .read() == 0 or .read() == 1 (Python) depending on pull-up.

release_button

● Simulation-only placeholder block. No actual code is generated.

● Used for: GUI or logic simulation in Blockly, not hardware interaction.

10. Digital Sensor:

digital_read_setup

● Sets up a digital pin for input reading.

● Imports pyfirmata and initializes the Arduino board and iterator.

● Configures pin PIN as a digital input (for switches, sensors, etc.).

● Stores the pin object as digital_read_pin_<PIN>.

The changes ensure that Blockly can now generate Python code for these blocks in addition to

Arduino code. Proper handling of operator precedence, default values, and conditional logic is

included.

24

 2.4 UPLOADER TRANSITION: AVRGIRL TO UPLOADMULTITOOL

 Changed from Avrgirl uploader to UploadMultiTool uploader for Arduino. By

switching uploaders, we were able to upload Arduino code more easily, with support for all

updated drivers and modules.

Fig 2.5 Uploader Transition: Avrgirl to UploadMultiTool

● Upload-MultiTool supports a wider range of microcontrollers, including ESP32 and newer

Arduino boards, unlike Avrgirl which had limited board support

● Upload-MultiTool auto-detects and works with updated serial drivers across all platforms,

reducing setup issues for users

Uploader Transition: Avrgirl → Upload-MultiTool:

● Avrgirl: Used for basic serial uploading to older Arduino boards.Anticlockwise: Rotates the

entity to the left.

● Upload-MultiTool: A modern, flexible uploader supporting a wider range of microcontrollers

with better serial support.

Steps to Implement the Uploader Change

1. Update Uploader Library:

25

o Replace avrgirl-arduino with @duinoapp/upload-multitool in your

codebase.

o Ensure dependencies are updated in package.json and installed via npm.

2. Redesign Upload Logic:

o Replace Avrgirl’s upload syntax with Upload-MultiTool’s upload()

and WebSerialPortPromise.requestPort() API.

o Implement new config parameters such as tool, cpu, speed, and bin for the

specific microcontroller.

3. Enhance Cross-Platform Support:

o Use Web Serial API to ensure compatibility across browsers (e.g., Chrome,

Edge).

o Check for support using WebSerialPortPromise.isSupported() and

handle fallback gracefully.

4. Test and Validate Upload Flow:

o Test upload on various boards like Arduino Uno, ESP32, and

NodeMCU.

o Log output using stdout.write() to verify hex writing, port detection, and board

response.

o Monitor upload stability, speed, and compatibility improvements over Avrgirl

26

2.5. SWITCHING COMPILATION BACKEND: ELECTROBLOCKS TO DUINO

 Created visual flow to demonstrate both compilation methods. A visual representation to

illustrate the transition from ElectroBlocks built-in compiler to the Duino cloud-based compiler helps

users understand the new compilation flow effectively.

Fig 2.5 Implementation of Compilation Backend Transition Visualization

Objectives:

 Visually demonstrate the difference between the legacy ElectroBlocks compiler and

the new Duino cloud-based compiler..

Key Elements:

1. Compilation Flow Diagram: Use clear flowcharts or icons to represent each stage of compilation
(input → processing → output).

2. Before & After Comparison: Create a split-view or timeline animation showing the compilation process

using ElectroBlocks (offline/native) vs. Duino (cloud-based/API).

3. Animation Phases:

o Initial Phase: Display code input from the user.

o ElectroBlocks Compilation: Show local or simulated

compilation with limited board support.

o Transition Phase: Indicate changeover (e.g., arrow or switch icon).

27

 o Loop/Replay Option: Allow looping to repeatedly

show the change in compilation flow.

Implementation Steps:

1. Animation Planning:

o Visualize ElectroBlocks using an icon of a desktop or chip with limited outputs.

o Visualize Duino using a cloud, API endpoint, and a code-to-hex arrow.

o Highlight differences in speed, compatibility, and output clarity.

2. User Interface:

o Place the animation in upload/compile button area or onboarding screen.

3. Refinement:

o Make sure transitions between steps are smooth and visually engaging..
4. Testing and Feedback:

o Share with users to verify if it improves understanding of the compiler transition.

 By following these steps, you can create an effective and user-friendly mode that clearly communicates

the transition from ElectroBlocks native compiler to Duino’s cloud-based solution, enhancing both

understanding and trust in the new system.

.

28

2.6. DEVELOPMENT OF CUSTOM UPLOAD LIBRARY FOR ELECTROBLOCKS

 This feature allows ElectroBlocks to intelligently select and load the necessary

libraries based on the structure and header content of the user’s code. It enhances flexibility

and supports a variety of microcontroller configurations and use cases without requiring user

interaction on the frontend.

 fig 2.6 Development of Custom Upload Library for ElectroBlocks

Steps to Implement the Library Auto-Selection

1. Analyze Code Header:

 o Extract key identifiers (e.g., #include, import, or specific syntax).

 o Detect the library dependencies directly from the header or keywords in the user’s code.

29

2. Map Header to Library:

 o Create a backend mapping system that links code headers to corresponding
library files.

 o Avoid redundancy by checking for already-included libraries.

3. Load Library Programmatically:

 o Automatically inject the required library files into the code compilation process.

 o Avoid redundancy by checking for already-included libraries.

4. Update Compilation Flow:

 o Integrate this logic before passing the code to the compiler (Duino backend).

 o Ensure compatibility with cloud-based compilation by structuring payloads correctly.

5. Test and Validate:

 o Rigorously test the mapping logic with various code samples.

 o Ensure compatibility with cloud-based compilation by structuring payloads correctly.

Conceptual Approach

1. Header-Based Detection:

· The backend scans for specific keywords or structure in the code to infer

which libraries are needed.

· Examples: #include<LiquidCrysrtal.h> . It takes library which match “LiquidCrysrtal”

like header.

2. Backend-Driven Decision Logic:

· The user doesn’t need to choose libraries manually.

· The backend ensures accuracy and prevents compilation

errors due to missing dependencies..

3. Modular and Scalable Design:

· Easily extendable to support more libraries in the future.

· Structured to support Arduino, ESP32, and ESP8266 platforms.

30

User Experience Considerations

1. No Manual Configuration:

 o Users simply write code as usual. Library management happens automatically

in the background.

2. Error Handling:

 o If no matching library is found, a descriptive error message is returned to

the frontend or console.

3. Consistency and Reliability:

 o Ensures that users get a smooth experience across different boards and
peripherals without extra setup.

By implementing backend-based automatic library selection, ElectroBlocks offers a seamless

and intelligent experience for code compilation. This architecture removes the need for

frontend dropdowns or manual intervention, ensuring higher reliability, less user confusion,

and faster development cycles.

31

2.7 DROPBOX FOR ESP32 MICROCONTROLLER SELECTION

 When users access the platform, it is essential to provide an option to switch between

different supported microcontrollers, such as ESP32, Arduino MEGA, and Arduino UNO.

This dropdown allows the platform to adapt its behavior based on the selected board.

 fig 2.7 Dropbox for ESP32 microcontroller selection

Key Functionalities:

·Microcontroller Dropdown:

Offers a list of supported boards (e.g., Arduino UNO, ESP32,

Arduino MEGA) for user selection.

· Dynamic Block Management:

Upon selection, the system enables only those blocks or features

compatible with the selected microcontroller.

For example, certain blocks not supported by ESP32 will be hidden or disabled.

· Backend Integration:

The selection updates the configuration used for compiling and uploading

code.

32

· Automatic Adaptation:

Prevents users from mistakenly using incompatible blocks, ensuring

a smooth and error-free development experience.

2.8 TOOLBOX VISIBILITY

 One of the essential usability features implemented was Toolbox Visibility Management based

on the selected board type and programming language. In a visual programming platform like

ElectroBlocks, users rely on the toolbox to access available blocks for their target hardware and coding

language. Displaying irrelevant blocks not only creates confusion but also increases the chances of code

generation errors. Hence, implementing dynamic toolbox filtering was critical to enhancing the user

experience.

 2.8.1 Problem Identification

Initially, ElectroBlocks displayed all available blocks in the toolbox regardless of the selected board

(Arduino Uno) Fig 2.5.1 or language (C or Python). This caused several issues:

● Users could drag blocks that were not supported by their chosen board or language.The visual

environment became cluttered with unnecessary options.

● Certain blocks generated invalid or non-compilable code when used with unsupported board

configurations.

This led to the need for a dynamic system that would filter and update the toolbox items in real-time

based on the selected board and language.

2.8.2 Implementation Overview

To solve this, I worked on modifying the logic in multiple files across the ElectroBlocks codebase[4].

The primary changes were made in the following files:

● src/routes/blockly/settings/+page.svelte

● src/stores/code.store.ts

http://code.store.ts/

33

● src/firebase/model.ts

 Fig. 2.8.1

2.8.3 Outcome

With these changes:

● The toolbox now automatically adapts to the selected board and language.

● Irrelevant blocks are hidden, improving usability and reducing confusion.

● Errors caused by unsupported blocks in the workspace were minimized.

● The UI became more intuitive and aligned with actual hardware capabilities.

2.9 RESTRICTION OF COMPILATION TO C

 As part of the Python integration into ElectroBlocks, a critical requirement was to ensure that

code compilation (upload) is permitted only for the C language, since ElectroBlocks' current upload

mechanism is designed exclusively for C/C++ (Arduino) environments and does not support Python

uploads.Allowing users to initiate uploads while in Python mode would result in failure, confusion, or

unexpected behavior. Hence, a safeguard was implemented to restrict the upload feature to only when

C is selected as the programming language, and to gracefully notify the user if they attempt otherwise.

2.9.1 Workflow

Here is how the logic now works after my contribution:

1. User selects a language in the UI.

2. settings.language is updated and synced across components.

3. When the user clicks "Upload":

34

4. Message.svelte checks selectedLanguage as shown Fig. 2.6.1

5. If "c": upload proceeds.

6. If "python": upload is blocked, and the user is alerted.

 Fig. 2.9.1

2.9.2 Implementation overview

To solve this, I worked on modifying the logic in multiple files across the ElectroBlocks codebase[5].

The primary changes were made in the following files:

● src/components/electroblocks/arduino/Message.svelte

● src/routes/(blockly)/settings/+page.svelte

● src/stores/settings.store.ts

● src/core/blockly/registerEvents.ts

● src/core/blockly/toolbox.ts

● src/core/serial/upload.ts

2.9.3 Impact

● Prevents upload-related errors in unsupported Python mode as shown in Fig. 2.6.2.

● Provides clear user guidance and error handling.

● Establishes groundwork for future Python upload support.

● Aligns with ElectroBlocks' principle of beginner-friendliness by avoiding silent failures.

35

 Fig. 2.9.2

2.10 JUPYTER NOTEBOOK FOR ELECTROBLOCK DEMO

 As part of the Python integration effort, one of the important deliverables was to demonstrate

ElectroBlocks Python functionality through Jupyter Notebook examples such as LEDs, RGB LEDs,

and servo motors. These examples are intended to help users, especially beginners, understand how to

interact with hardware using Python code generated via ElectroBlocks.. This is focused on creating a

few well-structured, easy-to-understand hardware control examples using ElectroBlocks for

educational and demonstrative purposes, hosted under the FLOSS Arduino Book repository by

FOSSEE[6].

2.10.1 Implementation

To implement the Jupiter notebooks,the following prerequisites were to ensured

● Each notebook should begins with the installation command:

to install the ElectroBlocks Python Library.

● Firmware Updated

The microcontroller Arduino Uno was flashed with the correct firmware as shown in the Fig

2.7.1,2.7.2 that allows ElectroBlocks Python commands to communicate with it.

https://github.com/FOSSEE/FLOSS-Arduino-Book/tree/master
https://github.com/FOSSEE/FLOSS-Arduino-Book/tree/master

36

 Fig 2.10.1 Fig 2.10.2

● Arduino Libraries Installed:

While the notebooks focus on the Python code side, Arduino library installation is necessary

for projects using both C and Python. The following libraries were recommended and noted in

the documentation:

Library GitHub Link

LiquidCrystal_I2C https://github.com/johnrickman/LiquidCrystal_I2C

FastLED https://github.com/FastLED/FastLED

LED Matrix https://github.com/shaai/Arduino_LED_matrix_sketch

DHT Sensor https://github.com/adafruit/DHT-sensor-library

IRremote https://github.com/Arduino-IRremote/Arduino-IRremote

Stepper https://github.com/arduino-libraries/Stepper

https://github.com/johnrickman/LiquidCrystal_I2C
https://github.com/FastLED/FastLED
https://github.com/shaai/Arduino_LED_matrix_sketch
https://github.com/adafruit/DHT-sensor-library
https://github.com/Arduino-IRremote/Arduino-IRremote
https://github.com/arduino-libraries/Stepper

37

● Folder is created with three notebooks LED Blink,RGB LED Color Cycle,Servo Sweep as

shown in Fig 2.7.3 Each notebook was created with detailed code cells and markdown

instructions to help users set up and run hardware interaction projects.

 Fig 2.10.3

1. First notebook was created with markdown instructions to help users set up that is block formation

as shown in Fig 2.7.4

Fig 2.10.4

38

and detailed code cells where the code is copied from the Electroblock demo page for the code

language is selected as python and respective led blink block formation as shown Fig 2.7.5 and run

hardware interaction projects.

Fig 2.10.5

2. Second notebook was created with markdown instructions to help users set up that is block

formation as shown in Fig 2.7.6

Fig 2.10.6

39

and detailed code cells where the code is copied from the Electroblock demo page for the code

language is selected as python and respective RGB Led Cycle block formation as shown Fig 2.7.7

and run hardware interaction projects.

Fig 2.10.7

3. Each notebook was created with markdown instructions to help users set up that is block

formation as shown in Fig 2.7.8

Fig 2.10.8

40

and detailed code cells where the code is copied from the Electroblock demo page for the code language

is selected as python and respective Servo motor Cycle block formation as shown Fig 2.7.9 and run

hardware interaction projects.

Fig 2.10.9

While running the jupyter notebook check whether the kernel status is idle and also check is it trusted

in the top right corner as shown in the Fig 2.7.10.The final ElectroBlocks Python examples for Servo,

RGB LED, and LED Blink is shown in the reference link[7].

Fig 2.10.10

2.10.2 Impact

41

● Allows users to take their visually programmed Python code and run it in a Jupyter

environment[6].

● Enhances documentation and experimentation by enabling markdown notes, cell-based

debugging, and visual outputs.

● Makes ElectroBlocks suitable for educational institutions that rely heavily on Jupyter

Notebooks for lab work and tutorials.

2.11 ELECTROBLOCKS COMPANION APP

2.11.1 Endpoint to show the available ports

This system consists of:

● A backend REST API endpoint for listing ports (/ports).

● A dynamic tray menu that reflects all connected ports.

● A refresh mechanism to update the port list at runtime.

● A detailed information dialog for each selected port.

1. Tray Menu Port Listing

The Electron tray menu dynamically shows a list of available serial ports (COM, ttyUSB, etc.).

● Each menu item displays the port path and manufacturer (e.g., /dev/ttyUSB0 (Arduino LLC)).

● Clicking on a port opens a dialog box showing detailed information such as:

Path Manufacturer Serial Number Vendor ID Product ID

2. Refresh Ports

● A dedicated "Refresh Ports" option is added below the port list.

● When clicked, it updates the tray menu with the current list of ports without restarting the

app.

3. View JSON Endpoint

● A "View Ports (JSON)" option is also added to the tray.

● Opens the API response in the browser at “http://localhost:4000/ports” for debugging or

advanced users.

4. Express /ports Endpoint

● Serves a list of all detected serial ports in JSON format.

42

Fig.2.11.1

Endpoint using express.js and serialport function

 Fig.2.11.2

Tray-app that shows the ports endpoint

43

 Fig.2.11.3

JSON format of the available ports

 Fig.2.11.4

Port info by clicking the ports

2.11.2 Build a offline Electroblocks setup

This integration consists of:

● A customized build folder that embeds all fonts, styles, icons, and scripts.

● An automated unzip-and-cleanup system for build.zip.

● Static hosting of the interface using Express.

44

1. CDN Replacement and Build Folder Generation

● A complete audit of the ElectroBlocks front-end revealed external dependencies which were

removed and replaced with local assets.

Original Replacement

Google Fonts (via fonts.googleapis.com) Local .woff2 files under /fonts/biryani/

Bootstrap CSS Local bootstrap.min.css in /css/

Font Awesome CSS/Fonts Local copies in /font-awesome/

● app.html and global.css were edited to reference local files using relative paths (/static/css/...,

/fonts/...).

● After replacing these dependencies, the build was generated using:

npm run build

● This produced a self-contained build/ folder, ready to be served locally.

2. Packaging and Deployment

To ensure the final app remained lightweight and easy to distribute:

● The build/ folder was zipped into build.zip.

● Only the zip was shipped with the Electron app binary.

● On the first launch of the app, this zip is:

○ Automatically extracted to a /build/ directory.

○ Deleted immediately after extraction to save disk space.

3. Express Server Integration

● The Electron app's built-in Express server was configured to host the extracted build folder:

“expressApp.use(express.static(path.join(__dirname, "build")));”

● When users click “Open ElectroBlocks” from the tray, it launches:”http://localhost:4000/”

● This opens the offline version of ElectroBlocks in their default browser, powered entirely by

local files.

45

 Fig.2.11.5

offline Electroblocks

2.11.3 Arduino compilation system for the Electroblocks companion app

1. File Watcher System (startInoWatcher)

● A periodic check (every 3 seconds) scans the user's Downloads folder for a file named

electroblocks_code.ino.

● If found:A folder named downloads/electroblocks_code/ is created if it doesn't exist.

● The .ino file is moved to this folder.

● The tray menu is rebuilt to show the Compile option.

● Why this matters: Ensures users don’t need to perform any file management manually. The

system maintains proper folder structure required by Arduino CLI (sketch folder name must

match .ino file name).

46

 Fig.2.11.6

Arduino CLI: Installation Guide

● In order to compile .ino files headlessly, the Arduino CLI must be installed and available in

your system PATH. Here's how to install it for your operating system.

● Go to the official Arduino CLI releases page:

https://arduino.github.io/arduino-cli

● Download the appropriate ZIP for Windows (e.g., arduino-cli_latest_Windows_64bit.zip).

● Extract the ZIP to a folder of your choice (e.g., C:\arduino-cli).

● Add the folder to your system PATH

● Open Command Prompt, and run: arduino-cli version

Post-Installation Setup

● Initialize CLI configuration:

○ arduino-cli config init

● Install the Arduino AVR core (e.g., for Uno):

○ arduino-cli core update-index

○ arduino-cli core install arduino:avr

2. Arduino CLI Compilation Endpoint (/compile)

● The Express back-end exposes a REST API at /compile. When triggered:

● By default it is UNO if the different is connected it will automatically detect

https://arduino.github.io/arduino-cli

47

 Fig.2.11.7

● Next ,It runs the following command: (for now choose the default one)

”arduino-cli compile --fqbn arduino:avr:uno --output-dir downloads/electroblocks_code

downloads/electroblocks_code”

● On success, it returns JSON including:

 hexFileName

Full path to the .hex file

○ If it fails, it logs the error and returns a 500 response with a detailed message.

 Fig.2.11.8

48

● Why this matters: Makes compilation one-click (via tray or REST), removes dependency on

Arduino IDE, and supports integration with CI/CD or custom up-loaders.

3. Download Compiled HEX File (/download-hex)

● A dedicated endpoint allows users or the frontend to download the compiled .hex file:

● Ensures .hex exists before sending.

● Triggers a browser download with correct filename.

 Fig.2.11.9

● Why this matters: Enables integration with online firmware uploaders or bootloaders.

4. Tray Menu Integration with Local_Compile Option

● The Electron tray automatically adds a “Local_Compile” option only if the .ino file exists in

the correct path:

● Clicking it opens the /local_compile endpoint in a browser.

● Prevents invalid states (e.g., trying to compile when no .ino is present).

● Why this matters: Maintains context-aware UX—shows relevant options only when

meaningful.

5. Tray Menu Integration with Compile Option

● The Electron tray always includes a “Compile” option, regardless of whether the .ino file

exists.

● Clicking it opens the /compile endpoint in the default browser.

● The /compile route itself handles file existence checks and responds with an appropriate

message if the .ino file is missing.

49

 Fig.2.11.10

 Fig.2.11.11

50

 Fig.2.11.12

 Fig.2.11.13

6. Functional Flow Overview

● User downloads electroblocks_code.ino from website

● App (running in background) detects new file in Downloads/

● Moves .ino to downloads/electroblocks_code/electroblocks_code.ino

● Tray menu updates to show "Compile"

● User clicks "Local_Compile" (via tray or browser endpoint)

● Arduino CLI compiles code → .hex file generated

● User (or frontend) accesses /download-hex to get the firmware.

● The "Compile" menu item in the tray is always shown, regardless of .ino file presence.

● On click, it opens /compile, which compiles the sketch using Arduino CLI and returns the

.hex content.

2.12 UPDATE THE COLORS OF THE BLOCKS BASED ON SELECTED LANGUAGE

51

To improve the overall usability, visual clarity, and language contextualization of the

platform, we implemented a robust dynamic color theme switching mechanism that responds to the

selected programming language (Arduino/C++ or Python).

Implementation Details

1. Enum Definitions for Language-Specific Color Palettes

Two enums were defined to hold the color codes for each supported language:

export enum COLOR_THEME_C {

 SENSOR = '#505bda',
 ARDUINO_START_BLOCK = '#b063c5',

 COMPONENTS = '#512c62',

 ARDUINO = '#7b5184',

 DATA = '#57355d',

 VALUES = '#505bda',

 CONTROL = '#b063c5',

}

export enum COLOR_THEME_PYTHON {
 SENSOR = '#610C9F',

 ARDUINO_START_BLOCK = '#940B92',

 COMPONENTS = '#DA0C81',
 ARDUINO = '#E95793',

 DATA = '#7E2185',

 VALUES = '#A1126F',

 CONTROL = '#C41E75',

}

Each enum serves as a centralized, immutable theme definition. Block types such as SENSOR,

DATA, CONTROL, etc., are mapped to specific hex color codes for consistency and clarity.

2. Reactive Store for Current Theme State

To enable real-time theme updates across the application, a writable Svelte store was created:

export const colorThemeStore = writable<typeof COLOR_THEME_C | typeof

COLOR_THEME_PYTHON>(COLOR_THEME_C);

This store holds the active color theme and is subscribed to by all components that require access to

current color values. When the theme changes, all dependent components automatically re-render

with the new color values—eliminating manual updates.

3. Initialization Based on Default Language Settings

At runtime, the theme is initialized using the user’s saved language preference (from Firebase or local

storage):

52

let COLOR_THEME: typeof COLOR_THEME_C | typeof COLOR_THEME_PYTHON =

 defaultSetting.language === 'Python' ? COLOR_THEME_PYTHON : COLOR_THEME_C;

colorThemeStore.set(COLOR_THEME);

This ensures that when the app is loaded, the UI reflects the correct theme based on whether the user

was last using Python or Arduino mode.

4. Dynamic Theme Switching via settingsStore Subscription

● A reactive subscription to settingsStore was added to monitor runtime changes to the

programming language. When a change is detected, the updateTheme function updates the

active theme

● This ensures that if a user switches the language setting mid-session, the color theme adapts

immediately without requiring a page reload or manual refresh.

5. Usage Across the Application

Components that render visual blocks or UIs based on the current theme simply subscribe to

colorThemeStore. This ensures full reactivity—any changes to the store instantly reflect in the

component styling.

53

Chapter 3: Bug Fixes

During the Feature Additions, some features showed unintended results and/or duplication

and were later fixed by us.

3.1 FIXED THE GENERATION OF DUPLICATE BOARD SETUP PYTHON CODE

While adding the Python Generators for various blocks [Chapter 2], we had added explicit imports of

modules like `pyFirmata` and setup code for the `pyFirmata` module in every block we needed. This

was inefficient and was later addressed by adding these imports and setup configuration to the main

Python Generator itself, but later resulted in the Blocks from Addons category to generate duplicate

code.

● Addressing duplicate board configurations:

The following snippet was added to the main generator, which resulted in the dynamic configuration

of the board, without needing to explicitly define a method in every generator that needed it. [3]

● Addressing duplicate module imports:

The following snippet was also added to the main generator among others, which fixed the duplicate

import issues. [3]

54

Chapter 4: Conclusion

This project was truly something special—like crafting a piece of art that we genuinely

enjoyed building together. Adding new features, experimenting with ideas, and watching it evolve

was not only fun but also a rich learning experience for all of us. We’re deeply grateful to our mentors

for their constant support and thoughtful guidance throughout the journey.

We genuinely believe this project holds a lot of promise. It has the potential to become a

valuable resource for students and researchers exploring Electroblocks and Arduino. Every bit of

effort and creativity we put into it came from our shared goal of making learning and prototyping

more accessible and enjoyable. We’re excited about the impact this work could have, and how it

might inspire or support others in their own projects.

55

Chapter 5: Future Work

1. This project can be improved further by adding new features and fixing already

present bugs.

2. Create a virtual environment that does not require the internet for people with bad

internet.

3. It should work on a Windows machine as the server. You will need to get both the

main Electro Blocks repo and the Electro Blocks server working.

4. Add support for other languages like Rust, Java for the ease of wider audience.

5. Enhanced data visualization tools.

6. User Interface Enhancements.

7. Add proper and detailed documentation of the entire codebase and how modules like

interlinked to each other to improve understandability and easier debugging and

feature additions.

56

References

1. Implemented variables, color, math, text and loop block generators for python

(GitHub)[Text Block]: [https://github.com/ElectroBlocks/ElectroBlocks/pull/274/files#diff-

d4ca0a399cf6a09f483724314e97316e4ccc3cba58260c4a649c6b65ed00fe92]

a. [Color Block (rgbToHex)]:

[https://github.com/ElectroBlocks/ElectroBlocks/blob/eec4afa5abdfe473

f1657d5d4ac897f318772887/src/blocks/color/generators.ts#L3]

b. [Color Block (random color)]:

[https://github.com/ElectroBlocks/ElectroBlocks/blob/eec4afa5abdfe473

f1657d5d4ac897f318772887/src/blocks/color/generators.ts#L54]

2. ElectroBlocks’s Python Library (GitHub): [https://github.com/ElectroBlocks/python]

3. References for Python’s Operator Precedence Table (World Wide Web)[Main

Python Generator]:

a. Reference for Python’s operator precedence table (World Wide Web):

[https://neil.fraser.name/blockly/custom-blocks/operator-precedence]

b. Reference for Python’s operator precedence table (World Wide Web):

[https://docs.python.org/3/reference/expressions.html#operator-

precedence]

4. https://github.com/ElectroBlocks/ElectroBlocks/tree/noah-toolbox-fix-import

5.https://github.com/ElectroBlocks/ElectroBlocks/pull/277/files

6. https://github.com/FOSSEE/FLOSS-Arduino-Book/tree/master

7.https://github.com/FOSSEE/FLOSS-Arduino-

Book/tree/master/electroblocks_examples

8.https://github.com/ElectroBlocks/ElectroBlocksCompanion.git

9. Bug Fixes (GitHub):

[https://github.com/ElectroBlocks/ElectroBlocks/blob/e119f2419c7a2749a6fa1c8e150d7d6dc

24a4e65/src/core/blockly/generators/python.ts#L81]

https://github.com/ElectroBlocks/ElectroBlocks/tree/noah-toolbox-fix-import
https://github.com/ElectroBlocks/ElectroBlocks/pull/277/files
https://github.com/FOSSEE/FLOSS-Arduino-Book/tree/master/electroblocks_examples
https://github.com/FOSSEE/FLOSS-Arduino-Book/tree/master/electroblocks_examples
https://github.com/ElectroBlocks/ElectroBlocks/blob/e119f2419c7a2749a6fa1c8e150d7d6dc24a4e65/src/core/blockly/generators/python.ts#L81
https://github.com/ElectroBlocks/ElectroBlocks/blob/e119f2419c7a2749a6fa1c8e150d7d6dc24a4e65/src/core/blockly/generators/python.ts#L81

