
Semester Long Internship Report
On

Scilab Control System Toolbox Development

Submitted by

Akash S

Under the guidance of

Prof.Kannan M. Moudgalya

Department of Chemical Engineering, IIT Bombay

Mentor

Ms. Rashmi Patankar

Project Manager, Scilab Team, FOSSEE Project, IIT Bombay

Faculty Guide

Dr. Krishnaveni V

Professor and Head, Department of ECE,
PSG College of Technology

September 1, 2025

Acknowledgment

I would like to take this opportunity to express my sincere gratitude to the
FOSSEE Team at IIT Bombay for giving me the opportunity to work on the
development of the Control System Toolbox in Scilab as part of my internship.

I am deeply grateful to Prof. Kannan M. Moudgalya, Department of Chemical
Engineering, IIT Bombay, for providing this wonderful opportunity to students to
explore and enhance their learning.

I extend my heartfelt thanks to my mentor, Ms. Rashmi Patankar, Project
Manager, Scilab Team, FOSSEE Project, for her constant guidance, support, and
encouragement throughout the internship. Her valuable feedback and insights were
instrumental in shaping my learning experience.

I would also like to acknowledge the entire FOSSEE Team for fostering a
collaborative and inspiring environment that enabled me to grow both technically
and professionally.

My gratitude also goes to the Department of Electronics and Communication
Engineering, PSG College of Technology, for providing me with a strong academic
foundation and for continuously motivating students to explore opportunities
beyond the classroom.

Finally, I wish to express my special thanks to Dr. Krishnaveni V, Professor and
Head of the Department of ECE, PSG College of Technology, for her constant
support and for inspiring me, through her Control Systems course, to explore
applications beyond academics, an inspiration that greatly motivated me to
contribute to this open-source initiative.

1

Contents

1 Introduction 3

2 Control System Toolbox Development 5
2.1 Overview . 5
2.2 Development Workflow . 6

2.2.1 Studying Reference Implementations 6
2.2.2 Line-by-Line Translation to Scilab 6
2.2.3 Handling Missing or Incompatible Functions 7
2.2.4 Testing and Iteration . 7
2.2.5 Leveraging AI for Translation and Debugging 7

2.3 Current Status . 8
2.3.1 Documentation Pattern . 8
2.3.2 Functions Completed . 9
2.3.3 Challenges Faced . 9

3 Learnings 11

4 Conclusion 12

2

Chapter 1

Introduction

The Free/Libre and Open Source Software for Education (FOSSEE) project is an
initiative that advocates the adoption of open-source software tools to enhance the
quality of education in India. Its primary objective is to reduce the reliance on
proprietary software in academic institutions by promoting freely available
alternatives. Through a range of activities, including training, content creation,
and tool development, FOSSEE supports the integration of FLOSS tools into
teaching and research. The project also contributes to the development and
improvement of open-source software to align with the evolving needs of academia.

FOSSEE is a part of the National Mission on Education through Information and
Communication Technology (ICT), an initiative of the Ministry of Education
(MoE), Government of India.

Scilab is a free, open-source and cross-platform numerical computation software. It
includes a high-level, numerically oriented programming language, an efficient
computation engine, an integrated development environment, as well as 2D and 3D
visualization capabilities.

Scilab can be used for signal processing, statistical analysis, numerical
optimization, and modeling, simulation of explicit and implicit dynamical systems.
Scilab capabilities can be extended using a toolbox mechanism such as image
processing, data analysis dynamic, fluid simulation.

Scilab is one of the two major open-source alternatives to MATLAB, the other one
is GNU Octave. Scilab puts less emphasis on syntactic compatibility with
MATLAB than Octave does, but is similar enough to easily transfer skills between
the two systems.

FOSSEE Scilab Control System Toolbox is a comprehensive suite designed for the
analysis, design, and simulation of control systems, developed and maintained by
FOSSEE, IIT Bombay.

It provides a wide array of functions that cover both basic and advanced control
engineering topics, enabling users to perform system modeling, time and frequency
domain analysis, controller design, and system optimization.

The toolbox includes functions for evaluating system properties such as
controllability and observability, as well as for manipulating transfer functions and

3

designing PID controllers. It also offers tools for matrix operations, system
interconnections, and signal generation, which simplify many tasks involved in
control system analysis.

With its wide range of capabilities and focus on educational use, the Scilab
Control System Toolbox is an invaluable resource for students, researchers, and
engineers in fields like automation, robotics, aerospace, and process control.

4

Chapter 2

Control System Toolbox
Development

2.1 Overview

The Control System Toolbox is a vital part of Scilab’s ecosystem developed under
the FOSSEE (Free/Libre and Open Source Software for Education) initiative. It
empowers engineers, educators, and researchers to carry out comprehensive
analysis, simulation, and design of control systems—ranging from basic SISO
systems to complex MIMO systems—entirely within the Scilab environment.

The toolbox provides a broad set of functions, including tools for transfer function
modeling, state-space representation, controllability and observability analysis,
time-domain and frequency-domain simulations, and feedback design. These
capabilities support both classical control techniques (like root locus, Bode plot,
and Nyquist stability criteria) and modern control approaches (like pole placement
and optimal control).

During the internship, the focus was on identifying and enhancing areas where the
toolbox depended on external environments such as Octave for computation.
These dependencies often introduced issues such as reduced computational speed,
incompatibility with certain platforms, and difficulty in distribution and
maintenance. Many functions were either partially implemented or only served as
wrappers that offloaded processing to Octave.

The core objective of this internship was to convert these Octave-dependent
functions into fully Scilab-native implementations. This involved not only
syntactic translation but also ensuring semantic accuracy and performance
optimization. Several advantages were gained through this transition:

• Improved Performance: Native Scilab functions eliminate the latency and
resource usage involved in communicating with an external interpreter.

• Independence from External Dependencies: The removal of the
FOSSEE Scilab-Octave Toolbox (FSOT) as a requirement simplifies the
installation process and enhances portability.

5

• Better Compatibility and Stability: Native functions are easier to test,
debug, and deploy across a variety of systems, especially in academic and
research environments where Octave installation may not be feasible.

The development process required a structured approach involving deep code
analysis, accurate line-by-line translation, rigorous testing, and continuous
refinement. The subsequent sections outline this methodology in detail.

2.2 Development Workflow

The development process evolved as familiarity with the toolbox grew. Below is a
general overview of the workflow followed throughout the internship:

• Studying the reference Octave implementation

• Translating logic to Scilab, line by line

• Identifying unsupported or missing features and recreating them in Scilab

• Testing thoroughly and refining based on outcomes

2.2.1 Studying Reference Implementations

Before implementation, it was necessary to understand the purpose, structure, and
algorithm of each control system function. For Octave-based functions,
documentation and source code were usually available through the Octave Forge
repositories.

Key aspects of this phase included:

• Understanding the mathematical logic behind each function

• Identifying which parts used sub-functions or relied on specific Octave
features

• Estimating the difficulty of translation based on Scilab’s support for similar
constructs

2.2.2 Line-by-Line Translation to Scilab

This phase involved adapting the Octave/MATLAB code to Scilab syntax and
structure. Although Scilab and Octave share many similarities, they differ in
certain key areas:

• Control flow: Octave requires explicit block endings like endif and
endfor, whereas Scilab uses just end.

• Constants: In Scilab, predefined constants like %pi, %i, %T (true), and %F

(false) differ from their Octave equivalents.

6

https://octave.sourceforge.io/control/

• String and indexing differences: Scilab handles string manipulation and
matrix operations differently in many cases.

Additionally, Octave’s built-in error handling (print usage()) had to be replaced
with error("message") in Scilab.

This step also required creative adjustments when a direct translation was not
feasible.

2.2.3 Handling Missing or Incompatible Functions

During translation, several challenges were encountered due to missing or
incompatible Scilab functions. In such cases, alternative approaches were taken:

• Function reimplementation: When no equivalent function existed, a new
version was implemented using Scilab constructs.

• Behavioral differences: Some functions, despite having the same name in
both environments, behaved differently. In such cases, the expected behavior
was replicated using custom Scilab code.

Occasionally, functions in the reference implementation were written in C++ or
used data types like structs or images, which are not fully supported in Scilab.
Such instances were handled either by writing algorithmic equivalents or avoiding
those implementations altogether.

2.2.4 Testing and Iteration

Testing was an essential part of the workflow. In many cases, test cases were found
at the end of the reference implementation’s source file. When not available or
insufficient, custom test cases were written to validate the correctness and
robustness of the Scilab version.

Multiple calling scenarios and edge cases were considered to ensure comprehensive
coverage. Each function underwent iterative refinement until its outputs aligned
closely with the reference outputs.

2.2.5 Leveraging AI for Translation and Debugging

An additional component of the workflow was the use of AI (Artificial Intelligence)
assistance tools to accelerate the translation process. AI proved especially useful at
multiple stages of development::

• Algorithm Extraction: Obtained the underlying algorithm from the
provided Octave code through AI explanations, which helped in
understanding the logical flow before starting the Scilab implementation

• Code Translation: Converted Octave code fragments into Scilab syntax
while preserving functionality, with AI suggesting equivalent Scilab functions
for unsupported Octave features.

7

• Code Structuring: After writing the initial Scilab version, AI was used to
improve indentation, formatting, and introduce logical naming conventions
for identifiers, making the code more readable and maintainable.

• Conceptual Understanding: Facilitated comprehension of new technical
concepts that were critical to building accurate Scilab functions.

• Error Analysis and Debugging: When partial outputs or unexpected
results were obtained, AI was used to analyze error messages and identify
possible logical or syntactic issues, providing corrected snippets or alternative
approaches.

This reduced the time spent searching documentation and allowed more focus on
understanding the underlying mathematics of each function.

2.3 Current Status

Following the workflow previously described, I successfully have 25 functions from
Octave to Scilab. Each function is accompanied by documentation at the top of its
file. Furthermore, in my repository, you can find additional test cases and
documentation in a README file for each function.

2.3.1 Documentation Pattern

Since the Scilab functions are developed to replicate the behavior of their Octave
counterparts, it is logical to refer to Octave’s documentation format when
documenting these functions.
In Scilab, the documentation is included alongside the function declaration as a
large comment block. Each function’s documentation typically consists of the
following components:

1. Calling Sequence: Describes the order and format of parameters required
to invoke the function.

2. Parameters: Details the expected input types and acceptable values for
each argument.

3. Description: Provides a comprehensive explanation of the function’s
behavior, including default operation, expected inputs and outputs, and
relevant dependencies.

4. Examples: Demonstrates correct usage through practical cases to help users
understand how to apply the function effectively.

It is important to note that while the functions are being re-written to use native
Scilab code, the associated documentation generally requires minimal changes.
This is because the functionality, design, and usage patterns remain consistent
with their Octave versions.

8

All documentation created during this process has been included in the respective
function files and summarized in the project’s README file. The complete set of
developed and documented functions is available in the GitHub repository.

2.3.2 Functions Completed

Throughout the course of this project, several functions were successfully
developed and documented. These span across different Scilab object types,
including @iddata, @lti, and standalone control functions. The work
encompassed the design, implementation, and thorough documentation of each
function. The completed functions are listed in table 2.1.

S.No Function Name Function Name in Octave Dependencies
1 cat iddata cat(iddata) iddata
2 detrend iddata detrend(iddata) iddata, @iddata/size
3 fft iddata fft(iddata) iddata, @iddata/size
4 get iddata get(iddata) iddata
5 size iddata size(iddata) iddata
6 vertcat iddata vertcat(iddata) iddata, @iddata/cat,

@iddata/size
7 ctranspose ctranspose @lti/size
8 size lti size(lti)
9 ssdata ssdata
10 acker acker ctrb
11 augstate augstate
12 Boeing707 Boeing707
13 covar control covar @lti/ssdata
14 ctrb ctrb
15 dsort dsort
16 esort esort
17 gensig gensig
18 iddata iddata
19 mag2db mag2db
20 mktito mktito @lti/size
21 obsv obsv ctrb
22 options options
23 pidstd pidstd
24 strseq strseq
25 thiran thiran issample

Table 2.1: List of Completed Functions

2.3.3 Challenges Faced

During the development of Scilab-native implementations of signal processing
functions, challenges were encountered at different stages. These can be broadly

9

https://github.com/akash-sankar/CSToolboxFunctions

categorized into challenges faced before using AI assistance and challenges faced
after incorporating AI-based support. The challenges encountered before using AI
assistance were:

• Unavailable Functions: Some sub-functions used in Octave
implementations were not available in Scilab and had to be re-implemented
using equivalent logic.

• Different Default Behaviors: Functions such as lyap behave differently
in Octave and Scilab. Special care was needed to align the behavior with
Octave’s expectations.

• Unavailability of SLICOT Library: The Subroutine Library in Systems
and Control Theory (SLICOT) provides Fortran 77 implementations of
numerical algorithms for computations in systems and control theory. This
library was used in various functions of Octave’s Control System Toolbox,
and translating the Fortran code into Scilab was challenging.

• Handling C++ Implementations: Certain Octave functions were
implemented in C++, which added complexity in understanding and
rewriting their logic in Scilab.

• Complex Data Types: Octave supports advanced data types such as
iddata which are not natively supported in Scilab.

• Testing Difficulties: Some functions did not include ready-made test cases,
requiring manual construction of test inputs and comparison with Octave
results to validate correctness.

The challenges faced after incorporating AI-based support were:

• Over-Simplification Risks: AI-generated translations sometimes
oversimplified functions, omitting edge cases or nuances present in Octave
implementations.

• Debugging AI-Generated Code: AI-based outputs occasionally
introduced syntactic or semantic inconsistencies that needed manual
debugging in Scilab.

• Ensuring Consistency Across Functions: With AI assistance speeding
up development, maintaining uniform coding style and ensuring seamless
integration with previously developed Scilab functions became an additional
responsibility.

• Validation Still Essential: Despite AI support, extensive testing against
Octave remained essential to ensure correctness, particularly for edge cases
and numerical stability.

10

Chapter 3

Learnings

During the course of my internship, I had several valuable learning experiences
that helped me grow technically and professionally. These are summarized below:

1. Technical Skills Enhancement

• Gained hands-on experience with Scilab and Octave, especially in the
context of translating and optimizing functions.

• Developed proficiency in writing technical documentation using LATEX and
README.md files.

• Learned to debug and optimize native Scilab functions for better
performance.

2. Conceptual and Theoretical Learning

• Improved understanding of control systems and their practical
implementation through function development and testing.

• Gained deeper insight into mathematical functions like lyap, which required
careful study and translation of algorithms from Octave.

3. Feedback and Collaboration

• Received regular and constructive feedback from mentors, which helped
refine both technical work and documentation.

• Collaborated effectively through peer discussions, which enhanced
understanding and brought different perspectives to problem-solving.

• Maintained task tracking using Google Sheets to monitor progress and plan
work efficiently.

11

Chapter 4

Conclusion

In conclusion, my internship at FOSSEE, IIT Bombay, focused on the development
and enhancement of the Scilab Control System Toolbox, has been an enriching and
transformative experience. This opportunity allowed me to apply and expand my
knowledge of control systems, open-source development, and collaborative coding
practices.

The central goal of my work was to rewrite and optimize several existing
Octave-based functions, making them compatible with and native to Scilab. These
efforts were aimed at improving performance, eliminating the dependency on the
Scilab-Octave bridge, and contributing directly to a more robust, standalone
Control System Toolbox. Over the course of the internship, I successfully
implemented and documented numerous functions including ctrb, obsv, covar,
gensig, and more, enhancing both functionality and usability within the toolbox.

Additionally, I contributed to improving the Scilab-Octave Toolbox’s compatibility
and helped test and clean up code for smoother integration with current Scilab
versions. My work required careful function analysis, rewriting in Scilab syntax,
adding comprehensive documentation (in README files), and verifying
correctness through rigorous testing.

This experience not only helped me improve my technical proficiency in Scilab,
Octave, and Git but also deepened my understanding of control theory, version
control practices, and the importance of clean documentation. I also became
proficient in using LaTeX for formal report writing.

I am sincerely thankful to my mentor, Ms. Rashmi Patankar, for her clear
guidance, consistent feedback, and encouragement. Her mentorship played a vital
role in shaping my learning path during the internship. I also thank PSG College
of Technology for their support and for encouraging students to participate in such
meaningful open-source initiatives.

This internship has solidified my interest in working on open-source tools for
education and research. I look forward to continuing my contributions to FOSSEE
and applying the skills and experience I’ve gained in future projects and
professional roles.

12

Reference

• https://github.com/akash-sankar/CSToolboxFunctions

• https://gnu-octave.github.io/pkg-control/

• https://help.scilab.org/docs/5.3.0/en US/index.html

• https://docs.octave.org/latest/

13

https://github.com/akash-sankar/CSToolboxFunctions
https://gnu-octave.github.io/pkg-control/
https://help.scilab.org/docs/5.3.0/en_US/index.html
https://docs.octave.org/latest/

	Introduction
	Control System Toolbox Development
	Overview
	Development Workflow
	Studying Reference Implementations
	Line-by-Line Translation to Scilab
	Handling Missing or Incompatible Functions
	Testing and Iteration
	Leveraging AI for Translation and Debugging

	Current Status
	Documentation Pattern
	Functions Completed
	Challenges Faced

	Learnings
	Conclusion

