\ /]

. A
e e r
u n

FOSSEE Semester Long Internship
Report

On
CAD and GUI Development for Osdag

Submitted by

Aryan Gupta
3rd Year B.Tech Student, Department of Computer Science and Engineering
Manipal Institute of Technology, Manipal
Manipal, Karnataka, India

Under the Guidance of

Prof. Siddhartha Ghosh
Department of Civil Engineering

Indian Institute of Technology Bombay

Mentors:

Ajmal Babu M S
Parth Karia
Ajinkya Dahale

July 2, 2025

Acknowledgments

I would like to express my sincere gratitude to everyone who supported and guided me
throughout the course of this project. This experience has been both enriching and
enlightening, and it would not have been possible without the collective efforts and en-
couragement of many individuals and institutions.

I am deeply thankful to the entire Osdag team, especially Ajmal Babu M. S.,
Ajinkya Dahale, and Parth Karia, for their constant support, mentorship, and tech-
nical guidance throughout the project.

I extend my heartfelt thanks to Prof. Siddhartha Ghosh, Principal Investigator
of the Osdag Project, Department of Civil Engineering, II'T Bombay, for his vision and
leadership, which served as the foundation of this work.

I am also grateful to Prof. Kannan M. Moudgalya, Principal Investigator of the
FOSSEE Project, Department of Chemical Engineering, IIT Bombay, for providing
me with the opportunity to contribute to this impactful open-source initiative.

Special thanks to Usha Viswanathan, Vineeta Parmar, and the entire FOSSEE
team for their support, coordination, and assistance during my project tenure.

I would like to acknowledge the support of the National Mission on Education
through ICT (NMEICT), Ministry of Education (MoE), Government of India,
whose initiative and resources made this project possible.

I am also thankful to my peers and colleagues who collaborated with me and con-
tributed to a productive and engaging working environment.

Finally, I sincerely thank my institute, Manipal Institute of Technology, Mani-
pal, and the Department of Computer Science and Engineering for their academic
support and for providing me with the foundation and encouragement to pursue this op-

portunity.

Contents

[I__Introduction

(1.2 FOSSEE Project|

M21

Projects and Activities| Lo

122

Fellowshipg

(1.3 Osdag Software]

M31

Osdag GUI|

2 Purlin CAD

2.3 Python Codef

P31

Description of the Script|

P32

Python Codel . . .

[2.3.3

Explanation of the Codel

2.3.4

Full codel.

[3.3 Python Codel

331

Description of the Seript|00

[3.3.2

Python Code] . . .

© © 00 N N N o ot >

10
10
10
11
11
12
14
14
17
17

[4 Spacing GUI for CADs|

A3 Python Codd . . o v ooooe e

31

A32

3.3

A3

[> Addition of Tooltips in CADs|

5

2.3

Key Implementation Features|

524

Implementation Summary Table[.

[>.3 Technical Specifications|. o000

(5.4 Overview of the Three-Script Interaction|

A1

Phase 1: System Initialization and Setup|

5.4.2

Phase 2: Tooltip Creation and Registration|

5.43

Phase 3: Real-Time Hover Detection and Display|

5.4.4

Complete Workflow Summary|

31
31
31
32
35
35
36
37
37
46
47

48
48
48
48
49
49
50
20
25
26
56
57
29
59
60

[6.2.3 Implementation| 0L

[6.2.4 Key Technical Improvements|.
[6.3 Python Codel

[6.3.1 Description of Seript| oo
[6.3.2 Python Code|
[6.3.3 Explanation of the Code|

[7__Conclusions|

[7.1 Tasks Accomplished| 0.
[7.2 Skills Developed|

[A Appendix]

[A.1 Work Reports|

(Bibliography|

69
69
69

71
71

74

Chapter 1

Introduction

1.1 National Mission in Education through ICT

The National Mission on Education through ICT (NMEICT) is a scheme under the
Department of Higher Education, Ministry of Education, Government of India. It aims
to leverage the potential of ICT to enhance teaching and learning in Higher Education
Institutions in an anytime-anywhere mode.

The mission aligns with the three cardinal principles of the Education Policy—access,

equity, and quality—by:
e Providing connectivity and affordable access devices for learners and institutions.
e Generating high-quality e-content free of cost.

NMEICT seeks to bridge the digital divide by empowering learners and teachers in
urban and rural areas, fostering inclusivity in the knowledge economy. Key focus areas

include:
e Development of e-learning pedagogies and virtual laboratories.

e Online testing, certification, and mentorship through accessible platforms like EduSAT
and DTH.

e Training and empowering teachers to adopt ICT-based teaching methods.

For further details, visit the official website: www.nmeict.ac.in.

https://www.nmeict.ac.in
https://www.nmeict.ac.in

1.1.1 ICT Initiatives of MoE

The Ministry of Education (MoE) has launched several ICT initiatives aimed at students,

researchers, and institutions. The table below summarizes the key details:

No.| Resource

‘ For Students/Researchers

For Institutions

Audio-Video e-content

1 SWAYAM Earn credit via online courses Develop and host courses; accept
credits
2 SWAYAMPRABHA Access 24x7 TV programs Enable SWAYAMPRABHA
viewing facilities
Digital Content Access
3 National Digital Li- | Access e-content in multiple dis- | List e-content; form NDL Clubs
brary ciplines
e-PG Pathshala Access free books and e-content | Host e-books
Shodhganga Access Indian research theses List institutional theses
e-ShodhSindhu Access full-text e-resources Access e-resources for institu-
tions
Hands-on Learning
7 e-Yantra Hands-on embedded systems | Create e-Yantra labs with IIT
training Bombay
8 FOSSEE Volunteer for open-source soft- | Run labs with open-source soft-
ware ware
9 Spoken Tutorial Learn IT skills via tutorials Provide self-learning I'T content
10 | Virtual Labs Perform online experiments Develop curriculum-based exper-
iments
E-Governance
11 |SAMARTH ERP Manage student lifecycle digi- | Enable institutional e-
tally governance
Tracking and Research Tools
12 | VIDWAN Register and access experts Monitor faculty research out-
comes
13 | Shodh Shuddhi Ensure plagiarism-free work Improve research quality and
reputation
14 | Academic Bank of | Store and transfer credits Facilitate credit redemption
Credits

Table 1.1: Summary of ICT Initiatives by the Ministry of Education

1.2 FOSSEE Project

The FOSSEE (Free/Libre and Open Source Software for Education) project promotes
the use of FLOSS tools in academia and research. It is part of the National Mission on
Education through Information and Communication Technology (NMEICT), Ministry of
Education (MoE), Government of India.

1.2.1 Projects and Activities

The FOSSEE Project supports the use of various FLOSS tools to enhance education and

research. Key activities include:
e Textbook Companion: Porting solved examples from textbooks using FLOSS.

Lab Migration: Facilitating the migration of proprietary labs to FLOSS alterna-

tives.

Niche Software Activities: Specialized activities to promote niche software tools.

Forums: Providing a collaborative space for users.

Workshops and Conferences: Organizing events to train and inform users.

1.2.2 Fellowships

FOSSEE offers various internship and fellowship opportunities for students:

e Winter Internship
e Summer Fellowship

e Semester-Long Internship

Students from any degree and academic stage can apply for these internships. Se-
lection is based on the completion of screening tasks involving programming, scientific
computing, or data collection that benefit the FLOSS community. These tasks are de-
signed to be completed within a week.

For more details, visit the official FOSSEE website.

7

https://fossee.in
https://fossee.in

Scilab Python esim
Osdag DWSIM OpenFOAM

OpenModelica ﬁ,(‘_‘, -r o

FLOSS ARDUING

OpenModelica OpenPLC FLOSS Arduino

ngle 2o, R QGIS
Cooes L

oy
I e LT
‘ «l0%ul.

L

CA
T o

Figure 1.1: FOSSEE Projects and Activities

1.3 Osdag Software

Osdag (Open steel design and graphics) is a cross-platform, free/libre and open-source
software designed for the detailing and design of steel structures based on the Indian
Standard IS 800:2007. It allows users to design steel connections, members, and systems
through an interactive graphical user interface (GUI) and provides 3D visualizations of
designed components. The software enables easy export of CAD models to drafting
tools for construction/fabrication drawings, with optimized designs following industry
best practices [1, 2, B]. Built on Python and several Python-based FLOSS tools (e.g.,
PyQt and PythonOCC), Osdag is licensed under the GNU Lesser General Public License
(LGPL) Version 3.

1.3.1 Osdag GUI

The Osdag GUI is designed to be user-friendly and interactive. It consists of

e Input Dock: Collects and validates user inputs.
e Output Dock: Displays design results after validation.

¢ CAD Window: Displays the 3D CAD model, where users can pan, zoom, and

rotate the design.

e Message Log: Shows errors, warnings, and suggestions based on design checks.

Beam-Column End Plate - o0 &

File Edit Graphics Database Help

Input dock ® Output dock BE
- 11 by Ly [model [] Beam [] Coumn [] End Plate ‘
Connecting Members Critical Bolt Design
Connectlvity Column Flange-Beam Web Diameter (mm) 20)
End Plate Type Extended One Way - Ireversible Mc + Property Class se 0000]
Shear Demand (kN) 7.92]
Shear Capacity (kN) 58.84 |
Bearing Capacity (kN) 171.78 |
Po o]
Golumn Section * PBP 400 X 1402 BotCap CEN
Tension Due to Moment (kN) [60.97 |
Beam Saction * WB 500 _—
Prying Force (kN) 29.36 |
Material E 300 (Fe 440)
Tension Demand (kN) 0033 |
Factored Loads

Tension Capacity (kN) 9173 |

g o) Combined Capacty, LR [0088)

Shear Force (kN) 95 |

Detailing
Axial Force (kN) 32) No. of Bolts 12 J
Bolt

No. of Columns 2 |
Diameter (mm) Customized

No. of Rows 6 |
Type Bearing Bolt - graveaTOoTTaTTETeT ”y Pitch Distance (mm) 70 |

2020-12-15 11:48:50 - Osdag - ERROR - [Bolt Design] The bolt of 20.0 mm diameter 3

Properly Class Al " | »| | and 5.8 grade fails the combined shear + tension check Gauge Distance (mm) N .4

2020-12-15 11:48:50 - Osdag - ERROR - The Interaction Ratio (IR) of the critical bolt is

1.931
2020-12-16 11:48:50 - Osdag - INFO - Re-designing the connection with a bolt of higher C R

grade and/or diameter
2020-12-15 11:48:50 - Osdag - DEBUG - : Design Status
2020-12-15 11:48:50 - Osdag - DEBUG - : Overall beam to column end plate connection

design is SAFE

2020-12-15 11:48:50 - Osdag - DEBUG - : End Of Design -

Figure 1.2: Osdag GUI

1.3.2 Features

e CAD Model: The 3D CAD model is color-coded and can be saved in multiple
formats such as IGS, STL, and STEP.

e Design Preferences: Customizes the design process, with advanced users able to

set preferences for bolts, welds, and detailing.

e Design Report: Creates a detailed report in PDF format, summarizing all checks,

calculations, and design details, including any discrepancies.

For more details, visit the official Osdag website.

https://osdag.fossee.in

Chapter 2

Purlin CAD

2.1 Problem Statement

The objective was to develop a 3D modeling capability for C-section purlins. The imple-
mentation needed to create accurate geometric representations of steel C-sections based
on standard section properties retrieved from a database. The purlin geometry must be
parametrically defined to accommodate various standard sizes and lengths as per design

requirements.

2.2 Tasks Done

Methodologies and Processes

The implementation utilized the pythonQCC library for 3D solid modeling, employing a

profile-extrusion approach for C-section generation. The methodology consisted of:

e Profile Definition: Creation of a 2D C-section profile in the Y-Z plane using

discrete point coordinates.

e Wire Formation: Connection of profile points through linear edges to form a

closed wire.
e Face Creation: Generation of a planar face from the closed wire profile.

e Extrusion Process: Linear extrusion of the face along the X-axis to create the

3D beam.

10

e Geometric Transformation: Application of rotation transformation for proper

orientation.

Key Implementation Features

e Parametric Design: All geometric parameters (depth, flange width, thickness

values) are configurable.

e Database Integration: Section properties are retrieved from the structural design

framework’s database.

e Standard Compliance: Geometry follows standard C-section proportions and

dimensions.

e 3D Visualization: Integration with OpenCASCADE display system for geometric

verification.

Process Flow

Step | Process Output

1 Database Query Section properties (depth, flange width, thicknesses)
Profile Generation | 2D C-section outline

2
3 Solid Modeling 3D extruded beam geometry
4

Transformation Properly oriented purlin

2.3 Python Code

This section presents a Python implementation for creating 3D C-section purlin geometry
using the Osdag framework. The script generates parametric steel sections based on
standard dimensional properties retrieved from a structural database. It automates the
geometric modeling process, ensuring accurate representation of purlin cross-sections for

structural analysis and visualization.

2.3.1 Description of the Script

The script is structured as follows:

11

e Database Integration: The system retrieves section properties (web thickness,
flange thickness, depth, flange width, radii) from the connected structural database

using the section designation.

e Geometric Modeling: The create c_section() function constructs the 3D ge-
ometry through:
— Definition of 8 key points forming the C-section profile
— Creation of linear edges connecting consecutive points
— Formation of a closed wire from the edge sequence
— Generation of a planar face from the wire

— Linear extrusion along the longitudinal axis

e Parametric Design: All dimensional parameters are configurable:

length: Purlin span length (converted from meters to millimeters)
— depth: Overall section depth
— flange width: Width of top and bottom flanges
— web_thickness: Thickness of the vertical web
— flange _thickness: Thickness of horizontal flanges
e Coordinate System: The profile is initially created in the Y-Z plane with the

web oriented vertically, then transformed through a 90-degree rotation about the

Z-axis for standard structural orientation.

e Output: The function returns a TopoDS_Shape object representing the complete
3D purlin geometry, ready for structural analysis, visualization, or further geometric

operations.

2.3.2 Python Code
The Python script is shown below. Each section is commented for clarity.

Listing 2.1: Input parameters to create C-Section Purlin CAD in common_logic.py

1 |def createPurlin(self):

12

10

11

12

13

14

15

16
17
18

19
20
21
22

23
24
25
26
27
28

Flex = self.module_class # Access the module_class instance

containing design data

print (£"This is the module name {Flexl}") # Debug: Print module

class reference

Retrieve section properties from the database using the section
designation
Flex.section_property = Flex.section_connect_database (Flex, Flex.

result_designation)

Debug: Print each retrieved section property

print (f"Flex.section_property.web_thickness : {Flex.
section_property.web_thickness}")

print (f"Flex.section_property.flange_thickness : {Flex.
section_property.flange_thicknessl}")

print (f"Flex.section_property.depth : {Flex.section_property.depth}
")

print (f"Flex.section_property.flange_width : {Flex.section_property
.flange_width}")

print (f"Flex.section_property.root_radius : {Flex.section_property.
root_radius}")

print (f"Flex.section_property.toe_radius : {Flex.section_property.
toe_radiusl}")

print (f"Flex.support : {Flex.supportl}")

print (dir (Flex.section_property)) # Debug: List all attributes <in

section_property

Create the 3D C-section geometry using retrieved parameters
purlin = create_c_section(
length = Flex.length * 1000, # Convert length from meters to
mitllimeters
depth = Flex.section_property.depth,
flange_width = Flex.section_property.flange_width,
web_thickness = Flex.section_property.web_thickness,

flange_thickness = Flex.section_property.flange_thickness

13

29

return purlin # Return the 3D purlin shape

2.3.3 Explanation of the Code

e Line 1: Defines the createPurlin method, inside the CommonDesignLogic class.

e Line 2: Retrieves the module instance module_class, which stores geometry and

section information.
e Line 4: Prints the module class reference for debugging.

e Line 7: Calls the method section_connect_database() using the section desig-
nation to retrieve section properties such as depth, flange width, and thicknesses

from the structural database.

e Lines 10-16: Prints individual section properties like web thickness, flange thick-

ness, depth, flange width, root radius, and toe radius for verification.

e Line 18: Prints the list of all attributes available in the section _property object,

useful for debugging and inspection.

e Lines 21-27: Calls the create_c_section() function with parameters (converted
to millimeters where needed) to generate a 3D TopoDS_Shape geometry of the

purlin.

e Line 29: Returns the generated purlin geometry, ready for display, analysis, or

further transformation.

2.3.4 Full code

from O0CC.Core.BRepBuilderAPI import BRepBuilderAPI_MakeWire,
BRepBuilderAPI_MakeFace, BRepBuilderAPI_Transform,
BRepBuilderAPI_MakeEdge

from O0CC.Core.BRepPrimAPI import BRepPrimAPI_MakePrism

from 0CC.Core.gp import gp_Pnt, gp_Vec, gp_Trsf, gp_Dir, gp_Ax1,
gp_Pnt

from 0CC.Core.TopoDS import TopoDS_Edge

14

from O0CC.Display.SimpleGui import init_display

import math

def create_c_section(length=1000, depth=200, flange_width=80,
web_thickness=10, flange_thickness=10):

Create points for the C-section profile (in Y-Z plane)

points = [
gp_Pnt (0, 0, 0), # Bottom-left
corner
gp_Pnt (0, 0, depth), # Top-left corner
gp_Pnt (0, -flange_width, depth), # Top-right of

upper flange

gp_Pnt (0, -flange_width, depth-flange_thickness), #
Bottom-rtght of upper flange

gp_Pnt (0, -web_thickness, depth-flange_thickness), # Top-
right of web

gp_Pnt (0, -web_thickness, flange_thickness), #
Bottom-rtight of web

gp_Pnt (0, -flange_width, flange_thickness), # Top-
right of lower flange

gp_Pnt (0, -flange_width, 0), # Bottom-right of

lower flange

Create edges
edges = []
for i in range(len(points)-1):
edge = BRepBuilderAPI_MakeEdge (points[i], points[i+1]).
Edge ()

edges .append (edge)
Close the profile

edge = BRepBuilderAPI_MakeEdge (points[-1], points[0]) .Edge ()

edges . append (edge)

15

Create wire from edges

wire_builder = BRepBuilderAPI_MakeWire ()

for edge in edges:
wire_builder.Add (edge)

wire = wire_builder.Wire ()

Create face from wire

face = BRepBuilderAPI_MakeFace (wire) .Face ()

Extrude along X-axis to create the beam
vec = gp_Vec(length, 0, 0)

beam = BRepPrimAPI_MakePrism(face, vec).Shape()

Create and apply the rotation transformation

trsf = gp_Trsf ()

rotation_axis_z = gp_Ax1(gp_Pnt(0, 0, 0), gp_Dir(0, 0, 1))

trsf.SetRotation(rotation_axis_z, math.pi/2)

beam_transformed = BRepBuilderAPI_Transform(beam, trsf).Shape
O

return beam_transformed
def main():
Initialize display
display, start_display, add_menu, add_function_to_menu =

init_display ()

Create the C-section beam

beam = create_c_section ()

Display the beam

display.DisplayShape (beam, update=True)

16

Set wview
display.View_Iso ()
display.FitAll ()

Start the display

start_display ()

2.4 Documentation

Detailed steps to integrate the purlin CAD into the Osdag application were included in

the CAD manual, helping new interns speed up and simplify the process.

2.4.1 Directory Structure

Osdag
+— osdagMainPage.py

+— Common . py

+— ResourceFiles

images

last_designs

+— design _type
+— design_report

+— cad
L items
L purlin.py

— gui

Program Start Calls

17

The main entry point for the program is osdagMainPage.py. To start the program, open
the Osdag folder and start the terminal with that path, execute the following command

from the project root (src):

$ python -m osdag.osdagMainPage

18

Chapter 3

Bolted Lap Joint CAD

3.1 Problem Statement

The objective was to develop a comprehensive 3D modeling capability for bolted lap joint
connections within the Osdag framework. The implementation needed to create accu-
rate geometric representations of complete connection assemblies including overlapping
plates, bolts, and nuts based on connection design parameters. The joint geometry must
be parametrically defined to accommodate various plate dimensions, bolt patterns, and

spacing requirements as per structural connection design calculations.

3.2 Tasks Done

Methodologies and Processes

The implementation utilized the pythonOCC library for multi-component 3D assembly
modeling, employing a component-based approach for connection generation. The method-

ology consisted of:

e Component Definition: Individual creation of plates, bolts, and nuts as separate

geometric entities.

e Spatial Positioning: Calculation of plate overlap geometry and component place-

ment coordinates.

19

e Bolt Pattern Generation: Systematic positioning of fasteners based on pitch,

gauge, edge, and end distances.

e Assembly Integration: Boolean operations using BOPAlgo Builder for complete

joint assembly.

e Visualization Setup: Color-coded component display for enhanced geometric

verification.

Key Implementation Features

e Multi-Component Assembly: Separate modeling of plates, bolts, and nuts with

precise spatial relationships.

e Connection Design Integration: Parameters retrieved from structural connec-

tion design calculations.

e Bolt Pattern Automation: Systematic generation of bolt positions based on

standard spacing rules.

e Material Visualization: Color-coded components for clear assembly identifica-

tion.

e Overlap Geometry: Accurate plate positioning with specified overlap length.

Process Flow

Step | Process Output
1 Parameter Extraction | Connection properties (plate dimensions, bolt specifications)
2 Component Creation | Individual plates, bolts, nuts
3 Pattern Generation Bolt position coordinates
4 Assembly Process Complete connection assembly
3.3 Python Code

This section presents a Python implementation for creating 3D bolted lap joint assem-

blies within the Osdag framework. The script generates complete connection geometries

20

including overlapping plates, bolts, and nuts based on structural connection design pa-
rameters retrieved from the design framework. It automates the assembly modeling
process, ensuring accurate representation of bolted connections for structural analysis

and visualization.

3.3.1 Description of the Script

The script is structured as follows:

e Connection Integration: The system retrieves connection design parameters in-

cluding:

Plate dimensions (thickness, width, overlap length)

Bolt specifications (diameter, pattern arrangement)
— Spacing parameters (pitch, gauge, edge distances, end distances)
— Bolt pattern configuration (rows, columns, total number)
e Component Modeling: The create bolted lap_joint() function constructs
the assembly through:
— Creation of two overlapping plates with specified dimensions and positioning

— Generation of bolt geometries with heads, shafts, and proper lengths

Formation of nuts with appropriate threading and positioning

— Calculation of component spatial relationships and elevations

e Geometric Calculations: Critical positioning computations include:

plate2 offset: Longitudinal positioning for proper overlap
— Bolt pattern coordinates based on pitch, gauge, edge, and end distances

— Component elevation for proper through-thickness assembly

Bolt length calculation considering plate thicknesses and nut requirements
e Assembly Parameters: All connection parameters are configurable:

— platel_thickness, plate2_thickness: Individual plate thicknesses

21

N S Ot

plate_width: Width of connection plates

actual_overlap_length: Length of plate overlap region

— bolt_rows, bolt_cols: Bolt pattern arrangement matrix

pitch: Longitudinal bolt spacing
— gauge: Transverse bolt spacing

— edge, end: Distance from plate edges
e Component Classes: The implementation utilizes imported component classes:

— Plate: Rectangular plate geometry with positioning methods
— Bolt: Complete bolt assembly with head, shaft, and threading

— Nut: Hexagonal nut geometry with internal threading

e Assembly Process: Boolean operations using BOPAlgo_Builder combine all com-
ponents into a unified assembly while maintaining individual component references

for selective visualization and analysis.
e Output: The function returns multiple objects:

— Complete assembly shape for unified visualization
— Individual component references (plates, bolts, nuts) for selective display

— Color-coded visualization with material assignments

3.3.2 Python Code
The Python script is shown below. Each section is commented for clarity.

Listing 3.1: Input parameters to create Bolted Lap Joint CAD in common_logic.py

def createBoltedLapJoint (self):

Conn = self.module_class # Access the module class containing all

input parameters

print ("THIS IS CONN")

print (Conn)

22

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Print all non-method attributes in the module class for debugging
for attr in dir(Conn):
if not callable(getattr(Conn, attr)) and not attr.startswith("
—=")¢
print (£"{attr}: {getattr(Conn, attr)l}")

Print individual design parameters for wvertfication
print (f"Plate 1 Thickness: {float(Conn.platelthk)}")
print (f"Plate 2 Thickness: {float(Conn.plate2thk)l}")
print (f"Plate Width: {float(Conn.width)}")

print (f"Bolt Diameter: {Conn.bolt.bolt_diameter_provided}")
print (f"Actual Overlap Length: {Conn.len_connl}")
print (£"Bolt Columns: {Conn.cols}")

print (£"Bolt Rows: {Conn.rows}")

print (£"Number of Bolts: {Conn.number_bolts}")

print (f"Pitch: {Conn.final_pitchl}")

print (£"Gauge: {Conn.final_gaugel}")

print (f"Edge Distance: {Conn.final_edge_dist}")

print (f"End Distance: {Conn.final_end_distl}")

Call function to create bolted lap joint with the provided
parameters

lap_joint, platel, plate2, bolts, nuts = create_bolted_lap_joint (

platel_thickness float (Conn.platelthk),

plate2_thickness float (Conn.plate2thk),
plate_width = float(Conn.width),
bolt_dia = Conn.bolt.bolt_diameter_provided,

actual_overlap_length = Conn.len_conn,

bolt_cols Conn.cols,

bolt_rows Conn.rows,
number_bolts = Conn.number_bolts,
pitch = Conn.final_pitch,

gauge = Conn.final_gauge,

edge = Conn.final_edge_dist,

end = Conn.final_end_dist

return lap_joint, platel, plate2, bolts, nuts # Return the full

assembly and %ts components

23

3.3.3 Explanation of the Code

Line 1: Defines the createBoltedLapJoint method within a class, responsible for

creating a bolted lap joint geometry.

Line 3: Retrieves the module instance module_class, which holds all connection

parameters and component attributes.

Lines 9—11: Prints the module instance and lists all of its non-method attributes

for debugging and inspection.

Lines 14—-25: Prints individual values such as plate thicknesses, bolt diameter,
overlap length, and spacing parameters like pitch, gauge, edge, and end distances

to verify correct parameter extraction.

Lines 28-41: Calls the function create bolted _lap_joint () using the extracted

parameters to generate the complete assembly including plates, bolts, and nuts.

Line 43: Returns the full lap joint assembly along with references to its individual

components for visualization or further processing.

3.3.4 Full code

import numpy

from
from
from

from

0CC.Display.SimpleGui import init_display
0CC.Core.BRepAlgoAPI import BRepAlgoAPI_Fuse
0CC.Core .BOPAlgo import BOPAlgo_Builder

0CC.Core.Quantity import Quantity_NOC_SADDLEBROWN,

Quantity_NOC_GRAY ,Quantity_NOC_BLUE1l ,Quantity_NOC_RED

from

from

0CC.Core.Graphic3d import *

0CC.Core.BRepPrimAPI import BRepPrimAPI_MakeSphere

Import the component classes

from
from

from

.items.bolt import Bolt
.items.nut import Nut

.items.plate import Plate

24

def create_bolted_lap_joint(platel_thickness = 16,
plate2_thickness = 8, plate_width = 100, bolt_dia = 16,
actual_overlap_length=50,

bolt_rows=4,bolt_cols=2,pitch=20,
gauge=20, edge=12,end=13.6,

number_bolts=7) :

plate_length = 3 * actual_overlap_length

Calculate the offset of the second plate

plate2_offset plate_length - actual_overlap_length

nut_thickness = 3.0

Bolt parameters

bolt_head_radius = bolt_dia/2

bolt_head_thickness = 3.0

bolt_length = (platel_thickness + plate2_thickness) +
nut_thickness # Enough to go through both plates

bolt_shaft_radius = 1.5

Nut parameters

nut_radius = bolt_head_radius

nut_height bolt_head_radius

nut_inner_radius = bolt_shaft_radius

Create the first plate

Posttion 1t at the origin

originl = numpy.array([0.0, 0.0, 0.0]) # Global origin lies
at midpoint of plate 1

uDirl = numpy.array([0.0, 0.0, 1.0]) # Points along Z azis

height)

25

wDirl = numpy.array([1.0, 0.0, 0.0]1) # Points along X azmis (

length)

platel = Plate(plate_length, plate_width, platel_thickness)
platel.place(originl, uDirl, wDir1l)

platel_model = platel.create_model ()

Create the second plate

Postition tt so that <t properly overlaps with the first
plate

The second plate 2s elevated by platel_thickness and offset

in Y direction

origin2 = numpy.array([0.0, plate2_offset, 0.5%(

platel_thickness+plate2_thickness)])

uDir?2 numpy .array ([0.0, 0.0, 1.01)

wDir2 = numpy.array([1.0, 0.0, 0.0])

plate2 = Plate(plate_length, plate_width, plate2_thickness)
plate2.place(origin2, uDir2, wDir2)

plate2_model = plate2.create_model ()

bolt_positions=[]

Calculate bolt positions
count = 0

exit_loops = False # Flag to break both loops

for col in range(bolt_cols):
for row in range(bolt_rows):
if count==number_bolts:
exit_loops = True

break # Break out of the inner loop

26

bolt_positions.append((edge + (row * gauge),
plate_length / 2 -
actual_overlap_length + end +
(col * pitch),
(0.5 * platel_thickness) +
plate2_thickness))

count += 1

if exit_loops: # Check flag to break outer loop

break

Create bolts and nuts at the calculated positions
bolts_models = []

nuts_models = []

bolt_uDir = numpy.array([1.0, 0.0, 0.0])

bolt_shaftDir = numpy.array([0.0, 0.0, -1.0]) # Points
downward through both plates

for pos in bolt_positions:
Start bolts from the top of second plate
bolt = Bolt(bolt_head_radius, bolt_head_thickness,

bolt_length, bolt_shaft_radius)

bolt.place(pos, bolt_uDir, bolt_shaftDir)
bolt_model = bolt.create_model ()

bolts_models.append(bolt_model)

Position nuts at the bottom of the first plate

nut_origin = numpy.array ([pos[0], pos[1], -0.5%
platel_thickness])

nut_uDir = numpy.array([1.0, 0.0, 0.0])

nut_wDir = numpy.array([0.0, 0.0, -1.0]) # Points

downward

27

nut = Nut(nut_radius, nut_thickness,

nut_inner_radius)

nut_height,

nut.place(nut_origin, nut_uDir, nut_wDir)

nut_model = nut.create_model ()

nuts_models.append (nut_model)

Use BOPAlgo_Butlder for assembly

builder = BOPAlgo_Builder ()

Add all parts to the builder
builder.AddArgument (platel_model)

builder.AddArgument (plate2_model)

for bolt_model in bolts_models:

builder.AddArgument (bolt_model)

for nut_model in nuts_models:

builder .AddArgument (nut_model)

Perform the boolean operation

builder .Perform()

Get the resulting assembly

assembly = builder.Shape ()

return assembly, platel_model, plate2_model, bolts_models,

nuts_models

Main ezecution

if __name__ == "__main__":
Create the bolted lap joint
lap_joint, platel, plate2, bolts, nuts

create_bolted_lap_joint ()

28

Display the assembly
display, start_display, add_menu, add_function_to_menu =

init_display ()

Display individual components with different colors for
better wisualization

display.DisplayShape(platel, material=Graphic3d_NOM_ALUMINIUM
, update=True)

display.DisplayShape(plate2, update=True)

for bolt in bolts:
display.DisplayShape(bolt, color=Quantity_NOC_SADDLEBROWN

, update=True)

for nut in nuts:
display.DisplayShape (nut, color=Quantity_NOC_SADDLEBROWN,
update=True)
Highlight the global origin (0,0,0)
origin_point = BRepPrimAPI_MakeSphere (1) .Shape() # Small
sphere to mark origin
display.DisplayShape(origin_point, color=Quantity_NOC_RED,

update=True)

Alternative: display the full assembly as a single shape
display.DisplayShape (lap_joint, update=True)
display.set_bg_gradient_color ([51, 51, 102], [150, 150, 170])

display.DisableAntiAliasing ()
display.FitAll ()

start_display ()

29

3.4 Documentation

Detailed steps to integrate the Bolted Lap Joint CAD into the Osdag application were

included in the CAD manual, helping new interns speed up and simplify the process.

3.4.1 Directory Structure

Osdag
— osdagMainPage.py

+— Common. py

— ResourceFiles

images

last_designs

+— design_type
+— design report

+— cad

items
tpurlin.py

SimpleConnections
LfBoltedLapJoint
Lfbolted,lap,joint.py

— gui

30

Chapter 4

Spacing GUI for CADs

4.1 Problem Statement

The objective was to develop a dynamic bolt pattern visualization system within the
Osdag application. The implementation needed to create interactive 2D technical draw-
ings that display bolt arrangements with accurate dimensional annotations, including
pitch, gauge, edge distances, and end distances. The system must integrate with existing

connection design modules to extract spacing parameters.

4.2 Tasks Done

Methodologies and Processes
The implementation utilized the PyQt5 framework for GUI development and tech-
nical drawing generation, employing a graphics scene approach for precise dimensional

visualization:

e Parameter Extraction: Dynamic retrieval of spacing parameters from connection

design objects
e Graphics Scene Creation: Setup of scalable 2D drawing canvas using QGraphicsScene

e Bolt Pattern Generation: Systematic positioning of bolt holes based on rows

and columns

¢ Dimensional Annotation: Automatic generation of dimension lines with arrows

and text labels

31

e Interactive Display: Real-time visualization with zoom and pan capabilities

Key Implementation Features

e Dynamic Parameter Integration: Real-time extraction of spacing values from

design calculations

e Professional Drawing Standards: Technical drawing format with proper di-

mension lines and annotations
e Flexible Bolt Patterns: Support for variable row and column configurations
e Interactive Visualization: Scalable graphics with fit-to-view functionality

e Parameter Display: Side panel showing all extracted spacing values

Process Overview Table

Step | Process Output
1 Button Activation Connection object instantiation
2 Parameter Extraction | Spacing values (pitch, gauge, edge, end)
3 Pattern Generation Bolt hole positions and plate outline
4 Dimension Creation Annotated technical drawing

4.3 Python Code

This section presents a Python implementation for creating interactive bolt pattern vi-
sualization using PyQt5 framework. The script generates professional technical drawings
showing bolt arrangements with comprehensive dimensional annotations based on con-
nection design parameters extracted from the Osdag framework. It provides real-time

visualization for design verification and documentation.

Description of the Script

The script for the bolt pattern visualization is modular and follows a clear object-oriented
structure. The key components are described below:

GUI Framework Integration

32

e BoltPatternGenerator class inherits from QMainWindow, enabling a professional

windowing interface

e Resizable layout with split-pane: one for parameter display and one for the drawing

canvas
e Utilizes PyQt5’s graphics system for rendering technical 2D drawings

Parameter Extraction System

e get _parameters() method interfaces with self.connection.spacing(status=True)

to fetch design data

Maps internal keys (like ’gl’, 'g2’, 'pitch’) to human-readable labels

Handles both single-gauge and dual-gauge configurations

Extracts: pitch, end distance, gauge distances (gl, g2), and edge distances (el, e2)
Technical Drawing Generation

e createDrawing() calculates bolt layout using matrix structure (rows x columns)
e Dynamically computes plate dimensions from spacing parameters

e Renders plate outline, bolt holes, and coordinate-based positioning with proper

scaling
Dimensional Annotation System

e addHorizontalDimension() and addVerticalDimension() draw annotated di-

mension lines
e Arrowheads rendered using filled polygon graphics
e Dimension text placed clearly above/beside lines, with readable font sizes
Drawing Parameters
e rows, cols: Define bolt matrix layout

e pitch: Distance between bolts in longitudinal direction

33

e gaugel, gauge2: Lateral distances for one or two gauge lines

e edge, end: Margins from edge and end of plate to nearest bolt centers

e hole_diameter: Diameter for bolt hole representation

Graphics System Architecture

e Uses QGraphicsScene for vector drawing

e QGraphicsView enables antialiased rendering for smooth visuals

e Dynamic scene bounding box adjusts based on drawing size + offset margins
e Implements fitInView() for automatic zoom-to-fit functionality
Integration Interface

e Integrated with main Osdag system via run_spacing script() function

e Detects connection type and retrieves corresponding bolt arrangement parameters
e Ensures proper window focus and activation during GUI interaction

Professional Drawing Standards

Follows engineering drafting principles for all visuals

Uses clear and distinct arrowheads, text labels, and spacing markers

Color coding applied: Blue for bolt holes, black for dimension lines/text

All key spacing parameters are clearly labeled in the drawing

Output

Real-time, scalable visualization window of bolt pattern

Side panel shows all parameter values dynamically fetched from design object

Allows immediate visual validation of spacing compliance

Drawing quality is suitable for professional technical documentation

34

=W NN =

© 0 N O

10
11
12
13
14
15

4.3.1 Python Code

The Python script is shown below. Each section is commented for clarity.

Listing 4.1: Function to create and display the bolt spacing viewer window in

ui_template.py

def run_spacing_script(self, cols, rows):

print ("Creating spacing window...")

Instantiate the BoltPatternGenerator GUI window with required
parameters
self .spacing_window = BoltPatternGenerator (self.0bj, cols=cols,

TOWS=TOWS)

Set title of the window

self .spacing_window.setWindowTitle ("Spacing Viewer")

Raise window to top and activate <t
self .spacing_window.raise ()

self .spacing_window.activateWindow ()

Show the GUI window

self .spacing_window.show ()

4.3.2 Explanation of the Code

e Purpose: Launch a window displaying the bolt pattern for a selected CAD joint.

e Parameters:

— cols: Number of bolt columns.

— rows: Number of bolts per column.

e Procedure:

1. Instantiates the BoltPatternGenerator window using extracted connection

object and parameters.

2. Sets the window title to Spacing Viewer.

35

© 00 N O Ut ke W NN =

—
o

11
12
13
14

15
16
17
18

19
20
21
22
23
24

25

26
27

3. Brings the window to the foreground using raise() and activateWindow().

4. Calls show() to render the GUL

4.3.3 Python Code

Listing 4.2: Iterate over button options to determine which operation to execute in the

output_button_dialog() function in ui_template.py

for op in button_list:

Check +1f current button was clicked

if op[0] == button.objectName () :
print (op)
tup = opl[3] # Extract function metadata tuple

title = tup[0]

fn = tupl[1]

Extract class mame from qualified function mname
cls = fn.__qualname__.split('."') [0]
If the operation %s 'spacing', trigger spacing window
if op[0] == 'spacing':
module = inspect.getmodule (fn) # Get module of the
function

cls_obj = getattr(module, cls) # Get class object

self .0bj = cls_obj () # Instantiate class

Check if object uses 'spting_leg' structure (likely a
typo for 'spring_leg')

if hasattr(self.0Obj, 'spting_leg') and \
hasattr(self.0bj.spting_leg, 'bolt_line') and \

hasattr(self.0bj.spting_leg, 'bolts_one_line'):

Use bolt parameters from spting_leg
self .run_spacing_script(cols=self.0bj.spting_leg.
bolt_line,
rows=self .0bj.spting_leg.
bolts_one_line)
QILE8aE §

Use bolt parameters from plate object

36

28
29

30

self .run_spacing_script(cols=self.0bj.plate.bolt_line,
rows=self.0bj.plate.
bolts_one_line)

break

4.3.4 Explanation of the Code

e Role: Responds to user interaction with the spacing button in the output interface.

e Flow:

4.3.5

1. Iterates through the button_list to identify which button was triggered.

2. Extracts the function metadata from the operation tuple.

3. Dynamically determines the class associated with the triggered function using

inspect and getattr.

4. Instantiates the corresponding connection object.

5. Based on availability, retrieves bolt layout parameters from either:

— spting_leg structure (if present), or

— plate structure (as fallback).

6. Passes the retrieved parameters to run_spacing_script() to display the

viewer.

Full code

import sys

from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget,

QVBoxLayout,

QHBoxLayout , QLabel, QGraphicsView,
QGraphicsScene)

from PyQt5.QtGui import QPixmap

from PyQt5.QtCore import Qt, QRectF

from PyQt5.QtGui import QPainter, QPen, QFont

from PyQt5.QtGui import QPolygonF, QBrush

from PyQt5.QtCore import QPointF

37

from ..Common import x*

class BoltPatternGenerator (QMainWindow) :

def __init__(self, connection_obj, rows=3, cols=2):
super () . __init__(Q)
self.connection = connection_obj
self .rows = rows

self.cols cols

self.initUI ()

def initUI(self):
self.setWindowTitle('Bolt Pattern Generator')

self.setGeometry (100, 100, 800, 500)

Main layout

main_layout = QHBoxLayout ()

Left panel for parameter display
left_panel = QWidget ()

left_layout = QVBoxLayout ()

Parameter display labels

params = self.get_parameters ()

Display the parameter wvalues
for key, value in params.items():

param_layout = QHBoxLayout ()

param_label QLabel (f'{key.title()} Distance (mm):')

value_label QLabel (f'{valuel}')
param_layout.addWidget (param_label)
param_layout .addWidget (value_label)

left_layout.addLayout (param_layout)

left_layout.addStretch ()

38

def

left_panel.setLayout(left_layout)

Right panel for the drawing using (GraphicsView
self.scene = QGraphicsScene ()
self .view = QGraphicsView(self.scene)

self.view.setRenderHint (QPainter.Antialiasing)

Create and add the drawing to the scene

self.createDrawing (params)

Add panels to main layout
main_layout.addWidget (left_panel, 1)

main_layout.addWidget (self.view, 3)

Set main widget
main_widget = QWidget ()
main_widget.setLayout (main_layout)

self .setCentralWidget (main_widget)

Ensure the wview shows all content
self .view.fitInView(self.scene.sceneRect (), Qt.

KeepAspectRatio)

get_parameters (self):
spacing_data = self.connection.spacing(status=True)
Get actual wvalues

param_map = {}

for item in spacing_data:

key, _, _, value = item

if key == KEY_OUT_PITCH:
param_map['pitch'] = float(value)

elif key == KEY_OUT_END_DIST:

39

#

def

param_map['end'] = float(value)

elif key == KEY_OUT_GAUGE1:
param_map ['gaugel'] = float(value)
elif key == KEY_OUT_GAUGE2:
param_map['gauge2'] = float(value)
elif key == KEY_OUT_GAUGE:
param_map['gauge'] = float(value)
elif key == KEY_OUT_EDGE_DIST:

param_map['edge']l = float(value)

Add hardcoded hole diameter

param_map['hole'] = 10.0

print ("Extracted parameters:", param_map)

return param_map

createDrawing (self, params):
Extract parameters
pitch = params['pitch']
end = params['end']
if 'gauge' in params:
gauge = params['gauge']

else:

gaugel params ['gaugel ']

gauge? params ['gauge2 ']
edge = params['edge']

hole_diameter = params['hole']

Calculate dimensions

if 'gauge' in params:

gaugel = gauge

gauge?2 0

width = gaugel + gauge2 + edge

40

def

height = 2 * end + (self.rows - 1) * pitch
Set up pens
outline_pen = QPen(Qt.blue, 2)

dimension_pen = QPen(Qt.black, 1.5)

Dimension offsets

h_offset 40

v_offset 60
Create scene rectangle with exztra space for dimensions
self.scene.setSceneRect(-h_offset, -v_offset,

width + 2xv_offset, height + 2x%

h_offset)

Draw rectangle

self .scene.addRect (0, O, width, height, dimension_pen)

Draw holes
for row in range(self.rows):
for col in range(self.cols):
x = gaugel - hole_diameter/2 if col == 0 else
gaugel + gauge2 - hole_diameter/2
y = end + row * pitch - hole_diameter/2
self .scene.addEllipse(x, y, hole_diameter,

hole_diameter, outline_pen)

Add dimensions

self.addDimensions (params, dimension_pen)

addDimensions (self, params, pen):
Extract parameters
pitch = params['pitch']

end = params['end']

41

if 'gauge' in params:
gauge = params/['gauge']

else:

gaugel params ['gaugel ']
gauge?2 = params/['gauge2']

edge = params['edge']

if 'gauge' in params:

gaugel = gauge

gauge?2 0

width = gaugel + gauge2 + edge

height = 2 * end + (self.rows - 1) * pitch

Offsets for dimension lines

h_offset 20

v_offset 30
Add horizontal dimensions
self .addHorizontalDimension (0, -h_offset, gaugel, -

h_offset, str(gaugel), pen)

if gauge2 > 0:
self .addHorizontalDimension (gaugel, -h_offset, gaugel

+ gauge2, -h_offset, str(gauge2), pen)

self .addHorizontalDimension (gaugel + gauge2, -h_offset,

width, -h_offset, str(edge), pen)

Add bottom horizontal dimension
self .addHorizontalDimension (0, height + h_offset, width,
height + h_offset,
str (edge + gaugel + gauge2),

pen)

42

def

Add wvertical dimemnsions
self.addVerticalDimension(width + v_offset, 0, width +
v_offset, end, str(end), pen)
for i in range(self.rows - 1):
self.addVerticalDimension(width + v_offset, end + i x*
pitch, width + v_offset, end + (i + 1) * pitch,

str(pitch), pen)

Add bottom end distance dimension
self.addVerticalDimension(width + v_offset, height, width

+ v_offset, height - end, str(end), pen)

Add left side dimension
total_height = 2 * end + (self.rows - 1) * pitch
self .addVerticalDimension(-v_offset, 0, -v_offset,

total_height, str(total_height), pen)

addHorizontalDimension(self, x1, yl, x2, y2, text, pen):

self .scene.addLine(xl, yl1, x2, y2, pen)

arrow_size 5

ext_length 10

self.scene.addlLine(xl, yl1 - ext_length/2, x1, yl1 +
ext_length/2, pen)

self.scene.addlLine(x2, y2 - ext_length/2, x2, y2 +

ext_length/2, pen)

points_left = [
(x1, y1),
(x1 + arrow_size, yl - arrow_size/2),

(x1 + arrow_size, yl + arrow_size/2)

]
polygon_left = self.scene.addPolygon(QPolygonF ([QPointF (x

, y) for x, y in points_left]), pen)

43

def

polygon_left.setBrush(QBrush(Qt.black))

points_right = [

(x2, y2),
(x2 - arrow_size, y2 - arrow_size/2),
(x2 - arrow_size, y2 + arrow_size/2)

]

polygon_right = self.scene.addPolygon(QPolygonF ([QPointF (

X, y) for x, y in points_right]), pen)

polygon_right.setBrush (QBrush (Qt.black))

text_item = self.scene.addText (text)
font = QFont ()
font.setPointSize (5)

text_item.setFont (font)

if y1 < 0:

text_item.setPos ((x1 + x2) / 2 - text_

item.

boundingRect () .width() / 2, y1 - 25)

else:

text_item.setPos((x1 + x2) / 2 - text_

boundingRect () .width() / 2, y1 + 5)

addVerticalDimension (self, x1, yl1, x2, y2,

self.scene.addLine(xl, yl1, x2, y2, pen)

arrow_size = 5

ext_length = 10

self.scene.addLine(x1l - ext_length/2, yi1,
/2, yl, pen)

self .scene.addlLine(x2 - ext_length/2, y2,

/2, y2, pen)

if y2 > yi:

points_top = [

44

item.

text, pen):

x1 + ext_length

x2 + ext_length

(x1, y1),
(x1 - arrow_size/2, yl + arrow_size),
(x1 + arrow_size/2, yl + arrow_size)
]
polygon_top = self.scene.addPolygon(QPolygonF ([
QPointF(x, y) for x, y in points_topl), pen)

polygon_top.setBrush (QBrush(Qt.black))

points_bottom = [
(x2, y2),
(x2 - arrow_size/2, y2 - arrow_size),
(x2 + arrow_size/2, y2 - arrow_size)
]

polygon_bottom = self.scene.addPolygon (QPolygonF ([
QPointF(x, y) for x, y in points_bottom]), pen)

polygon_bottom.setBrush (QBrush(Qt.black))

else:
points_top = [
(x2, y2),
(x2 - arrow_size/2, y2 + arrow_size),

(x2 + arrow_size/2, y2 + arrow_size)
]
polygon_top = self.scene.addPolygon(QPolygonF ([
QPointF(x, y) for x, y in points_top]), pen)

polygon_top.setBrush (QBrush(Qt.black))

points_bottom = [
(x1, y1),
(x1 - arrow_size/2, yl - arrow_size),
(x1 + arrow_size/2, yl - arrow_size)
]

polygon_bottom = self.scene.addPolygon (QPolygonF ([
QPointF(x, y) for x, y in points_bottom]), pen)

polygon_bottom.setBrush (QBrush(Qt.black))

45

text_item = self.scene.addText (text)
font = QFont ()
font.setPointSize (5)

text_item.setFont (font)

if x1 < O:
text_item.setPos(xl - 10 - text_item.boundingRect ().
width(), (y1 + y2) / 2 - text_item.boundingRect ().
height () / 2)
else:
text_item.setPos(x1l + 15, (y1 + y2) / 2 - text_item.

boundingRect () .height () / 2)

4.4 Documentation

Work is ongoing to improve the GUI window and integrate it with all available CADs.

46

4.4.1 Directory Structure

Osdag
+— osdagMainPage.py

+— Common. py

+— ResourceFiles

images

last_designs

+— design_type
+— design_report

+— cad

items
tpurlin.py

SimpleConnections
LfBoltedLapJoint
L—bolted,lap,joint.py

— gui

Lfspacing.py

47

Chapter 5

Addition of Tooltips in CADs

5.1 Problem Statement

The Osdag application required an interactive feature to enhance user experience within
the CAD environment. The primary challenge was to implement a hover-based tooltip

system that would meet the following objectives:

Display visual indicators (e.g., >+’ signs) at specific points within the 3D CAD

window.

Show contextual information when users hover over these indicators.

Provide seamless integration with the existing PyQt-based 3D viewer.

Maintain optimal performance while tracking multiple tooltip locations.

Ensure tooltips appear dynamically near the user’s cursor position.

5.2 Tasks Done

5.2.1 Methodology

The implementation followed a three-tier approach:

e Viewer Extension: Extended the existing qtViewer3d class to support mouse

event handling.

48

e Display Function Development: Created a utility function to manage tooltip

placement and registration.

e Integration: Incorporated tooltip functionality into the existing 3D model display

pipeline.

5.2.2 Processes
Phase 1: Core Infrastructure Development
e Extended the base viewer class to create HoverableViewer3d.
e Implemented mouse event detection and object intersection logic.

e Established tooltip storage and retrieval mechanism.

Phase 2: Tooltip Management System
e Developed the DisplayMsg function for tooltip creation and positioning.
e Implemented visual indicator generation using AIS TextLabel.

e Created tooltip registration system with coordinate mapping.

Phase 3: Integration and Testing
e Integrated tooltip functionality into the main display pipeline.
e Tested tooltip responsiveness and visual appearance.

e Validated tooltip positioning accuracy.

5.2.3 Key Implementation Features

Enhanced Viewer Class (HoverableViewer3d)
e Overridden mouseMoveEvent function for real-time mouse tracking.
e Object intersection detection in 3D space.
e Dynamic tooltip display based on cursor position.

e Tooltip storage management through _hover tooltips list.

49

Tooltip Display System

e Visual '+’ indicator creation using AIS TextLabel.

e Customizable tooltip appearance (color, size, position).

e Message association with 3D coordinates.

e Context-sensitive tooltip rendering.

Integration Architecture

e Seamless replacement of default viewer in init_display function.

e Centralized tooltip management through utility functions.

e Modular design allowing easy tooltip addition throughout the application.

5.2.4 Implementation Summary Table

Component File Location Primary Function Key Features
HoverableViewer3d| ui_template.py Mouse event handling | Mouse tracking, object de-
Class tection, tooltip display

DisplayMsg Func-

utilities/_init_.py

Tooltip creation and

Visual indicator creation,

tion registration message storage, 3D posi-
tioning
Integration Layer common_logic.py Tooltip implementa- | Function calls within
tion display_3DModel
Tooltip Storage ui_template.py Data management _hover_tooltips list for

tooltip tracking

Table 5.1: Implementation Summary of Hover Tooltip Feature

5.3 Technical Specifications

low)

20

Visual Indicator: '+’ character displayed as AIS_TextLabel
Tooltip Positioning: 3D coordinate system using gp_Pnt(x, y, z)

Color Customization: RGB color specification (e.g., (1.0, 1.0, 0.0) for yel-

Height Configuration: Adjustable text height parameter

Display Context: Integration with existing display.Context.Display system

© 0 N O Ut e W NN =

N N NN NN DN NN = e e e e e e e e
W N O U e W NN HE O O 00O Ot WY = O

29

Python Code

1. Class: Window(QMainWindow) — Event Handling and Display
Setup in ui_template.py

Listing 5.1: Modifications made to Window class in ui_template.py

class Window (QMainWindow) :

closed = QtCore.pyqtSignal ()

def __init__(self):

super () . __init__()

self .mytabWidget = QTabWidget ()
self .setCentralWidget (self .mytabWidget)

self.init_display ()
self.modelTab.installEventFilter (self)

print ("Event filter installed")

def eventFilter (self, source, event):
if event.type() == QEvent.MouseMove:
print ("Mouse moved on:", source)

return super().eventFilter (source, event)

def check_hover(self, x, y):
context = self.display.Context

view = self.display.View

Move selection to mouse position

context.MoveTo(x, y, view)

owner = context.DetectedOwner ()
if owner:

obj = owner.Selectable ()

for ais_obj, tooltip in getattr (self.display, "
_hover_tooltips", [1):

if obj == ais_obj:

51

30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

92
53
54
95
56
o7
o8
99

60
61

62
63
64

def

QToolTip.showText (QtGui.QCursor.pos(), tooltip,
self .display)
return
Hide tooltip 2f mot hovering

QToolTip.hideText ()

init_display(self, backend_str=None, size=(1024, 768)):

from 0CC.Display.backend import load_backend, get_qt_modules

used_backend = load_backend(backend_str)

if 'qt' in used_backend:

QtCore, QtGui, QtWidgets, QtOpenGL = get_qt_modules ()

from 0CC.Display.qtDisplay import qtViewer3d

class HoverableViewer3d(qtViewer3d) :
def __init__(viewer_self, parent=None):

super (HoverableViewer3d, viewer_self).__init__(parent)

def mouseMoveEvent (viewer_self, event):

pos = event.pos ()

if hasattr(viewer_self, '_display') and viewer_self.
_display:
ctx = viewer_self._display.Context
view = viewer_self._display.View

ctx.MoveTo(pos.x(), pos.y(), view, True)

owner = ctx.DetectedOwner ()
if owner:
obj = owner.Selectable ()
for ais_obj, tooltip in getattr(viewer_self.
_display, "_hover_tooltips", []):
if obj == ais_obj:
QtWidgets.QToolTip.showText (QtGui .
QCursor.pos (), tooltip, viewer_self)
return
QtWidgets.QToolTip.hideText ()

super () .mouseMoveEvent (event)

52

65
66
67
68
69
70
71
72
73
74
75
76

© 0 N O Ot R W N

—
o

11
12

13
14
15
16

17
18

self .modelTab = HoverableViewer3d(self)
self .mytabWidget.addTab(self.modelTab, "")

self .modelTab.InitDriver ()

self .display = self.modelTab._display
self .display._hover_tooltips = []

self .modelTab. _display = self.display

self .display.set_bg_gradient_color ([23, 1, 32], [23, 1, 32])
self .display.display_triedron ()
self .display.View.SetProj (1, 1, 1)

2. Function: DisplayMsg in utilities/ _init__.py

Listing 5.2: DisplayMsg function to add visual indicators

def DisplayMsg(display, point, text_to_write, height=15, message_color=
None, update=False):
if isinstance(point, gp_Pnt):
pnt = point
elif isinstance(point, gp_Pnt2d):
pnt = gp_Pnt(point.X(), point.Y(), 0.0)
eisiel:

raise TypeError ("point must be gp_Pnt or gp_Pnt2d")

if hasattr (display, 'Context'):
ais_context = display.Context
else:
raise AttributeError ("Display does not have a valid AIS context

‘u)

if message_color is not None:
if len(message_color) != 3:
raise ValueError ("message_color must be a tuple of 3 floats
between O and 1")
r, g, b = message_color

if not (0 <= r <= 1 and 0 <= g <= 1 and 0 <= b <= 1):

53

19

20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

0 N O Ut e W NN =

raise ValueError("message_color values must be in range 0
to 1")
color = Quantity_Color(r, g, b, Quantity_TOC_RGB)
else:
color = Quantity_Color (1.0, 1.0, 0.0, Quantity_TOC_RGB) #

Yellow

plus_label = AIS_TextLabel ()
plus_label.SetText ("+")
plus_label.SetPosition (pnt)
plus_label.SetColor (color)
plus_label.SetHeight (height)

ais_context.Display(plus_label, True)
if not hasattr(display, "_hover_tooltips"):
display._hover_tooltips = []

display._hover_tooltips.append((plus_label, text_to_write))

if update:

display.Repaint ()

return plus_label

3. Calling DisplayMsg in display_3DModel() in common logic.py

Listing 5.3: Example of calling DisplayMsg()

elif self.connection == KEY_DISP_BCENDPLATE:
self .Bc = self.module_class

self .Ext0Obj = self.createBCEndPlateCAD ()

self .display.View.SetProj(0CC.Core.V3d.V3d_XnegYnegZpos)
c_length = self.column_length

Pointl = gp_Pnt (0.0, 0.0, c_length)

DisplayMsg(self.display, Pointl, self.Bc.supporting_section.

designation)

54

10

11
12
13

14
15
16

17
18
19

20
21
22

23
24
25
26
27
28
29

b_length = self.beam_length + self.Bc.supporting_section.depth/2 +
100

Point2 = gp_Pnt (0.0, -b_length, c_length/2)
DisplayMsg(self.display, Point2, self.Bc.supported_section.

designation)

Point3 = gp_Pnt (0.0, -b_length, c_length)
DisplayMsg(self.display, Point3, f"Bolt Numbers: {self.Bc.

bolt_numbers}")

Point4 = gp_Pnt (0.0, -b_length - 100, c_length)
DisplayMsg(self.display, Point4, f"Bolt Diameter: {self.Bc.

bolt_diameter_provided}")

Point5 = gp_Pnt (0.0, -b_length - 200, c_length)
DisplayMsg(self.display, Point5, f"Bolt Grade: {self.Bc.

bolt_grade_providedl}")

base_x = 0.0
base_y = -b_length - 300

base_z = c_length

Point6 = gp_Pnt(base_x, base_y, base_z)
DisplayMsg(self.display, Point6, f"End Plate Height: {self.Bc.

ep_height_providedl}")

5.4 Overview of the Three-Script Interaction

The tooltip system operates through a coordinated workflow involving three key scripts
that work together to create, register, detect, and display interactive labels in the 3D

CAD environment. This section provides a step-by-step breakdown of their interaction.

95

5.4.1 Phase 1: System Initialization and Setup

Step 1: Enhanced Viewer Creation (ui_template.py)

Window Class Initialization Process:

1. Viewer Replacement: During application startup, the Window class’s init_display

function is called.

2. HoverableViewer3d Instantiation: Instead of the standard qtViewer3d,

a HoverableViewer3d instance is created.

3. Tooltip Registry Initialization: An empty _hover tooltips list is created to

store tooltip data.

4. Event Handler Setup: The mouseMoveEvent method is overridden for mouse

tracking.

5. Display Context Configuration: The new viewer is integrated with the display

context.

Step 2: Mouse Event Handler Preparation
HoverableViewer3d Class Setup:

1. Event Override: mouseMoveEvent captures all mouse movements.
2. Detection Logic Preparation: Algorithms are ready for 3D intersection testing.

3. Tooltip Display Mechanism: Initialized to render tooltips on hover.

5.4.2 Phase 2: Tooltip Creation and Registration

Step 3: Model Display Initiation (common logic.py)
display_3DModel Function Execution:

56

1. Renders the 3D model.

2. Identifies tooltip locations.

3. Calls DisplayMsg with parameters for each tooltip.
Example Function Call:

Listing 5.4: Calling DisplayMsg to show tooltip

o N O Ut e W N =

DisplayMsg(
display=self.display,
point=gp_Pnt(x, y, z),
text_to_write="Bolt dia:5mm",
height=15,
message_color=(1.0, 1.0, 0.0),

update=True

Step 4: Visual Indicator Creation (osdag/utilities/__init__.py)
DisplayMsg Function Workflow:

1. Creates an AIS TextLabel with a '+’ character.
2. Positions it using gp_Pnt(x, y, z).

3. Styles the label: color, height, and font.

4. Displays it using display.Context.Display.

5. Registers the tooltip in _hover_tooltips.

5.4.3 Phase 3: Real-Time Hover Detection and Display

Step 5: Continuous Mouse Monitoring (ui_template.py)

mouseMoveEvent Execution:

1. Captures mouse movement.

o7

[S U I

2. Converts screen coordinates to 3D.

3. Tests intersection with scene objects.

Step 6: Tooltip Detection Process
Detection Algorithm:

Listing 5.5: Detection of tooltip regions on mouse hover

for tooltip_object, message in _hover_tooltips:

if cursor_intersects_with(tooltip_object):

target_message = message
show_tooltip = True
break

1. Iterates over _hover_tooltips.
2. Computes cursor-to-object proximity.

3. Shows tooltip if hover zone is triggered.

Step 7: Dynamic Tooltip Display
1. Retrieves message.
2. Calculates screen position.
3. Creates popup widget.

4. Displays near cursor.

Step 8: Tooltip Lifecycle Management
1. Tracks cursor in real time.

2. Maintains visibility while hovering.

o8

3. Hides when cursor exits.

4. Frees tooltip resources.

5.4.4 Complete Workflow Summary

Initialization Phase:
e ui_template.py: Initializes HoverableViewer3d, _hover_tooltips
Registration Phase:
e common_logic.py — DisplayMsg
e osdag/utilities/__init__.py registers and displays labels
Runtime Phase:
e ui_template.py monitors mouse, checks proximity, shows/hides tooltip

Data Flow Between Scripts:

ui_template.py ¢ osdag/utilities/__init__.py: Tooltip registration

common_logic.py — osdag/utilities/__init__.py: Tooltip configuration

osdag/utilities/__init__.py — ui_template.py: Registration completion

ui_template.py uses registry to show hover tooltips

5.5 Documentation

A separate documentation for other interns to add labels to other CADs in Osdag was

created.

29

5.5.1 Directory Structure

Osdag
+— osdagMainPage.py

+— Common . py

+— ResourceFiles

images

last_designs

+— design_type
+— design_report

+— cad

— common_logic.py

— items
tpurlin.py

+— SimpleConnections

LfBoltedLapJoint
Lfbolted,lap,joint.py

— gui
spacing.py

ui_template.py

— ptilities

L—Avinit,,.py

60

Chapter 6

Osdag Performance Profiling and Op-

timization

6.1 Problem Statement

The Osdag CAD application was experiencing significant performance bottlenecks, espe-
cially during the generation of complex 3D models involving multiple components, such
as bolted connections in Column to Column Splice Cover Plate configurations. The main

performance concerns observed included:

e Extended Processing Times: Model generation became noticeably slower as the

number of bolts increased.

e Laggy User Experience: The application became unresponsive during CAD

rendering and interaction.

e Inefficient Resource Utilization: High CPU usage was noted, particularly dur-

ing geometric shape fusion processes.

e Profiling Limitations: Difficulty in pinpointing exact sources of performance

degradation without suitable profiling tools.

e Lack of Optimization: No clear guidance on which parts of the code required

improvement due to missing analysis metrics.

The core challenge was to identify which specific operations consumed the most com-

putational resources and to optimize them accordingly. Special attention was needed for

61

the geometric fusion operations, which play a central role in CAD model construction

and were found to be particularly time-consuming.

6.2 Tasks Done

6.2.1 Methodology

The performance optimization approach followed a systematic profiling and optimization

methodology:

e Profiling Infrastructure Development: Implemented a real-time profiling sys-

tem using Python’s cProfile module.

e Interactive Profiling Control: Developed keyboard-controlled profiling triggers

for flexible performance monitoring.

e Performance Analysis: Analyzed profiling results to identify computational bot-

tlenecks.

e Targeted Optimization: Implemented specific optimizations based on profiling

findings.
e Comparative Analysis: Measured performance improvements before and after
optimization.
6.2.2 Processes

Phase 1: Profiling System Implementation

e Integrated cProfile module for comprehensive performance monitoring.
e Implemented keyboard-based profiling controls using hotkeys.
e Developed automated profiling output generation and analysis.

e Created both console and file-based profiling report generation.

62

Phase 2: Performance Analysis

e Conducted systematic profiling of the Osdag application during various CAD op-

erations.
e Identified shape fusion operations as the primary performance bottleneck.
e Analyzed time distribution across different application functions.

e Focused analysis on Column to Column Splice Cover Plate Bolted CAD scenarios.

Phase 3: Optimization Implementation

e Replaced multiple sequential BRepAlgoAPI Fuse calls with BOPAlgo Builder.

e Implemented multi fusion() function using BOPAlgo Builder for batch process-

ing.
e Added fallback mechanism to ensure reliability.

e Integrated error handling and performance logging.

Phase 4: Validation and Testing

e Conducted comparative performance testing between old and new fusion methods.
e Validated optimization effectiveness on models with large numbers of bolts.
e Ensured geometric accuracy was maintained with the new implementation.

e Documented performance improvements and optimization impact.

6.2.3 Implementation

Profiling Infrastructure
e Real-time profiling control through keyboard hotkeys (’p’ to start, >s’ to stop).
e Threading implementation to prevent blocking of the main application.

e Comprehensive output generation including both statistical analysis and detailed

reports.

63

e File-based profiling output for detailed post-analysis.

Shape Fusion Optimization

e Implementation of multi fusion() function using BOPAlgo Builder.
e Batch processing of multiple shapes in a single operation instead of sequential fusion.
e Error handling with fallback to traditional BRepAlgoAPI Fuse method.

e Performance logging to track optimization effectiveness.

6.2.4 Key Technical Improvements

e Reduced computational complexity from O(n) sequential operations to a single

batch operation.
e Minimized intermediate shape creation and memory allocation.
e Improved geometric processing efficiency for multi-component assemblies.

e Enhanced scalability for models with increasing component counts.

6.3 Python Code

6.3.1 Description of Script

The profiler implementation provides comprehensive performance monitoring for the Os-

dag application through four key components:

1. Core Profiling Engine: Utilizes Python’s cProfile module with a global profiler

object to capture detailed execution statistics. This includes:

e Function call counts
e Individual function execution times

e Cumulative time analysis across all calls

2. Interactive Control System: Enables flexible real-time control of profiling through

keyboard hotkeys:

64

© 0 N O Ut e W NN =

e e e e
=~ W N o= O

e Pressing ’p’ triggers the start_profiling() function.
e Pressing ’s’ triggers the stop_profiling() function.

e Allows developers to begin and end profiling on-demand during execution with-

out modifying the core logic.

3. Threading Architecture: Ensures non-blocking operation by:

e Running the keyboard listener in a separate daemon thread.
e Ensuring the main Osdag application remains responsive during profiling.

e Allowing parallel execution of profiling control and CAD model generation.

4. Output Generation: Automates result processing upon stopping the profiler:

6.3.2

e Uses pstats.Stats to sort results by total execution time.
e Displays the top 50 most time-consuming functions in the console.
e Saves a detailed report in a text file for deeper analysis.

e Enables developers to focus only on significant performance bottlenecks.

Python Code

The Python script is shown below. Each section is commented for clarity.

Listing 6.1: Profiling code added at the end of osdagMainPage.py

import
import
import

import

cProfile
pstats
threading

keyboard # Install with “pip install keyboard’

Initialize global profiler object for performance monitoring

profiler = cProfile.Profile()

def start_profiling():

nmnn

Initiates profiling session

Enables the cProfile profiler to beginm collecting performance data

nunn

print ("Profiling started...")

65

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

49

def

def

profiler.enable ()

stop_profiling():

nnn

Terminates profiling sesston and generates comprehensive output
Processes collected data and creates both console and file reports
nann

print ("Profiling stopped...")

profiler.disable ()

Save raw profiling data to binary file

profiler.dump_stats ("profile_output")

Create stats object for analysis and formatting
stats = pstats.Stats("profile_output")
stats.sort_stats("time") # Sort by ezecution time (most time-

consuming first)

Display top 50 functions in console for immediate feedback

stats.print_stats (50)

Generate detatled text rTeport for permanent record
with open("profile_output.txt", "w") as f:
stats.stream = f

stats.print_stats(50) # Save top 50 functions to file

print ("Profile output saved to profile_output.txt")

listen_for_keys ():

nnn

Keyboard listener function for interactive profiling control

Runs in separate thread to avoid blocking matin application

niumnn

! !

keyboard.add_hotkey('p', start_profiling) # Press to start

p
profiling

keyboard.add_hotkey('s', stop_profiling) # Press 's' to stop
profiling

! !

keyboard.wait('esc') # Keep listenting until 'esc' is pressed to

erit

66

50
51
92
53
54
95
o6
57
o8
99
60
61
62
63
64

Start keyboard listener im background daemon thread

Daemon thread ensures

threading.Thread (target=1listen_for_keys, daemon=True).start ()

def main() :

if

nann

Main application entry point

Placeholder for Osdag application main Lloop

naunn

Main Osdag application logic would be called here

do_stuff () # Represents main Osdag application execution

__name__ == '__main_

main ()

6.3.3 Explanation of the Code

e Line 1-4: Imports necessary modules: cProfile and pstats for profiling, threading

to enable parallel execution, and keyboard for capturing hotkeys.

e Line 7: Initializes a global cProfile.Profile object named profiler to monitor

function calls and performance data.

e Lines 9-14: Defines the start_profiling() function that enables the profiler and

starts collecting performance metrics when called. It prints a confirmation message

to the console.
e Lines 16-34: Defines the stop_profiling() function, which:

— Disables the profiler (Line 19)

— Dumps raw data to a file named profile_output (Line 22)

— Creates a Stats object from the dumped data and sorts it by execution time

(Lines 24-25)

— Writes the same top 50 functions to a file named profile output.txt (Lines

31-33)

67

1t doesn't prevent application shutdown

Prints the top 50 time-consuming functions to the console (Line 28)

e Lines 36—41: Defines the 1listen_for keys() function that:

— Registers hotkeys: pressing *p’ starts profiling and ’s’ stops it (Lines 38-39)
— Keeps listening for keyboard input until ’esc’ is pressed (Line 40)
e Line 44-46: Starts the listen for keys() function in a background daemon

thread. This ensures the listener doesn’t block the main application and exits

cleanly when the program ends.

e Lines 48-53: Defines the main() function, a placeholder for Osdag’s main execu-
tion logic. It currently calls a placeholder function do_stuff () that represents the

core application.

e Line 55: Ensures the main() function is only executed if the script is run as the

main program.

6.4 Documentation

The code to create the profiler and the results were shared and discussed with the mentors
and fellow interns, including a document detailing the advantages of fusing multiple

shapes using BOPAlgo_Builder instead of multiple BRepAlgoAPI_Fuse calls

68

Chapter 7

Conclusions

7.1 Tasks Accomplished

During the internship, five key components were developed and integrated into the Osdag

structural design framework, improving its 3D modeling and visualization features.

e Core 3D Modeling Systems: Implemented C-Section Purlin modeling using
pythonOCC, enabling parametric geometry generation for steel sections with inte-
grated database access for standard properties. Developed Bolted Lap Joint As-
sembly modeling with accurate positioning of plates, bolts, and nuts, including

automated bolt pattern generation based on structural inputs.

e Interactive Visualization: Added dynamic bolt pattern visualization with tech-
nical drawing standards using PyQt5. Integrated hover-based tooltips into the 3D

viewer to display contextual information, enhancing user interaction during design.

e Performance Optimization: Used cProfile and keyboard-controlled profiling
to identify performance bottlenecks. Optimized shape fusion by replacing sequential
BRepAlgoAPI Fuse calls with BOPAlgo_Builder, improving performance for models

with many components.

7.2 Skills Developed

e Programming and Development: Gained advanced proficiency in PythonOCC

for 3D modeling, PyQt5 for GUI and graphics, and cProfile for performance

69

analysis. Strengthened skills in database integration, threading, and event-driven

programming for responsive Ul development.

CAD and 3D Modeling: Acquired expertise in parametric modeling, boolean
operations, and spatial positioning algorithms. Developed familiarity with engineer-
ing drawing standards, dimensional annotations, and interactive 3D visualization

techniques.

Software Engineering: Applied systematic profiling and optimization techniques.
Built modular architectures, integrated multi-component systems, and implemented
fallback mechanisms for reliability. Improved technical writing through documen-

tation and reporting.

Problem-Solving and Analysis: Enhanced ability to identify and resolve per-
formance issues, improve user experience, and translate engineering requirements

into functional software solutions.

70

Chapter A

Appendix

A.1 Work Reports

71

DATE DAY TASK Hours Worked

Name: Aryan Gupta

Project: Osdag

Internship: FOSSEE Semester Long Internship

15-Feb-2025 saturday Set up development environment and installed Osdag source code for testing 2
16-Feb-2025 Sunday LEAVE 0
17-Feb-2025 Monday Tested Osdag build and explored 3 modeling architecture 2
18-Feb-2025 Tuesday Studied PythonOCC structure and its integration into Osdag framework 2
19-Feb-2025 Wednesday Explored bolt modeling logic in Osdag and began planning tooltip system 4
20-Feb-2025 Thursday Started implementation of hover-based tooltip functionality in 30 viewer 3
21-Feb-2025 Friday Integrated tooltip display into custom PyQt viewer; debugged viewer response 5
22-Feb-2025 saturday Continued testing and refinement of tooltip logic for various component types 3
23-Feb-2025 Sunday LEAVE 0
24-Feb-2025 Monday Mentor meeting: reviewed tooltip progress and discussed viewer enhancements 5
25-Feb-2025 Tuesday Worked on interactive bolt pattern annotation and dimensional display 2
26-Feb-2025 Wednesday Improved Ul logic for bolt visualization using PYQtS graphics components 5
27-Feb-2025 Thursday Linked bolt pattern drawing to backend parameter extraction logic 5
28-Feb-2025 Friday Mentor d debugging of i i 5
01-Mar-2025 Saturday LEAVE 0
02-Mar-2025 Sunday LEAVE 0
03-Mar-2025 Monday LEAVE 0
04-Mar-2025 Tuesday LEAVE 0
05-Mar-2025 Wednesday LEAVE 0
06-Mar-2025 Thursday LEAVE 0
07-Mar-2025 Friday LEAVE 0
08-Mar-2025 Saturday LEAVE 0
09-Mar-2025 Sunday LEAVE 0
10-Mar-2025 Monday Refactored dimensional annotation system for consistent scaling and positioning 4
11-Mar-2025 Tuesday Implemented automatic bolt pattern layout logic based on structural rules 5
12-Mar-2025 Wednesday Continued bolt layout generation, tested on different structural configurations 5
13-Mar-2025 Thursday Meeting to demonstrate bolt pattern system and collect feedback 2
14-Mar-2025 Friday Implemented parametric modeling logic for C-section Purlin using Python0CC 5
15-Mar-2025 saturday Tested C-section shape generation and improved geometry definition 2
16-Mar-2025 Sunday LEAVE 0
17-Mar-2025 Monday Connected C-section parameters to database values for standard sections 2
18-Mar-2025 Tuesday Reviewed and debugged auto-retrieval of section properties 2
19-Mar-2025 Wednesday Mentor discussion on shape modeling consistency and 3D alignment issues 4
20-Mar-2025 Thursday Implemented boolean union operations for joint assemblies a
21-Mar-2025 Friday Faced performance issues in shape fusion; began profiling system setup 2
22-Mar-2025 Saturday Set up cProfile-based profiling system with keyboard. trigger a
23-Mar-2025 Sunday LEAVE 0
24-Mar-2025 Monday Analyzed profiling output to locate CAD performance bottlenecks 3
25-Mar-2025 Tuesday Replaced shape fusion algorithm with BOPAlgo_Builder for optimization 3
26-Mar-2025 Wednesday Benchmarked performance before and after optimization 2
27-Mar-2025 Thursday Mentor review meeting for performance enhancements and modeling logic 5
28-Mar-2025 Friday Tested bolt layout generation in complex joint models 5
29-Mar-2025 saturday Improved spatial positioning logic for multi-component assemblies 3
30-Mar-2025 Sunday LEAVE 0
31-Mar-2025 Monday Prepared internal documentation on tooltip and bolt pattern systems 3
01-Apr-2025 Tuesday Reviewed and finalized 30 modeling integration for joints and purlins B
02-Apr-2025 Wednesday Mentor feedback session on modeling coverage and CAD precision 3
03-Apr-2025 Thursday Worked on system 3
04-Apr-2025 Friday Added fallback mechanisms for missing data scenarios in Ul pipeline 5
05-Apr-2025 saturday Refactored module communication between CAD and GUI components 2
06-Apr-2025 Sunday LEAVE 0
07-Apr-2025 Monday Documented overall implementation and shared codebase walkthrough 2
08-Apr-2025 Tuesday Drafted system report detailing performance optimization steps 5
09-Apr-2025 Wednesday Collected user feedback on current visualization tools a
10-Apr-2025 Thursday Analyzed feedback and mapped improvements to implementation areas 3
11-Apr-2025 Friday Prepared updated dimensional annotation tools based on feedback 4
12-Apr-2025 Saturday Final mentor sync-up for feedback review and project wrap-up 5
13-Apr-2025 Sunday LEAVE 0
14-Apr-2025 Monday Worked on internship final report and documentation formatting 2
15-Apr-2025 Tuesday Setup and installed Osdag sour for testing 3
16-Apr-2025 Wednesday Tested Osdag build and explored 3D modeling architecture 4
17-Apr-2025 Thursday Studied PythonOCC structure and its integration into Osdag framework 5
18-Apr-2025 Friday Explored bolt modeling logic in Osdag and began planning tooltip system 4
19-Apr-2025 saturday Started implementation of hover-based tooltip functionality in 30 viewer 4
20-Apr-2025 Sunday LEAVE 0
21-Apr-2025 Monday Integrated tooltip display into custom PyQt viewer; debugged viewer response 2
22-Apr-2025 Tuesday Continued testing and refinement of tooltip logic for various component types 2
23-Apr-2025 Wednesday Mentor meeting: reviewed tooltip progress and discussed viewer enhancements 4
24-Apr-2025 Thursday Worked on interactive bolt pattern annotation and dimensional display 5
25-Apr-2025 Friday Improved Ul logic for bolt visualization using PYQtS graphics components 2
26-Apr-2025 saturday Linked bolt pattern drawing to backend parameter extraction logic 4
27-Apr-2025 Sunday LEAVE 0
28-Apr-2025 Monday Mentor feedback and debugging of dynamic drawing inconsistencies 5
29-Apr-2025 Tuesday Refactored dimensional annotation system for consistent scaling and positioning 5
30-Apr-2025 Wednesday Implemented automatic bolt pattern layout logic based on structural rules H
01-May-2025 Thursday Continued bolt layout generation, tested on different structural configurations 4
02-May-2025 Friday LEAVE 0
03-May-2025 Saturday LEAVE 0

04-May-2025
05-May-2025
06-May-2025
07-May-2025
08-May-2025
09-May-2025
10-May-2025
11-May-2025
12-May-2025
13-May-2025
14-May-2025
15-May-2025
16-May-2025
17-May-2025
18-May-2025
19-May-2025
20-May-2025
21-May-2025
22-May-2025
23-May-2025
24-May-2025
25-May-2025
26-May-2025
27-May-2025
28-May-2025
29-May-2025
30-May-2025
31-May-2025
01-Jun-2025
02Jun-2025
03-un-2025
04-Jun-2025
05-Jun-2025
06-Jun-2025
07-un-2025
08-Jun-2025
09-Jun-2025
10-un-2025
11un-2025
12Jun-2025
13-Jun-2025
14-Jun-2025
15-Jun-2025
16Jun-2025
17-un-2025
18-Jun-2025
19-Jun-2025
20-un-2025
21Jun-2025
22un-2025
234un-2025
20-4un-2025
25-un-2025
26-un-2025
27-un-2025
28Jun-2025
29un-2025
304un-2025

Tuesday

Tuesday
Wednesday
Thursday

Wednesday
Thursday
Friday
Saturday
Sunday
Monday

Meeting to demonstrate bolt pattern system and collect feedback

Implemented parametric modeling logic for C-section Purlin using Python0CC

LEAVE

Tested C-section shape generation and improved geometry definition

Connected C-section parameters to database values for standard sections

Reviewed and debugged auto-retrieval of section properties
on shape modeling 3D ali

Implemented boolean union operations for joint assemblies

Faced performance issues in shape fusion; began profiling system setup

LEAVE

Set up cProfile-based profiling system with keyboard-controlled trigger

Analyzed profiling output to locate CAD performance bottlenecks

Replaced shape fusion algorithm with BOPAlgo_Builder for optimization

Benchmarked performance before and after optimization

Mentor review meeting for p and modeling logic

Tested bolt layout generation in complex joint models

LEAVE

tissues

LEAVE
Improved spatial positioning logic for multi-component assemblies
LEAVE

Prepared internal documentation on tooltip and bolt pattern systems

N O WOOO0O0000O0000O0000000000000000WNNWNAEONNUSEWWOARWOOOOOOO0O00O0OO

Bibliography

[1] Siddhartha Ghosh, Danish Ansari, Ajmal Babu Mahasrankintakam, Dharma Teja
Nuli, Reshma Konjari, M. Swathi, and Subhrajit Dutta. Osdag: A Software for
Structural Steel Design Using IS 800:2007. In Sondipon Adhikari, Anjan Dutta, and
Satyabrata Choudhury, editors, Advances in Structural Technologies, volume 81 of
Lecture Notes in Ciwil Engineering, pages 219-231, Singapore, 2021. Springer Singa-

pore.
2] FOSSEE Project. FOSSEE News - January 2018, vol 1 issue 3. Accessed: 2024-12-05.

[3] FOSSEE Project. Osdag website. Accessed: 2024-12-05.

74

	Introduction
	National Mission in Education through ICT
	ICT Initiatives of MoE

	FOSSEE Project
	Projects and Activities
	Fellowships

	Osdag Software
	Osdag GUI
	Features

	Purlin CAD
	Problem Statement
	Tasks Done
	Python Code
	Description of the Script
	Python Code
	Explanation of the Code
	Full code

	Documentation
	Directory Structure

	Bolted Lap Joint CAD
	Problem Statement
	Tasks Done
	Python Code
	Description of the Script
	Python Code
	Explanation of the Code
	Full code

	Documentation
	Directory Structure

	Spacing GUI for CADs
	Problem Statement
	Tasks Done
	Python Code
	Python Code
	Explanation of the Code
	Python Code
	Explanation of the Code
	Full code

	Documentation
	Directory Structure

	Addition of Tooltips in CADs
	Problem Statement
	Tasks Done
	Methodology
	Processes
	Key Implementation Features
	Implementation Summary Table

	Technical Specifications
	Overview of the Three-Script Interaction
	Phase 1: System Initialization and Setup
	Phase 2: Tooltip Creation and Registration
	Phase 3: Real-Time Hover Detection and Display
	Complete Workflow Summary

	Documentation
	Directory Structure

	Osdag Performance Profiling and Optimization
	Problem Statement
	Tasks Done
	Methodology
	Processes
	Implementation
	Key Technical Improvements

	Python Code
	Description of Script
	Python Code
	Explanation of the Code

	Documentation

	Conclusions
	Tasks Accomplished
	Skills Developed

	Appendix
	Work Reports

	Bibliography

