
Winter Internship 2024 Report
On

UI Improvements, Bug Fixes and LTI

Auto-grading Improvement

Submitted by

Kaung Hsu San
Myanmar Institute of Information Technology

Mandalay, Myanmar

Under the guidance of

Prof. Kannan M. Moudgalya
Chemical Engineering Department

IIT Bombay

Mentors:

Mr. Nagesh Karmali
Ms. Firuza Aibara

March, 2025

Acknowledgements
I, the summer intern of the FOSSEE - Arduino On Cloud project, am
deeply humbled and overwhelmed with gratitude as I acknowledge all those
who have helped me perfect my ideas and have assigned tasks that chal-
lenged me, pushing me beyond simplicity into creating something concrete
and unique.

I wholeheartedly thank Prof. Kannan M. Moudgalya for having faith
in me, selecting me to be a part of his valuable project, and for constantly
motivating me to strive for excellence. I also thank Mr. Nagesh Karmali
and Ms. Firuza Aibara for providing me with the opportunity to work on
this project.

I am immensely grateful to my mentors for their valuable guidance and sug-
gestions. They were always there to show me the right path when I needed
help, and with their brilliant encouragement and direction, I was able to
complete all tasks efficiently and meet the expectations set.

Throughout this experience, I had the opportunity to strengthen both my
technical and non-technical skills and deepen my understanding of key con-
cepts.

Last but not least, I sincerely thank all my colleagues working on different
projects under Prof. Kannan M. Moudgalya. Their critical advice and
support have played a significant role in helping me grow and evolve during
this period.

1

Contents

1 Introduction 6
1.1 Project Overview . 6

2 Photoresistor’s Moon Movement Sync 7
2.1 Root Cause Analysis . 7
2.2 Implementation . 7
2.3 Result . 8

3 Potentiometer Dial Misplacement 9
3.1 Root Cause Analysis . 9
3.2 Implementation . 9
3.3 Result . 10

4 Slide Switch Dragging Issue 12
4.1 Root Cause Analysis . 12
4.2 Implementation . 12
4.3 Result . 13

5 Navigation and Save Prompts 15
5.1 Root Cause Analysis . 15
5.2 Implementation . 15
5.3 Result . 16

6 Toast Message Duration 17
6.1 Root Cause Analysis . 17
6.2 Implementation . 17
6.3 Result . 18

7 Undo/Redo Stack Management 19
7.1 Implementation . 19
7.2 Result . 19

2

8 Resizable Code Window 21
8.1 Implementation . 21
8.2 Result . 21

9 LTI Autograding Improvement 23
9.1 Implementation . 23
9.2 Result . 23
9.3 Further Extension . 24

10 Simulation with No Code Written 25
10.1 Implementation . 25
10.2 Result . 25

11 Font Size Dropdown List for Code Editor 27
11.1 Implementation . 27
11.2 Result . 27

12 Pin Mismatch Detection 29
12.1 Implementation . 29
12.2 Result . 30

13 Short Circuit Detection on Breadboard 32
13.1 Implementation . 32
13.2 Result . 32

14 Upload feature for .ino code into the editor 34
14.1 Implementation . 34
14.2 Result . 34
14.3 Further Extension . 36

15 Removing Arduino Dependency in Code Editor: 37
15.1 Implementation . 37
15.2 Result . 38
15.3 Further Extension . 41

References 42

3

List of Figures

2.1 Before the fix: The moon’s movement was unsynchronized
with the sun and slider. 8

2.2 After the fix: The moon now moves in sync with the sun and
slider. 8

3.1 Before the fix: The potentiometer dial was reset to original
after stopping the simulation. 10

3.2 After the fix: The potentiometer dial now maintains its correct
position and rotation across simulation restarts. 11

4.1 Before the fix: The Slide Switch did not move correctly, caus-
ing misalignment. 13

4.2 After the fix: The Slide Switch now moves correctly, main-
taining alignment. 14

7.1 Before and after adding the resetStack() function. 20

8.1 Before adding the resize functionality. 22
8.2 After adding the resize functionality 22

10.1 Before adding the check in StartSimulation() function . . . 26
10.2 After adding the check in StartSimulation() function 26

11.1 Before adding the font size dropdown feature 28
11.2 After adding the font size dropdown list feature 28

12.1 Before implementing the pin mismatch detection feature . . . 30
12.2 After implementing the pin mismatch detection feature 31

13.1 Before implementing the short circuit detection feature 33
13.2 After implementing the short circuit detection feature 33

14.1 The upload code functionality process (part 1). 35
14.2 The upload code functionality process (part 2). 35

4

14.3 The upload code functionality process (part 3). 36

15.1 Before removing the Arduino board dependency (Part 1): With-
out the Arduino board, code cannot be written. 38

15.2 Before removing the Arduino board dependency (Part 2): Code
can only be written when the Arduino board is present. 39

15.3 Before removing the Arduino board dependency (Part 3): A
popup appears when deleting the Arduino board. 39

15.4 Before removing the Arduino board dependency (Part 4):Code
editor after deleting the Arduino board. 40

15.5 After removing the Arduino board dependency (Part 1): Code
editor without Arduino board. 40

15.6 After removing the Arduino board dependency (Part 2): Code
doesn’t get deleted after deleting the Arduino board. 41

5

Chapter 1

Introduction

Arduino on Cloud is an cloud-based simulator designed to provide students
and researchers with a platform to test and run simulations before executing
their projects in real-world scenarios. This system simplifies the process of
virtual experimentation by allowing users to drag and drop various Arduino
components from the left panel into the working space on the right.

The system provides users with the ability to connect the Arduino board’s
pins to a range of input/output devices such as LEDs, motors, and push-
buttons, using virtual wires. To enhance clarity and ease of use, users can
customize the color of wires, LEDs, and other components, helping to visually
differentiate between various elements in the simulation.

Once the hardware setup is complete, users can write their code in the code
window and simulates. For documentation purposes, users have the option
to print or save their simulation in PDF format. Additionally, the platform
offers an Electronic Rule Check (ERC) feature, which enables users to quickly
identify and correct any errors in their circuit design, ensuring a seamless and
error-free simulation experience.

1.1 Project Overview

During this internship, I worked on an existing project that had already
been partially completed. My main tasks included bug fixes, addition of
new features and improvement of the existing functionalities, all aimed at
enhancing the overall performance and user experience of the simulator.

6

Chapter 2

Photoresistor’s Moon
Movement Sync

The task deals UI bug in the photoresistor component, where the moon was
not aligning properly with the slider and the sun when simulating. When
moving the photoresistor, the sun and the slider move along with the pho-
toresistor but the moon move very little.

2.1 Root Cause Analysis

The issue stemmed from the moon SVG being much larger than the sun
SVG, which led to incorrect scaling and translation. In SVG (Scalable Vector
Graphics), scaling an element changes both its size and the impact of any
translation (movement). When an object is larger, translating it by a fixed
amount causes it to appear to move a smaller distance relative to its size,
when combined with scaling. Since the moon SVG was bigger, applying the
scaling and translation caused the moon to move less than expected, resulting
in unsynchronized movement between the moon, sun, and slider.

2.2 Implementation

To fix this, I first scaled down the moon SVG directly in the ArduinoFrontend/
src/assets/jsons/PhotoResistor.json file. This made the moon’s di-
mensions match the sun’s proportions. Next, in ArduinoFrontend/src/app/

Libs/inputs/PhotoResistor.ts I adjusted the translation formula so that
it is on the left side of the slider. This ensured that the moon moved cor-
rectly along with the slider and the sun.For more details, see the GitHub pull
request: https://github.com/frg-fossee/eSim-Cloud/pull/558

7

https://github.com/frg-fossee/eSim-Cloud/pull/558

2.3 Result

The following figures illustrate the change before and after the fix.

Figure 2.1: Before the fix: The moon’s movement was unsynchronized with
the sun and slider.

Figure 2.2: After the fix: The moon now moves in sync with the sun and
slider.

8

Chapter 3

Potentiometer Dial
Misplacement

This task addresses a UI bug in the potentiometer component, where the
dial becomes misplaced when stopping the simulation.

3.1 Root Cause Analysis

Previously, the potentiometer’s transformation (including its position) was
applied using only the tx and ty translation values. However, the rotation of
the potentiometer dial was not saved or restored correctly between simulation
runs. This caused issues where the potentiometer dial either didn’t reflect the
last known rotation or would reset to an incorrect state upon re-initialization.
This lack of proper handling of the transformation state led to inconsistencies
in the potentiometer’s behavior, causing it to appear misaligned when the
simulation was restarted.

3.2 Implementation

To resolve this, the implementation was updated to restore the potentiome-
ter’s rotation angle (if previously saved) and ensure the potentiometer’s po-
sition is correctly set when the simulation begins. The rotation angle, if
available, is now retrieved and applied at the start of the simulation, ensur-
ing that the dial reflects its last known state. Additionally, the translation
values (tx, ty) are properly applied, ensuring that the potentiometer’s posi-
tion remains consistent after the simulation is restarted.

This fix ensures that the potentiometer’s dial no longer resets to an incorrect

9

position, and the transformation (both position and rotation) is preserved
correctly across simulation runs. For more details, see the GitHub pull re-
quest: https://github.com/frg-fossee/eSim-Cloud/pull/561

3.3 Result

The following figures illustrate the change before and after the fix.

Figure 3.1: Before the fix: The potentiometer dial was reset to original after
stopping the simulation.

10

https://github.com/frg-fossee/eSim-Cloud/pull/561

Figure 3.2: After the fix: The potentiometer dial now maintains its correct
position and rotation across simulation restarts.

11

Chapter 4

Slide Switch Dragging Issue

This task addresses a UI bug in the Slide Switch component, where dragging
the switch after closing the simulation caused the component to become
misaligned or behave unexpectedly.

4.1 Root Cause Analysis

Previously, the Slide Switch’s transformation (position updates during drag-
ging) was not being applied correctly. The issue stemmed from the fact that
the drag listeners were not being initialized properly for the component. This
caused problems where:

� The Slide Switch did not move smoothly as expected.

� The connections between the switch and other circuit elements ap-
peared visually detached.

The root cause was that the setDragListeners() function, which man-
ages drag behavior, was not explicitly called in the constructor of the Slide
Switch component. As a result, the necessary event listeners were missing,
preventing the component from updating its position correctly.

4.2 Implementation

To resolve this issue, the setDragListeners() function was explicitly called in
the constructor of the Slide Switch component. This ensures that drag event
listeners are properly attached when the component is created. Now, when
the switch is dragged, both its position (tx, ty) and the connections to other
elements update correctly.

12

This fix ensures that the Slide Switch behaves as expected when moved,
maintaining alignment with circuit connections and preserving its position
accurately. For more details, see the GitHub pull request: https://github.
com/frg-fossee/eSim-Cloud/pull/562

4.3 Result

The following figures illustrate the change before and after the fix.

Figure 4.1: Before the fix: The Slide Switch did not move correctly, causing
misalignment.

13

https://github.com/frg-fossee/eSim-Cloud/pull/562
https://github.com/frg-fossee/eSim-Cloud/pull/562

Figure 4.2: After the fix: The Slide Switch now moves correctly, maintaining
alignment.

14

Chapter 5

Navigation and Save Prompts

Two related issues were identified regarding the save functionality when nav-
igating between sections such as ”Home,” ”Gallery,” and ”Dashboard”:

1. Unnecessary Save Prompt: A pop-up appears asking the user to
save the circuit when navigating from the editor to sections like ”Home”
or ”Gallery,” even if no changes have been made.

2. Save Not Triggering on Home Button: When the user clicks
”Save” in the pop-up after navigating to ”Home” from the toolbar,
the circuit is not saved. It only saves when navigating to other sections
like ”Dashboard” or ”Gallery,” creating inconsistency and confusion.

5.1 Root Cause Analysis

The first issue stemmed from the lack of a flag to track unsaved changes,
causing unnecessary save prompts. The second issue arose when the ”Save”
button was clicked in the pop-up after navigating to ”Home.” Despite con-
firming the save, the ”before unload” alert still appeared, suggesting unsaved
changes. However, the circuit was actually saved, indicating that the ”before
unload” prompt should only appear when there are unsaved changes. Both
issues were traced to the system’s failure to properly track saved and unsaved
changes.

5.2 Implementation

To address these issues, the hasUnsavedChanges flag was introduced. It is
used in ArduinoFrontend/src/app/Libs/Workspace.ts and ArduinoFrontend/

15

src/app/simulator/simulator.component.ts to determine when the ”Save”
prompt should appear and ensure the ”before unload” prompt only triggers
when there are actual unsaved changes.For more details, see the GitHub pull
requests: https://github.com/frg-fossee/eSim-Cloud/pull/549https:
//github.com/frg-fossee/eSim-Cloud/pull/550

5.3 Result

With the changes implemented, the save prompts now behave as expected:

� The ”Save” prompt only appears when there are unsaved changes.

� The ”before unload” prompt triggers only when there are unsaved
changes, preventing unnecessary alerts.

� The circuit is consistently saved across all sections, including when
navigating to ”Home.”

16

https://github.com/frg-fossee/eSim-Cloud/pull/549
https://github.com/frg-fossee/eSim-Cloud/pull/550
https://github.com/frg-fossee/eSim-Cloud/pull/550

Chapter 6

Toast Message Duration

This task addresses an issue where the toast message in the application re-
mained visible for a fixed duration of 10 seconds, even if the conditions to
hide it were met before the timer expired. Specifically, when the simula-
tion was stopped or other actions were taken, the toast message still stayed
visible until the 10-second duration had passed, which led to undesirable
behavior. The goal was to allow the toast message to disappear based on
specific conditions rather than being hardcoded to stay for a set time.

6.1 Root Cause Analysis

The issue stemmed from the toast message being hardcoded to stay on for
a fixed duration of 10 seconds. Even when the conditions to hide the mes-
sage were met, the timer for hiding the toast did not consider whether the
message should disappear early. As a result, the toast message would remain
visible until the 10-second timer expired, even when it no longer needed to
be displayed.

6.2 Implementation

To resolve this, I implemented a flag to track the state of the toast mes-
sage. I also added a hideToast() method to explicitly remove the toast
message when required, instead of relying on a fixed timer. The flag tracks
whether the toast message should be hidden based on user interactions or
other conditions. For more details, see the GitHub pull request: https:

//github.com/frg-fossee/eSim-Cloud/pull/554

17

https://github.com/frg-fossee/eSim-Cloud/pull/554
https://github.com/frg-fossee/eSim-Cloud/pull/554

6.3 Result

The update introduces a dynamic toast message duration, allowing the mes-
sage to disappear based on specific conditions rather than staying fixed for
10 seconds.

18

Chapter 7

Undo/Redo Stack Management

When a circuit is loaded from the gallery or imported via JSON, the undo op-
eration should be disabled immediately without the user making any changes.
The undo stack is to be cleared upon loading or importing the circuit. I imple-
mented this behavior by introducing a resetStack() function, which is called
when a circuit is loaded or imported, ensuring the undo and redo stacks are
cleared.

7.1 Implementation

To implement the reset of the undo/redo stack, the resetStack() function
was introduced in ArduinoFrontend/src/app/Libs/UndoUtils.ts. This
function is called in ArduinoFrontend/src/app/Libs/Workspace.ts in the
methods static LoadWires() and Load(). For more details, see the GitHub
pull request: https://github.com/frg-fossee/eSim-Cloud/pull/546

7.2 Result

This update disables the undo operation after loading a circuit from the
gallery or importing from a JSON file. The undo operation is only enabled
once the user makes new changes. The following figure illustrates the state
of the system before and after the resetStack() function is called.

19

https://github.com/frg-fossee/eSim-Cloud/pull/546

Figure 7.1: Before and after adding the resetStack() function.

20

Chapter 8

Resizable Code Window

The task was to make the code editor window resizable horizontally. Previ-
ously, the size was fixed.

8.1 Implementation

To begin, I introduced a resize handle within the editor’s container and imple-
mented event listeners (mousedown, mousemove, mouseup) to track mouse
movements for resizing. To ensure the Monaco editor inside the container
resizes correctly, I added an ngOnChanges lifecycle method in the CodeEditor
component. This method monitors changes to the width input property and
dynamically adjusts the editor’s height and layout using Monaco’s layout()
method. Additionally, I implemented limits on the maximum and minimum
size of the code editor window. For more details, see the GitHub pull request:
https://github.com/frg-fossee/eSim-Cloud/pull/547

8.2 Result

The update introduces a resizable code editor, allowing users to resize the
editor container using the resize handle on the right side of the editor window.
The following figures illustrate the behavior of the editor before and after the
resizing functionality was added:

21

https://github.com/frg-fossee/eSim-Cloud/pull/547

Figure 8.1: Before adding the resize functionality.

Figure 8.2: After adding the resize functionality

22

Chapter 9

LTI Autograding Improvement

I addressed an issue where the system was grading preconnected pins pro-
vided by the teacher, which we wanted to exclude from the grading process.
The goal was to improve the LTI autograding system to grade only the
pins connected by the student. Originally, the system simply compared the
teacher’s pins and the student’s pins, regardless of any preconnected pins
assigned to the student.

9.1 Implementation

To achieve this, I retrieved the pins originally assigned to the student and
identified those that were not part of the teacher’s circuit. By comparing the
student’s connected pins with the teacher’s circuit, the system now calcu-
lates how many pins are correctly connected. This was implemented in the
arduino eval function of the esim-cloud-backend/ltiAPI/process subm

ission.py file. For more details, see the GitHub pull request: https:

//github.com/frg-fossee/eSim-Cloud/pull/555

9.2 Result

The update ensures that the LTI autograding system now grades only the
pins connected by the student, excluding any preconnected pins provided by
the teacher. This change enables a more accurate grading process by focus-
ing on the student’s work and eliminating unnecessary grading of teacher-
supplied connections.

23

https://github.com/frg-fossee/eSim-Cloud/pull/555
https://github.com/frg-fossee/eSim-Cloud/pull/555

9.3 Further Extension

Currently, there is no function for saving the circuit in the LTI system. As a
result, if the circuit is accidentally reset or if the student loses their progress,
they would need to start from scratch. Adding a save functionality would
ensure that the student’s progress is preserved even if the circuit is reset or
if they need to return to the circuit later.

24

Chapter 10

Simulation with No Code
Written

When the user attempts to simulate a circuit without writing any code in the
code window, a popup should appear stating that no code has been written.
Additionally, no call should be made to the backend for compilation in this
case. This functionality is handled entirely in the frontend.

10.1 Implementation

To implement this behavior, in the
textttStartSimulation() function of ArduinoFrontend/src/app/simulator/
simulator.component.ts, a check is added to verify if code has been writ-
ten. If no code is found, a popup appears, the simulation is halted, and
the button is re-enabled. For more details, see the GitHub pull request:
https://github.com/frg-fossee/eSim-Cloud/pull/551

10.2 Result

The update ensures that when the simulation button is clicked, it first checks
for code in the code window. If no code is found, a popup notifies the user
that no code has been written, the simulation is halted, and the simulation
button is re-enabled. The following figures illustrates the behavior when no
code is present and the popup appears.

25

https://github.com/frg-fossee/eSim-Cloud/pull/551

Figure 10.1: Before adding the check in StartSimulation() function

Figure 10.2: After adding the check in StartSimulation() function

26

Chapter 11

Font Size Dropdown List for
Code Editor

Originally, there was a feature for changing the font size in the code editor,
but it was button-based, requiring multiple clicks to reach the desired size.
This approach was inconvenient for users as it was time-consuming and not
user-friendly.

11.1 Implementation

To improve usability, I added a dropdown list to complement the existing
button-based system for changing font sizes. In the ArduinoFrontend/src/ap
p/code-editor/code-editor.component.ts file, I created a fontSizes ar-
ray and implemented the updateFontSize() method to update the editor’s
font size when the user selects a new value. In the ArduinoFrontend/src/app/
code-editor/code-editor.component.html file, I integrated the dropdown
list with two-way data binding using [(ngModel)] to automatically update
the editorFontSize variable. For more details, see the GitHub pull request:
https://github.com/frg-fossee/eSim-Cloud/pull/552.

11.2 Result

Users can now directly select a font size from the dropdown, which dynami-
cally updates the editor while staying synchronized with the existing buttons.
This improvement offers a more efficient and flexible way to adjust font size,
eliminating unnecessary clicks. Users can still adjust the font size gradually
using the buttons, offering greater flexibility.The following images show the
code editor before and after the addition of the font size dropdown feature:

27

https://github.com/frg-fossee/eSim-Cloud/pull/552

Figure 11.1: Before adding the font size dropdown feature

Figure 11.2: After adding the font size dropdown list feature

28

Chapter 12

Pin Mismatch Detection

The task is to introduce a feature that detects pin mismatches between the
schematic and the code. A popup will alert users to any discrepancies before
they begin the simulation, helping them catch errors early. Previously, users
could connect pins to the Arduino without validation, leading to situations
where the simulation ran but did not function as expected due to incorrect pin
mappings. While this reflects real-world conditions, the platform is designed
for students. Adding this validation will help catch errors early, reducing
confusion and improving the learning experience.

12.1 Implementation

To detect pin mismatches, I implemented a validation process in the Arduino
Frontend/src/app/Libs/outputs/Arduino.ts file that runs on the fron-
tend without requiring a backend call. The process is divided into the fol-
lowing steps:

� Extract Pins from Arduino Circuit: The declared pins in the
schematic are extracted and stored in an array. This allows us to track
all pins that are connected to the Arduino.

� Extract Pins Used in Code: A regular expression (regex) is used
to extract pin numbers from the Arduino code. This regex searches for
variable assignments and function calls that involve pin numbers.

� Check Pin Mismatch: After extracting the pins used in the code, the
system compares them to the array of declared pins from the schematic.
If any pin referenced in the code is not found in the Arduino circuit (or if
there are pins declared in the circuit but not used in the code, a popup

29

is triggered to notify the user about the mismatch. This validation
occurs before initiating the simulation, ensuring that users are aware
of any issues with the pins in their code.

For more details, see the GitHub pull request: https://github.com/frg-fossee/
eSim-Cloud/pull/553.

12.2 Result

The pin mismatch detection feature provides immediate feedback before run-
ning the simulation, preventing errors caused by incorrect pin mappings and
reducing troubleshooting time. It enhances the user experience by identi-
fying common mistakes early, allowing users to ensure that the pins in the
schematic match those in the code, minimizing confusion and frustration.
The following images show the state of the system before and after the im-
plementation of the pin mismatch detection feature:

Figure 12.1: Before implementing the pin mismatch detection feature

30

https://github.com/frg-fossee/eSim-Cloud/pull/553
https://github.com/frg-fossee/eSim-Cloud/pull/553

Figure 12.2: After implementing the pin mismatch detection feature

31

Chapter 13

Short Circuit Detection on
Breadboard

To address the issue of components being placed on the first two or last two
lines(power rails) of the breadboard, which can cause a short circuit on the
physical breadboard, we need to implement a detection feature in the system.
Currently, this problem is not flagged, and the circuit continues to simulate
without any warnings.

13.1 Implementation

I implemented three functions: checkBreadboardPowerConnections(),
checkAllPinsConnectedToOneRail(), and checkShortCircuit(). The
checkShortCircuit() function calls both first two functions to perform the
necessary checks for detecting short circuits. This function is invoked when
user clicked the simulate button.the system will first check if the power rail
is connected to power, then examine the component placements to see if all
of their pins are connected to these powered power rails. If a component
is incorrectly connected to a power rail, a popup will alert the user about
the potential short circuit and stop the simulation. For more details, see
the GitHub pull request: https://github.com/frg-fossee/eSim-Cloud/

pull/556.

13.2 Result

The feature successfully detects short circuits caused by improper compo-
nent placement on the power rails. When a short circuit is detected, the
system notifies the user with a popup, preventing further simulation errors.

32

https://github.com/frg-fossee/eSim-Cloud/pull/556
https://github.com/frg-fossee/eSim-Cloud/pull/556

The following images show the state of the system before and after the im-
plementation of the short circuit detection feature:

Figure 13.1: Before implementing the short circuit detection feature

Figure 13.2: After implementing the short circuit detection feature

33

Chapter 14

Upload feature for .ino code
into the editor

Previously, users could manually enter or copy-paste their Arduino code into
the editor, which was time-consuming and prone to errors. To improve user
experience and streamline the process, a feature was introduced that allows
users to upload their Arduino code files (.ino) directly into the code editor.

14.1 Implementation

To enable file uploads, I modified the ArduinoFrontend/src/app/code-edi
tor/code-editor.component.html file by adding a hidden file input ele-
ment with a button for triggering the file selection. When the user se-
lects a file, the UploadCode() method in the code-editor.component.ts

file is invoked. This method uses the FileReader API to read the con-
tents of the selected .ino file as text and load it into the code editor.
Additionally, I ensured the file input is reset after the file is successfully
loaded, preventing the user from uploading the same file multiple times
without selecting it again. For more details, see the GitHub pull request:
https://github.com/frg-fossee/eSim-Cloud/pull/559.

14.2 Result

With the new upload feature, users can now easily upload their Arduino
code files by clicking the ”Upload” button and selecting a .ino file from
their local system. The editor will automatically load the content of the
file, allowing users to start editing immediately. This eliminates the need for
manual copy-pasting or typing, improving the speed and accuracy of code

34

https://github.com/frg-fossee/eSim-Cloud/pull/559

entry. The file upload is fully synchronized with the existing code editor,
and users can continue to modify their code as needed after the upload. The
following figures illustrate the process of the user uploading the code:

Figure 14.1: The upload code functionality process (part 1).

Figure 14.2: The upload code functionality process (part 2).

35

Figure 14.3: The upload code functionality process (part 3).

14.3 Further Extension

To improve the upload feature for the code editor, it would be beneficial to
allow users to upload not only their Arduino .ino code files but also library
files and component files (such as .h, .cpp, or other library files) that are
typically required in Arduino projects. This would ensure that all necessary
dependencies are included and that the code can be compiled and simulated
correctly without missing external libraries.

Additionally, we can add support for uploading and importing custom li-
braries along with their associated components. This would allow users to
import files that are specific to custom sensors, actuators, or other compo-
nents they are using in their projects. By importing the library files, users
can link these files to their project to ensure the correct components are
available for simulation and interaction with the code.

36

Chapter 15

Removing Arduino
Dependency in Code Editor:

Previously, the ability to write and edit .ino code was tied to the presence
of an Arduino board on the schematic. This created a limitation where users
could not write or edit Arduino code unless the board was included in the
schematic. Additionally, if the Arduino board was deleted, the associated
code would also be removed, which was problematic for users who wanted
to retain their code independently of the board. The goal was to remove
this dependency so that users can write and edit Arduino code regardless of
whether an Arduino board is present or not.

15.1 Implementation

To achieve this, I made several key changes to the code editor’s functionality.
Firstly, I removed the dependency on the Arduino board in ArduinoFrontend/
src/app/code-editor/code-editor.component.html by allowing the code
editor to initialize independently of the board’s presence. Additionally, the
editor’s state is no longer tied to the Arduino board. Previously, deleting
the Arduino board would also delete the associated code. Now, the code re-
mains intact in the editor even if the board is removed, ensuring users retain
their work independently of the Arduino board. Furthermore, to streamline
the process, I added a mechanism to automatically trigger the reinitializa-
tion of the code editor when an Arduino Uno is added to the schematic.
When the user adds an Arduino Uno, a global flag is set, and the code ed-
itor is refreshed to apply the existing code to the new board. This ensures
that the editor always reflects the correct state without requiring to open
and closing the code editor. For more details, see the GitHub pull request:

37

https://github.com/frg-fossee/eSim-Cloud/pull/560.

15.2 Result

With this update, users can now write and edit .ino code without needing
an Arduino board in the schematic. The editor no longer depends on the
presence of the board, and the code remains persistent even if the board is
deleted from the schematic. This change improves the flexibility and usability
of the code editor, enabling users to focus solely on writing their code without
worrying about the schematic layout. With this update, users can now write
and edit .ino code without needing an Arduino board in the schematic.
The editor is no longer dependent on the presence of the board, and the
code remains intact even if the board is deleted. This change significantly
improves the flexibility and usability of the code editor, allowing users to
focus on writing their code without worrying about the schematic layout.

The following images illustrate the state of the system before and after
implementing this feature:

Figure 15.1: Before removing the Arduino board dependency (Part 1): With-
out the Arduino board, code cannot be written.

38

https://github.com/frg-fossee/eSim-Cloud/pull/560

Figure 15.2: Before removing the Arduino board dependency (Part 2): Code
can only be written when the Arduino board is present.

Figure 15.3: Before removing the Arduino board dependency (Part 3): A
popup appears when deleting the Arduino board.

39

Figure 15.4: Before removing the Arduino board dependency (Part 4):Code
editor after deleting the Arduino board.

Figure 15.5: After removing the Arduino board dependency (Part 1): Code
editor without Arduino board.

40

Figure 15.6: After removing the Arduino board dependency (Part 2): Code
doesn’t get deleted after deleting the Arduino board.

15.3 Further Extension

As the code editor is now independent of the Arduino board, a possible
next step could be enabling the editor to support multiple board types (like
ESP32, Raspberry Pi, etc.). This would allow users to work with a variety
of platforms without requiring an associated schematic. Additionally, intro-
ducing board-specific code snippets or libraries within the editor would help
guide users when writing code for different platforms, thus making the tool
more versatile and appealing to a wider range of users.

41

References

1. https://esim-cloud.readthedocs.io/en/latest/overview/index.
html#arduino-on-cloud

2. https://www.1edtech.org/standards/lti

3. https://github.com/rohitjose/django-lti-auth

4. https://github.com/Harvard-ATG/django-app-lti

42

https://esim-cloud.readthedocs.io/en/latest/overview/index.html#arduino-on-cloud
https://esim-cloud.readthedocs.io/en/latest/overview/index.html#arduino-on-cloud
https://www.1edtech.org/standards/lti
https://github.com/rohitjose/django-lti-auth
https://github.com/Harvard-ATG/django-app-lti

	Introduction
	Project Overview

	Photoresistor's Moon Movement Sync
	Root Cause Analysis
	Implementation
	Result

	Potentiometer Dial Misplacement
	Root Cause Analysis
	Implementation
	Result

	Slide Switch Dragging Issue
	Root Cause Analysis
	Implementation
	Result

	Navigation and Save Prompts
	Root Cause Analysis
	Implementation
	Result

	Toast Message Duration
	Root Cause Analysis
	Implementation
	Result

	Undo/Redo Stack Management
	Implementation
	Result

	Resizable Code Window
	Implementation
	Result

	LTI Autograding Improvement
	Implementation
	Result
	Further Extension

	Simulation with No Code Written
	Implementation
	Result

	Font Size Dropdown List for Code Editor
	Implementation
	Result

	Pin Mismatch Detection
	Implementation
	Result

	Short Circuit Detection on Breadboard
	Implementation
	Result

	Upload feature for .ino code into the editor
	Implementation
	Result
	Further Extension

	Removing Arduino Dependency in Code Editor:
	Implementation
	Result
	Further Extension

	References

