
Semester Long Internship Report

On

Scilab Signal Processing Toolbox development

Submitted by

Abinash Singh

Under the guidance of

Prof.Kannan M. Moudgalya

Chemical Engineering Department

IIT Bombay

Mentor

Ms. Rashmi Patankar

September 4, 2025

Acknowledgment

I am deeply grateful to my mentor, Ms. Rashmi Patankar, for her invaluable
guidance, support, and encouragement throughout my journey with the FOSSEE
Team at IIT Bombay.

I began as a Semester-Long summer Intern in 2024, and this report marks the
completion of my Semester long Winter Internship (2024). This experience has
been enriching, allowing me to enhance my technical skills further and contribute
meaningfully to open-source development.

I would also like to sincerely thank Prof. Kannan M. Moudgalya and Prof. Kumar
Appaih for their insightful guidance, which has significantly shaped my
understanding of open-source systems.

Additionally, I extend my heartfelt gratitude to my friends who supported me in
completing the screening tasks for this internship. Their encouragement and
assistance were crucial in overcoming challenges and achieving key milestones.

I remain committed to contributing to Scilab and other FOSSEE initiatives. In the
coming months, my primary focus will be on advancing the Signal Processing
Toolkit, and I look forward to making further meaningful contributions.

I am thankful to everyone who has been part of this journey, offering their support
and inspiration along the way. Your unwavering belief in my abilities has made
this experience truly fulfilling.

1

Contents

1 Introduction 4

2 Signal Processing Toolbox Development 5
2.1 Overview . 5
2.2 Development Workflow . 6

2.2.1 Reading Octave Implementation 7
2.2.2 Line-by-Line Translation . 8
2.2.3 Comparing In-Built Functions and Writing Missing Ones . . . 8
2.2.4 Test And Iterate . 10

2.3 Previous Status . 10
2.4 Current Status . 10

2.4.1 Documentation pattern . 11
2.4.2 Functions Completed During Semester Long Internship sum-

mer 2024 . 12
2.4.3 Functions Completed During Semester Long Internship Win-

ter 2024 . 13
2.4.4 issues and possible Improvements 13

2.5 Scilab–Octave Mapping of Functions 13

3 Toolbox Documentation in Scilab 16
3.1 Toolbox Structure in Scilab . 16

3.1.1 Directory Layout . 16
3.1.2 Key Files . 17
3.1.3 Lifecycle: Build and Load . 17

3.2 Documentation Types in Scilab . 17
3.3 User Documentation Through Function Headers 18

3.3.1 The Function Header Comment Structure 18
3.3.2 Importance of Auto-Generated Documentation 18
3.3.3 XML Files: The Critical Intermediate Format 19
3.3.4 From XML to JAR: Final Documentation Format 19

3.4 The Documentation Generation Process 20
3.5 Developer Documentation vs. User Documentation 20

3.5.1 Developer Documentation Best Practices 20
3.6 Best Practices for Function Header Documentation 21
3.7 Documentation in Signal Processing Toolbox 21
3.8 Conclusion . 22

2

4 Publishing a Scilab Toolbox on ATOMS 23
4.1 General Concepts . 23
4.2 Toolbox Structure . 24
4.3 Builder and Loader Scripts . 24
4.4 Macros . 25
4.5 Primitives and Gateways . 25
4.6 Help System . 26
4.7 Testing the Toolbox Locally . 26
4.8 Submitting to ATOMS . 27
4.9 Installing a Published Toolbox . 27

5 Xcos Architecture Analysis and Multi-Language Integration 28
5.1 The Background . 28
5.2 Xcos Architecture Analysis . 29

5.2.1 Core Components . 29
5.2.2 Simulation Workflow and Efficiency 29
5.2.3 Interface and Computation Functions 30

5.3 Approaches for Integration . 30
5.3.1 Two Pathways to Integration 30

5.4 Challenges and Strategic Realizations 31
5.5 Conclusion and Future Direction . 31

6 Learnings 32

7 Conclusion 33

3

Chapter 1

Introduction

Scilab is a free and open-source, cross-platform numerical computational package
and a high-level, numerically oriented programming language.

It can be used for signal processing, statistical analysis, image enhancement, fluid
dynamics simulations, numerical optimization, and modeling, simulation of explicit
and implicit dynamical systems, and (if the corresponding toolbox is installed)
symbolic manipulations.

Scilab is one of the two major open-source alternatives to MATLAB, the other one
is GNU Octave. Scilab puts less emphasis on syntactic compatibility with
MATLAB than Octave does, but is similar enough to easily transfer skills between
the two systems.

IIT Bombay is leading the effort to popularise Scilab in India and the Scilab Signal
Processing Toolbox is one of its endeavors toward the cause. This effort is part of
the Free and open-source Software for Science and Engineering Education
(FOSSEE) project, supported by the National Mission on Education through ICT
of the Ministry of Education.

FOSSEE Scilab Signal Processing Toolbox is a comprehensive suite designed for
the analysis, manipulation, and visualization of signals, developed and maintained
by FOSSEE, IIT Bombay.

It offers a wide range of functions that cover fundamental and advanced signal
processing techniques, including filtering, spectral analysis, and time-frequency
analysis.

Users can implement various types of digital filters (such as FIR and IIR), perform
Fourier transforms, and analyze the frequency content of signals. The toolbox also
supports wavelet transform methods, which are essential for non-stationary signal
analysis.

With its intuitive interface and extensive testing, the Signal Processing Toolbox is
a powerful tool for engineers, researchers, and ed- educators working in fields like
telecommunications, audio processing, and biomedical signal analysis.

4

Chapter 2

Signal Processing Toolbox
Development

2.1 Overview

The FOSSEE Signal Processing Toolbox for Scilab is a comprehensive collec-
tion of functions that enable users to perform a wide range of signal processing tasks
such as filtering, transforms, spectral analysis, convolution, and correlation directly
within Scilab. It is primarily intended for students, researchers, and professionals
who wish to carry out signal processing computations using an open-source platform
without depending on proprietary tools.

The toolbox is structured as a set of macros located under the directory FOSSEE-

SignalProcessingToolbox/macros/. In earlier versions, these macros fell into two
categories:

1. Scilab-native functions: Implemented completely in Scilab, performing all
computations internally.

2. FSOT-based wrapper functions: Depended on the FOSSEE Scilab–Octave
Toolbox (FSOT) to call Octave’s signal processing functions, with Scilab serv-
ing only as an interface.

In older versions, a significant portion of the toolbox relied on FSOT-based
wrappers. However, this design introduced several drawbacks, including:

• Performance overhead: Communication between Scilab and Octave slowed
down execution.

• Additional dependencies: Users needed both FSOT and Octave installed,
complicating setup and portability.

• Limited functionality: FSOT lacked support for certain data types and
operations, such as boolean values, structs, and graphical/image data.

As part of this internship project, the entire codebase was refactored. All
FSOT-based functions were re-implemented as Scilab-native functions.
As a result, the toolbox is now completely independent of FSOT and Octave. Every

5

function executes natively within Scilab, making the toolbox more reliable, efficient,
and easier to maintain.

The key motivations for this refactoring were:

• Complete elimination of dependencies: The toolbox now runs entirely
within Scilab without requiring FSOT or Octave.

• Improved performance: Direct execution in Scilab avoids the overhead of
inter-language communication.

• Expanded functionality: Functions are no longer constrained by FSOT’s
limitations, allowing support for a wider range of use cases.

• Ease of maintenance: A fully Scilab-native codebase simplifies debugging,
testing, and future extensions.

Through this refactoring, the toolbox has evolved from a hybrid Scilab–Octave
system into a fully self-contained, Scilab-native package. The following sections
describe the methodology adopted for this conversion and the steps undertaken to
ensure correctness, efficiency, and feature completeness.

2.2 Development Workflow

The development workflow for refactoring the toolbox evolved significantly over
the course of the internship as experience and familiarity with both Octave and
Scilab increased. Initially, the approach was more direct and mechanical, but over
time it matured into a systematic process that ensured correctness, efficiency, and
completeness. The workflow can be summarized in the following stages:

1. Studying the Octave implementation: Each function to be ported was
first studied in detail by examining its Octave source code. This helped in
understanding the underlying algorithm, the expected inputs and outputs, and
any special cases or edge conditions handled in the original implementation.

2. Line-by-line translation into Scilab: The Octave code was then trans-
lated into Scilab syntax and constructs. In the initial stages, this process was
often a direct linebyline conversion, which served as a baseline to replicate the
functionality in Scilab.

3. Identifying and implementing missing functions: In many cases, Oc-
tave relied on utility functions or built-in routines that were not directly avail-
able in Scilab. Such functions had to be implemented separately in Scilab to
achieve functional parity. This step required both algorithmic understanding
and careful coding to ensure efficiency.

4. Testing, debugging, and iterative refinement: After translation, the
newly written Scilab functions were tested against known inputs and com-
pared with the outputs from Octave implementations. Any discrepancies were

6

debugged, and the functions were refined iteratively until results matched ex-
pected behavior. This stage also involved optimizing the code for performance
where necessary.

Over time, this workflow shifted from a basic translation process to a more
designoriented approach, where the focus was not merely on replicating Octave code
but on producing robust, Scilabnative implementations that integrate seamlessly
into the toolbox.

2.2.1 Reading Octave Implementation

Analyzing the existing Octave implementation is the first and most crucial step in
the workflow. This stage establishes the foundation for the translation process by
helping us understand the algorithm, dependencies, and complexity of the function
under consideration. It is particularly important to note that certain helper or
sub-functions used in Octave may not have direct equivalents in Scilab, which
makes this step essential for planning the subsequent development phases.
To locate and study the Octave source code of a given function, one can typically
refer to two main sources:

1. Octave Signal Package: Functions related to signal processing are
generally part of Octave’s signal package. The source code for this package
is publicly available at: https://octave.sourceforge.io/signal/ Most of
these functions are implemented directly in Octave (using .m files), although
some are written in C++ for performance reasons.

2. Octave Core Package: If a function does not belong to the signal package,
it is usually part of Octave’s core distribution. In such cases, the source code
can be obtained by downloading the latest Octave release and searching for
the function in the extracted source tree.

The outcomes of this analysis are threefold:

• Estimation of effort and time: Understanding the implementation
provides a rough estimate of the time required for translation.

• Identification of missing sub-functions: Any sub-functions or utilities
unavailable in Scilab can be listed for separate implementation.

• Assessment of complexity: By studying the structure of the Octave code,
we can anticipate challenges in the translation process and plan accordingly.

Overall, this stage ensures that the translation process begins with a clear
understanding of both the functional requirements and the potential gaps between
Octave and Scilab environments.

7

https://octave.sourceforge.io/signal/

2.2.2 Line-by-Line Translation

Once the Octave implementation has been studied, the next step involves
translating the code into Scilab. This process is carried out in a meticulous
line-by-line manner to ensure that the translated function behaves identically to its
Octave counterpart.
The primary focus during this stage is on identifying and addressing syntax-level
differences between Octave and Scilab.
Although the two languages share a similar structure, several subtle differences
must be taken into account. Some of the key distinctions are as follows:

• Control flow statements: In Octave, conditional and loop constructs
require explicit terminators. For example, if, else, for, while, and switch

statements must be closed with endif, endfor, endwhile, and endswitch,
respectively. In Scilab, a simple end is sufficient to terminate all such
constructs.

• Constants: Certain constants are represented differently in the two
languages. For example:

– Octave: pi, eps, j, true, false

– Scilab: %pi, %eps, %i, %T, %F

• Error handling: Octave provides the print usage function for handling
incorrect function usage. Scilab does not support this; instead, an equivalent
error can be raised using error("message").

• General syntax similarities: Beyond these differences, the overall syntax
and function structure in Octave and Scilab are largely similar, which makes
the translation process relatively straightforward once these distinctions are
understood.

Careful attention to these differences ensures that the translated code is both
functionally accurate and idiomatic to Scilab, reducing the likelihood of runtime
errors and improving maintainability.

2.2.3 Comparing In-Built Functions and Writing Missing
Ones

After identifying which sub-functions are available in Octave and verifying their
counterparts in Scilab, you may still encounter discrepancies—not just in
availability but also in behavior. Even when functions share the same name across
platforms, their semantics or implementation details can differ.

To accurately compare or substitute functions, always rely on the official
documentation. Scilab provides a dedicated “Matlab–Scilab equivalents”
section—your go-to reference for mapping Matlab/Octave functions to their Scilab
counterparts.
If a Scilab equivalent behaves differently or does not exist, there are two practical
approaches:

8

https://help.scilab.org/docs/2025.1.0/en_US/section_f95bcb74f419bc7cd8a1fa4cf9074005.html

• Write a wrapper in Scilab to normalize behavior.

• Re-implement the algorithm in Scilab for accuracy and maintainability.

Sample Octave/MATLAB vs Scilab Mappings *(Examples adapted from
the official mapping documentation)*

Octave / MATLAB Scilab Equivalent

abs(a)
abs(a) — absolute
value (same semantics)

cell(...)

Use Scilab lists or
tlist structures (e.g.,
list(), tlist(),
tlstcopy())

string(a) string(a) —

all(a)

all(a) — consistent
semantics between
platforms

length(a)

max(size(a)) —
Scilab doesn’t have
length() by default

end index alias
Scilab uses $ as the
equivalent of end in-
dexing

Behavioral Differences to Watch Out For
- max / min usage: In Octave/MATLAB, max(A) returns maximum values

column-wise, whereas in Scilab it may operate over the entire matrix by default—so
be explicit if replicating MATLAB’s behavior.

Workflow for Missing or Divergent Functions

1. Review Matlab/Octave documentation to determine the expected behavior.

2. If possible, inspect the source code (e.g., from Octave) to understand imple-
mentation details.

3. Implement equivalent logic in Scilab with a focus on clarity and performance.

Handling C++-Based Implementations
If the original functionality is implemented in C++:

• Option 1: Extract the algorithm and recreate it entirely in Scilabthis keeps
maintenance simpler and language-consistent.

• Option 2: Use Scilab’s external interface or C++ API to wrap the compiled
code—this retains original performance but adds complexity and potential
portability challenges.

Unless you are confident in C++ extension development, Option 1 is usually
more sustainable and less error-prone.

9

2.2.4 Test And Iterate

This is a crucial but often tedious part of the workflow. To lighten the load, you can
find test cases at the bottom of the Octave source code files. Attempt these first,
and if you encounter difficulties running some test cases, don’t worry—create your
own examples instead.

Compare the outputs of these examples with those from Octave and your im-
plemented function. Ensure to write diverse test cases covering different calling
sequences, aiming for at least one example for each type.

In addition to these basic checks, more rigorous testing is required. Simple
functional verification is not sufficient; you should also perform regression tests
to ensure that future changes do not break existing functionality. Stress tests with
edge cases and large inputs are equally important to validate both correctness and
performance under heavy workloads.

A practical way to manage tests is to include them directly in your source files
as comments at the end. For example:

Test cases

assert(myfunc(1, 2), 3)

assert(myfunc([1 2 3]), [1 2 3])

assert(isequal(myfunc(zeros(3,3)), zeros(3,3)))

Here, each test should be written using assert along with isequal (when dealing
with arrays or matrices). Always provide the expected result explicitly so that both
you and future contributors can immediately see the intended behavior. This also
serves as lightweight documentation for usage examples.

2.3 Previous Status

Following the previously outlined workflow, I successfully translated the following
during my semester-long fellowship in summer of 2024 :

• 27 functions independently.

• 2 functions in collaboration with another intern.

In total, our team had translated approximately 60 functions.
Each function is accompanied by documentation at the top of its file and test cases
at the bottom.

2.4 Current Status

My Semester Long Internship in winter of 2024 with FOSSEE continued this work
and achieved the following:

10

• 19 more functions are ported from octave to Scilab.

• assigned issues and to do to 16 functions that I was not able to port during
the internship.

2.4.1 Documentation pattern

Since the functions are intended to mirror their implementation in Octave, it’s
prudent to use Octave’s documentation as a reference for documenting the
corresponding Scilab functions.

Additionally, consult Matlab’s documentation for these functions, as Octave may
have certain bugs. If your test cases fail despite following all steps, compare your
code’s output with Matlab’s to troubleshoot further.

The documentation for a function sits just below the function’s declaration, and is
written as one big comment block. There are four components to a function’s
documentation:

1. Syntax: The order of evaluation for the function for the set of given
parameters.

2. Parameters: The expected values for the function’s parameters. This section
outlines the type as well as the acceptable values for these parameters.

3. Description: A comprehensive description of the function. This section
outlines default behaviors, expected input and output, and how to interpret
them, dependencies and other such data

4. Examples: An example to demonstrate the correct usage of the function.

It is worth noting that in the process of re-writing functions to use Scilab code, the
documentation part does not require a lot of modifications because the intended
behavior for the function is, most of the time, already well-documented and in line
with their Octave counterparts.

All of my work is available in my GitHub repository GITHUB

11

https://github.com/abinash108/Signal-processing-toolkit-devlopment-

2.4.2 Functions Completed During Semester Long Intern-
ship summer 2024

S.No Function Dependencies/custom functions
1 fftn
2 fht
3 fft1
4 fft21
5 fftconv
6 ifft1
7 ifft2
8 ifftn
9 idct2
10 idct1 idct1
11 idst1 dst1
12 czt fft1 , ifft1
13 xcorr2
14 shanwavf
15 rceps fft1 , ifft1
16 pulstran
17 hilbert1 fft1 , ifft1 , ipermute
18 grpdelay fft1
19 pwelch fft1
20 tfe pwelch
21 mscohere pwelch
22 cpsd pwelch
23 cohere pwelch
24 arch fit autoreg matrix , ols
25 arch test ols
26 spectral xdf fft1
27 spectral adf ifft1 , fft1
28 unwrap2 ipermute
39 cplxreal cplxpair , ipermute

12

2.4.3 Functions Completed During Semester Long Intern-
ship Winter 2024

S.No Function Dependencies/custom functions

1 besself
besselap bilinear postpad prepad sftrans tf2zp
zp2tf

2 bitrevorder digitrevorder
3 cell2sos
4 sos2cell
5 cummax
6 cummin
7 ellip ellipap sftrans zp2tf
8 ncauer ellipap
9 periodgram fft1 hamming
10 impz fftfilt
11 iirlp2mb
12 marcumq
13 freqz fft1 postpad unwrap2
14 invfreq
15 invfreqz invfreq
16 invfreqs invfreq
17 findpeaks
18 impinvar deconv residue
19 invimpinvar impinvar

2.4.4 issues and possible Improvements

• pwelch : (semilogx,semilogy,etc) and other plot functions can’t handle neg-
ative values

• arch fit and arch test : singular matrix exception handling can be improved
using try-catch statements.

• There is some bug in the argn() function because of which we get 1 even if our
output args are zero. Temporary fix: functions with plot will plot if there is 1
output arg.

• Documentation can be improved with practical examples

2.5 Scilab–Octave Mapping of Functions

One of the main goals of this internship was to study how Octave functions can
be ported to Scilab.The table below shows the final mapping of toolbox functions:

13

Scilab Function Octave Function
fftshift1 fftshift
sinetone sinetone
sinewave sinewave

fftn fftn
fht fht

filtfilt filtfilt
gaussian gaussian
triang triang
filter2 filter2
fft1 fft
fft21 fft2

fftconv fftconv
ifft1 ifft
ifft2 ifft2
ifftn ifftn

morlet morlet
durbinlevinson durbinlevinson

hurst hurst
polystab polystab

dst1 dst
autoreg matrix autoreg matrix

cceps cceps
idct2 idct2
idct1 idct
idst1 idst

clustersegment clustersegment
cplxreal cplxreal
detrend1 detrend
ifftshift1 ifftshift
tripuls tripuls

unwrap2 unwrap
ifht ifht

arma rnd arma rnd
pei tseng notch pei tseng notch

czt czt
xcorr2 xcorr2

synthesis synthesis
shanwavf shanwavf

rceps rceps
pulstran pulstran
hilbert1 hilbert
grpdelay grpdelay
spencer spencer

stft stft
schtrig schtrig
tf2sos tf2sos

tfestimate tfestimate
ar psd ar psd
pwelch pwelch

14

Scilab Function Octave Equivalent
tfe tfe

mscohere mscohere
cpsd cpsd

cohere cohere
arch fit arch fit

arch test arch test
fwhmjlt fwhm
pburg pburg
fwhm fwhm

spectral xdf spectral xdf
spectral adf spectral adf

ols ols
cplxpair cplxpair
ipermute ipermute
zp2sos zp2sos
besself besself

bitrevorder bitrevorder
cell2sos cell2sos
sos2cell sos2cell
cummax cummax
cummin cummin

ellip ellip
ncauer ncauer

periodogram periodogram
impz impz

iirlp2mb iirlp2mb
marcumq marcumq

freqz freqz
invfreq invfreq
invfreqz invfreqz
invfreqs invfreqs

findpeaks findpeaks
impinvar impinvar

invimpinvar invimpinvar

This mapping provides a quick reference for comparing Scilab and Octave func-
tions. It will be useful for anyone working on code migration, validation, or further
development of the toolbox.

15

Chapter 3

Toolbox Documentation in Scilab

Documentation plays a very important role in any software system. If there is a lack
of documentation for users, it will not be easy for them to use the software effectively.
At the same time, if a system lacks developer documentation, it becomes difficult
to maintain and update. Documentation should never be neglected, and we should
dedicate significant effort to creating it properly.

3.1 Toolbox Structure in Scilab

Before documenting a toolbox, it is essential to understand its internal structure.
Scilab toolboxes follow a well-defined directory and file convention, enforced by
the ATOMS packaging system. All official toolboxes uploaded to ATOMS must
conform to this structure. A ready-to-use template, called the toolbox skeleton,
is distributed with Scilab to serve as a starting point.

3.1.1 Directory Layout

A typical Scilab toolbox has the following directories:

• macros – Contains user-level Scilab functions (.sci files) and a builder script
(buildmacros.sce). This folder is mandatory.

• src – Native source code (.c, .cpp, .f, etc.), along with builders for compiling
these sources. Present only if the toolbox provides primitives.

• sci gateway – Gateway functions (.c, .cpp, etc.) wrapping native code.
Only needed if primitives exist.

• help – Documentation files in XML format (organized per language, e.g.
en US, fr FR). Strongly recommended.

• etc – Initialization and cleanup scripts (<toolbox>.start, <toolbox>.quit).
The .start file is mandatory.

• tests – Regression and unit test scripts (.tst), highly encouraged.

16

https://atoms.scilab.org

• demos – Usage examples (.sce), optional but useful for users.

• includes – Public header files (.h), optional.

• jar – Generated Java packages or help JARs (created at build time).

• stagging – Incomplete functions not ready for release.

3.1.2 Key Files

At the root of the toolbox, a few important files are expected:

• builder.sce – The main build script, which coordinates sub-builders.

• loader.sce – Generated loader script for manually loading the toolbox.

• DESCRIPTION – Metadata about the toolbox (name, version, author, depen-
dencies).

• readme.txt, license.txt – Optional but strongly recommended.

• test.sce, - Main root level test script.

3.1.3 Lifecycle: Build and Load

The toolbox is first compiled and packaged using:

exec builder.sce

This generates the necessary binaries, libraries, and loaders. It can then be
loaded in Scilab with:

exec loader.sce

At Scilab startup, the etc/<toolbox>.start script ensures the toolbox is auto-
matically initialized, and the etc/<toolbox>.quit script is executed at shutdown.

This modular design separates user-facing macros, native code, gateways, doc-
umentation, and tests. It provides a clean foundation for writing both developer
documentation and user-facing manuals, ensuring the toolbox is easy to maintain,
extend, and distribute.

3.2 Documentation Types in Scilab

Scilab supports two distinct types of documentation, each serving a different pur-
pose:

1. User Documentation - Generated from function headers, accessible through
Scilab’s help system

2. Developer Documentation - In-code comments that explain implementa-
tion details for developers

This chapter focuses primarily on the user documentation generated from func-
tion headers.

17

3.3 User Documentation Through Function Head-

ers

3.3.1 The Function Header Comment Structure

Scilab automatically generates user documentation from specially formatted com-
ments in function headers. These comments follow a structured format that enables
Scilab to parse them into comprehensive help documentation:

function [z]=function_name(x, y)

// Short description on the first line following the function header.

//

// Syntax

// [z] = function_name(x,y) // calling examples, one per line

//

// Parameters

// x: the x parameter // parameter name and description must be

// y: the y parameter // separated by ":"

// z: the z parameter

//

// Description

// Here is a detailed description of the function.

// Add an empty comment line to format the text into separate paragraphs.

//

// Examples

// [z] = function_name(1, 2) // examples of use

//

// See also

// related_function1

// related_function2

//

// Authors

// Author name ; additional information

//

// Bibliography

// Reference information

// Actual function code starts here

z = sin(x).*cos(x + y);

endfunction

3.3.2 Importance of Auto-Generated Documentation

The auto-generation of documentation from function headers offers several signifi-
cant advantages:

1. Single Source of Truth - Documentation lives with the code, reducing dis-
crepancies

18

2. Automatic Updates - When function parameters or behavior change, up-
dating the header comments automatically updates the documentation

3. Consistency - Enforces a standard documentation format across all functions

4. Integration with Help System - Automatically becomes accessible through
Scilab’s help command

5. Reduced Documentation Burden - Developers only need to maintain one
set of documentation

3.3.3 XML Files: The Critical Intermediate Format

The function header comments are automatically converted to XML files, which
serve as an intermediate representation before final compilation into JAR files. This
conversion is crucial because:

1. Structured Format - XML provides a well-defined structure for documen-
tation

2. Rich Content Support - XML allows for formatting, equations, lists, and
other rich content

3. Cross-referencing - Enables linking between related functions

4. Processing Capabilities - Can be transformed into various output formats

5. Internationalization Support - Facilitates translation into multiple lan-
guages

3.3.4 From XML to JAR: Final Documentation Format

The XML files are compiled into JAR files, which:

1. Integrate with Scilab’s Help System - Making documentation accessible
via the help command

2. Provide Efficient Storage - Compressing documentation for distribution

3. Enable Indexing and Searching - For quick access to specific documenta-
tion

4. Support Rich Media - Including formatted text, equations, and diagrams

19

3.4 The Documentation Generation Process

The process of generating user documentation from function headers involves:

1. Writing Header Comments - Following the standard structure in function
files

2. Running help from sci - To extract and convert header comments to XML

help_from_sci("function_name.sci", "en_US");

3. Building the Help System - Compiling XML into JAR files

tbx_builder_help(TOOLBOX_TITLE);

4. Accessing Documentation - Users can then access help via:

help function_name

The document generation is usually controlled by the toolbox build script. After
loading or installing the toolbox, users can simply access documentation by typing
“help function name”.

3.5 Developer Documentation vs. User Documen-

tation

While user documentation is generated from function headers, developer documen-
tation consists of in-code comments that explain implementation details:

3.5.1 Developer Documentation Best Practices

function [z]=function_name(x, y)

// USER DOCUMENTATION HEADER COMMENTS HERE

// ...

// DEVELOPER DOCUMENTATION STARTS BELOW

// This function computes the product of sine and cosine

// Uses element-wise multiplication for better performance

z = sin(x).*cos(x + y);

// Note: Input arguments are not checked for consistency

// TODO: Add input validation in future versions

endfunction

Key differences between user and developer documentation:

20

User Documentation (Function
Headers)

Developer Documentation (In-
code Comments)

Focuses on usage and interface Focuses on implementation details
Structured format for help system Free-form comments within code
Accessible through help command Only visible when reading source code
Describes what the function does Explains how and why it does it
Includes examples and parameters Includes rationale and technical notes

Table 3.1: Comparison of User and Developer Documentation

3.6 Best Practices for Function Header Documen-

tation

To create effective user documentation from function headers:

1. Be comprehensive - Include all standard sections

2. Provide clear examples - Show typical usage patterns

3. Document all parameters - Clearly describe inputs and outputs

4. Use proper formatting - Utilize XML tags for enhanced formatting

5. Include cross-references - Link to related functions

6. Update headers when code changes - Keep documentation synchronized
with implementation

3.7 Documentation in Signal Processing Toolbox

The builder.sce script is responsible for building the toolbox:

// In builder.sce

tbx_builder_help(toolbox_dir);

This line will build the help by executing any file with a name beginning with
“build” inside the help/ directory.

We have a builder help.sce file in the help folder:

// In builder_help.sce

help_from_sci(toolbox_dir+"/macros/", help_dir+"/en_US/");

This line is responsible for generating XML files from function header comments.
Then builder help.sce calls en US/build help.sce script to continue the pro-

cess.
There is a consistent pattern for building documentation in various toolboxes,

making it easy to follow and implement in your own toolboxes.

21

3.8 Conclusion

The function header documentation system in Scilab provides a powerful mechanism
for maintaining synchronized, accessible, and comprehensive user documentation.
By embedding documentation directly in function headers and automatically con-
verting it to XML and JAR formats, Scilab ensures that users always have access
to up-to-date information on function usage.

This approach bridges the gap between code and documentation, reducing main-
tenance burden while improving documentation quality. When combined with
proper developer documentation in the form of in-code comments, Scilab toolboxes
can be both user-friendly and maintainable from a development perspective.

Remember that effective documentation is a key factor in the adoption and
proper use of your toolbox. Investing time in creating thorough function header
documentation pays dividends in user satisfaction and reduced support require-
ments.

22

Chapter 4

Publishing a Scilab Toolbox on
ATOMS

Introduction

ATOMS (AuTomatic mOdules Management for Scilab) is Scilab’s package manage-
ment system. It allows developers to distribute external modules (toolboxes) to the
community, while enabling users to easily install, update, and manage them directly
through the Scilab interface or command line.

This chapter provides a complete guide on how to:

• Structure a Scilab toolbox

• Write builder and loader scripts

• Add macros, primitives, and Java code

• Create documentation and help files

• Package and submit your toolbox to the ATOMS portal

The process relies on the toolbox skeleton, a template module provided with
Scilab (available under SCI/contrib/toolbox skeleton). This skeleton demon-
strates the directory structure and minimal files needed.

4.1 General Concepts

Before creating a toolbox, it is essential to understand the core terminology:

Script: A Scilab code file with .sce extension, executed with exec().

Macro: A Scilab function written in Scilab language, stored in a .sci file.

Primitive: A Scilab function implemented in a compiled language (C, C++, For-
tran). Requires a gateway.

23

Gateway: A C/C++ function that connects Scilab to native functions, converting
inputs/outputs.

Builder: A script (builder.sce) used to build and compile a toolbox into a load-
able form.

Loader: A script (loader.sce) used to load the toolbox into Scilab.

Start/Quit Scripts: Scripts in the etc/ directory, executed when Scilab start-
s/quits the toolbox.

4.2 Toolbox Structure

By convention, all ATOMS toolboxes follow a defined structure. The root directory
is named after your toolbox and contains the following:

Directories

Directory Contents Required?
macros/ Scilab macros (.sci), macros builder

(buildmacros.sce)
Yes

src/ Source code files (.c, .cpp, .f, ...), builders per
language

Only if needed

sci gateway/ Gateway source files (.c), gateway builder &
loader scripts

Only if primitives exist

help/ Documentation in XML, organized by language
(en US, fr FR, . . .)

Strongly suggested

etc/ Initialization (.start) and finalization (.quit)
scripts

Mandatory

tests/ Unit and regression tests (.tst) Suggested
demos/ Example scripts (.sce) Optional
includes/ Public header files (.h) Optional

Files

File Description Required?
builder.sce Main builder script for the toolbox Yes
loader.sce Main loader script (auto-generated) Yes
DESCRIPTION Metadata file (author, version, license, dependen-

cies)
Yes

readme.txt Usage/installation notes Optional
license.txt Toolbox license Optional

4.3 Builder and Loader Scripts

The builder compiles and packages your toolbox; the loader loads it into Scilab.

24

Main Builder (builder.sce)

Example template:

mode(−1);
l ines (0) ;
TOOLBOX NAME = ”mytoolbox” ;
TOOLBOX TITLE = ”My Toolbox Example” ;
t o o l b o x d i r = g e t a b s o l u t e f i l e p a t h (” b u i l d e r . s c e ”) ;

tbx bu i lde r macro s (t o o l b o x d i r) ;
t b x b u i l d e r s r c (t o o l b o x d i r) ;
tbx bu i lde r gateway (t o o l b o x d i r) ;
t b x b u i l d e r h e l p (t o o l b o x d i r) ;
t b x b u i l d l o a d e r (TOOLBOX NAME, t o o l b o x d i r) ;

clear TOOLBOX NAME TOOLBOX TITLE t o o l b o x d i r ;

Main Loader (loader.sce)

Delegates loading to the etc/ start script:

exec (g e t a b s o l u t e f i l e p a t h (” l oade r . s c e ”) + ” etc /mytoolbox . s t a r t ”) ;

4.4 Macros

Macros are Scilab functions. They are built into libraries by buildmacros.sce.

Example Macro

// F i l e : macros/mysum. s c i
function s = mysum(A, B)

s = A + B;
endfunction

Macros Builder

// F i l e : macros/ bui ldmacros . sce
tbx bu i ld macros (”mytoolbox” , g e t a b s o l u t e f i l e p a t h (” bui ldmacros . s c e ”)) ;
clear tbx bu i ld macros ;

4.5 Primitives and Gateways

If your toolbox uses compiled code (C, Fortran, etc.), you must create gateways.

25

Example C Primitive

csum.c:

int csum (double ∗a , double ∗b , double ∗c) {
∗c = ∗a + ∗b ;
return 0 ;

}
sci csum.c (gateway):

#include ” a p i s c i l a b . h”
int sc i c sum (char ∗ fname) {

// Convert inputs , c a l l csum , re turn r e s u l t . . .
}

4.6 Help System

Each function should have a help page in XML format.

Example Help File (mysum.xml)

<r e f e n t r y xml : id=”mysum” xml:lang=”en”>
<refnamediv>

<refname>mysum</ refname>
<r e fpurpose>Sum of two numbers</ re fpurpose>

</ refnamediv>
<r e f s y n o p s i s d i v>

< t i t l e>Ca l l i ng Sequence</ t i t l e>
<synops i s>s = mysum(a , b)</ synops i s>

</ r e f s y n o p s i s d i v>
<r e f s e c t i o n>< t i t l e>Desc r ip t i on</ t i t l e>

<para>Adds two numbers .</ para>
</ r e f s e c t i o n>

</ r e f e n t r y>

Build Help

// F i l e : he l p / b u i l d h e l p . sce
t b x b u i l d h e l p (”My Toolbox Example” , g e t a b s o l u t e f i l e p a t h (” b u i l d h e l p . s ce ”)) ;

4.7 Testing the Toolbox Locally

Run inside Scilab:

exec b u i l d e r . s c e
exec l oade r . s c e

26

If successful, your functions are available.

4.8 Submitting to ATOMS

1. Archive your toolbox directory (.zip or .tar.gz) without compiled binaries.

2. Go to https://atoms.scilab.org/add

3. Log in or create an account

4. Upload your archive and fill metadata (name, version, supported Scilab ver-
sion, summary, license).

5. After review, your module will be compiled for multiple platforms and pub-
lished.

4.9 Installing a Published Toolbox

Once online, users can install with:

a t o m s I n s t a l l (”mytoolbox”)

Useful Links

• ATOMS Main Portal: https://atoms.scilab.org

• Toolbox Submission: https://atoms.scilab.org/add

• Official Docs: https://help.scilab.org/docs/6.1.1/en_US/atoms.html

27

https://atoms.scilab.org/add
https://atoms.scilab.org
https://atoms.scilab.org/add
https://help.scilab.org/docs/6.1.1/en_US/atoms.html

Chapter 5

Xcos Architecture Analysis and
Multi-Language Integration

5.1 The Background

This project was born out of a fundamental need within the open-source scientific
community: to bridge the gap between two powerful yet disparate platforms, Octave
and Scilab.

While Octave serves as a robust numerical computation environment, it lacks a
native, userfriendly graphical modeling tool for complex systems.

This stands in stark contrast to commercial alternatives like Simulink and Scilab’s
own Xcos, which provide an intuitive visual environment for system simulation.

Recognizing this critical gap, the project was initiated with the ambitious goal of
providing Octave users with a familiar visual tool for building and simulating com-
plex systems. The initial hypothesis was that we could leverage the well-established
architecture of Xcos to serve a new audience without a massive reengineering effort.

Our journey began by investigating the existing sci cosim toolbox, a tool de-
signed to facilitate communication between Scilab and other external software. The
initial idea was to use this tool to transfer variables between Octave and Scilab and
then simply initiate Xcos simulations remotely. This seemed like a straightforward
solution, a way to connect two powerful worlds with minimal effort.

However, a deeper analysis of the sci cosim source code revealed a more complex
truth. It became clear that the toolbox was not a true integration tool but rather a
sophisticated remote shell.

It did not facilitate native integration; instead, it would simply run the entire
Xcos model on Scilab’s platform while relaying information to Octave. This was
inefficient, as it would require both Scilab and Octave to run in parallel, and it
failed to achieve the seamless, platform-agnostic solution we were seeking.

This critical discovery shifted our entire approach, moving our focus from a
simple remote-shell solution to a more profound investigation into Xcos’s core ar-
chitecture.

28

5.2 Xcos Architecture Analysis

Xcos is a graphical editor within the Scilab environment designed for the elegant
modeling and simulation of hybrid dynamical systems. Its architecture is a
sophisticated composition of three primary components that work in tandem to
transform a visual model into executable simulation code.

5.2.1 Core Components

• Xcos Editor: This is the graphical user interface (GUI) for creating and
editing Xcos diagrams, a component largely implemented in Java. It allows
users to visually design systems by dragging and dropping blocks and
connecting them to form a cohesive diagram.

• Scicos Compiler: This pivotal component translates Xcos diagrams and
block definitions into simulation code. The Scicos team has clarified that
while an early version of the compiler was a prototype written in the Scilab
language, the most recent and significantly improved version is now written
in OCaml. The compiler’s role is to convert the user’s high-level graphical
model into a structured format that the Simulator can understand.

• Simulator: The true workhorse of the system, the Simulator is a substantial
C program that executes the generated code to perform the simulation. It
leverages highly optimized computational functions written in C, Fortran, or
C++, which are independent of Scilab itself.

The Scicos team has clarified that Xcos serves as a graphical front-end for Scicos,
and the core code for evaluation, compilation, and simulation resides within the
scicos module. Block definitions are located in the scicos blocks module. These
folders also contain the C and FORTRAN routines that define the core
computational functions for each block.

5.2.2 Simulation Workflow and Efficiency

Xcos employs a unique and highly efficient approach to simulation where the
computational functions for various blocks are primarily written in C/FORTRAN
and dynamically linked to the Xcos/Scilab environment.
This means that the actual simulation computations are not performed by Scilab
directly, but rather by these external, pre-compiled C/FORTRAN functions.
This design choice is fundamental to the system’s performance and is a key reason
for its speed and efficiency.
Compared to interpreted languages like Scilab or Octave, C/FORTRAN is
generally more suitable for computationally intensive tasks.
While it is possible to write computational functions in Scilab, this is mainly
recommended for prototyping purposes. For production-level simulations, the use
of dynamically linked C/FORTRAN functions is preferred due to their superior
performance.

29

5.2.3 Interface and Computation Functions

For a block to be fully operational within Xcos, it relies on two essential functions:
an Interface Function and a Computation Function.

• Interface Function: Also known as the Block Definition Function, this is a
metadata-driven component responsible for defining the block’s properties,
setting its graphical representation, and specifying how it interacts with
other elements in the Xcos environment. It associates the block with its
corresponding computation function, but it does not perform any numerical
computations itself. This function is not required if we can directly generate
a valid .xcos file with the correct format.

• Computation Function: Also known as the Simulation Function, this is
the core logic that processes input values, performs mathematical operations,
handles state updates in dynamic systems, and manages real-time execution.

The execution flow during a simulation is a well-defined sequence of events. First,
Xcos initializes the block using the interface function. Then, for each time step of
the simulation, the simulation engine calls the computation function. This
function processes its inputs, computes the outputs, and updates the system’s
state. This cycle continues until the simulation is complete.

5.3 Approaches for Integration

With the initial sci cosim approach proving to be a dead end, our project shifted
to a more direct and fundamental form of integration. Our investigation into the
Xcos architecture revealed two potential pathways for linking Octave with the
Scicos simulator, each with its own set of advantages and challenges.

5.3.1 Two Pathways to Integration

The first approach involved writing the computational functions directly in the
Octave language. This would require integrating the Octave runtime with the
Scicos simulator.
While this pathway seemed conceptually straightforward, it presented significant
performance drawbacks. As our analysis confirmed, this would introduce an
interpretive layer that would slow down simulations by a factor of 20 to 100 times
compared to the native C/FORTRAN routines.
Given that one of Scilab’s key selling points is its speed, this performance
degradation would be unacceptable for many users.
The second and more promising approach was to use Octave’s C++ API,
liboctave, to write the computational functions. This method requires no extra
integration, as C/C++ support is already a native part of the Scicos Simulator.
By writing the core computational logic in C++, we could bypass the performance
penalties of an interpretive language. The primary task would then be to port the
interface and data structures to Octave to enable the generation of compatible
.xcos files.

30

5.4 Challenges and Strategic Realizations

Our journey was not without its hurdles. One of the most significant challenges has
been the scarcity of in-depth, low-level documentation for both Xcos and Scicos.
This has made it difficult to fully grasp the system’s underlying architecture and
has required extensive source code analysis and direct consultation with the Scicos
team. We also discovered that liboctave’s documentation is somewhat deprecated
and the APIs have changed over time, requiring us to stick with an older version of
Octave (version 6 or older) to maintain stability.
This project, which began with the goal of a simple integration, has evolved into a
grander vision. While we have confirmed that a simple Octave-based simulation
would be inefficient from a performance standpoint, we have also realized that the
real value lies in enhancing the user experience. Integrating Xcos with Octave
would not be about performance gains but rather about providing Octave users
with a familiar and user-friendly modeling tool, thereby enhancing accessibility
and usability for the wider scientific community.

5.5 Conclusion and Future Direction

The initial objective of our project—to enable Octave users to leverage the
powerful Xcos environment—remains central to our mission. However, our
understanding of the problem has deepened, leading us to a more strategic and
sustainable path forward.

• We have confirmed that the interface and data structures of Xcos can be
ported to Octave, allowing us to generate valid .xcos files from within the
Octave environment.

• We have decided to proceed with a new compiler and will use NSP as a key
reference. The Scicos team member indicated that NSP is a more recent and
improved version of Scicos with an OCaml-based compiler and a structure
that is more Octave-like.

• The ultimate goal, aligned with Prof. Kanan’s vision, is to make Xcos
independent of Scilab and support its use from multiple languages. To
achieve this, we plan to consult with Prof. Kumar and Prof. Kanan to decide
between two strategic pathways: translating the complete system to Octave
or designing a universal interface with core functionalities that can be
accessed from any language. The latter, which we favor, requires a single
major translation and only minor adjustments for each new language.

This journey has been one of continuous learning and adaptation. From an initial
hypothesis that was quickly debunked, we have arrived at a clear, forward-thinking
strategy that will not only meet our project’s objectives but also contribute a
valuable, open-source tool to the global community of engineers and researchers.

31

Chapter 6

Learnings

I have had a lot of great experiences from this internship opportunity, some are
enumerated below.

1. Technical Skills Enhancement:

• Gained proficiency in Scilab, Linux, dynamic linking, c++ Octave, Git,
and GitHub.

• Developed advanced coding skills like testing and documentation.

• Improved understanding of technical concepts and practical
applications.

2. Feedback and Continuous Improvement:

• Learned to receive and act on constructive feedback.

• Gained an understanding of the importance of continuous learning and
improvement.

• Developed the ability to self-assess and seek growth opportunities.

3. Professionalism and Work Ethic:

• Developed a strong sense of professionalism in a workplace setting.

• Learned the importance of punctuality, reliability, and accountability.

• Gained experience in maintaining a professional demeanor in various
sit– uations.

4. Adaptability and Flexibility:

• Learned to adapt to new environments and changing circumstances.

• Gained experience in managing multiple tasks and shifting priorities.

• Developed resilience and the ability to thrive in a dynamic work
environment- menu.

32

Chapter 7

Conclusion

My internship experience at FOSSEE, IIT Bombay, has been an enriching and
intellectually stimulating journey. Having initially joined as a Semester-Long
summer Intern in 2024, this Semester long Winter Internship (2024) has allowed
me to further deepen my expertise and make meaningful contributions to the
Scilab Signal Processing Toolbox.
Throughout this phase, I have focused on improving the functionality, efficiency,
and usability of the toolbox while reinforcing my understanding of open-source
development. A key aspect of my work involved enhancing and optimizing signal

processing functions within Scilab. This included refining existing
implementations, ensuring compatibility, and improving performance to reduce
dependencies on external toolkits. Additionally, I contributed to resolving issues

within the Scilab-Octave Toolbox, which I was not able to fix because of changes
in the Scilab API. Also, the Scilab-Octave interface had various limitations and
was inefficient in terms of memory and performance Beyond these contributions, I

also conducted an architectural analysis of Xcos to explore its integration with
programming languages and Octave. This investigation aimed to assess how Xcos
can be leveraged for advanced simulations and computational workflows,
potentially enhancing its interoperability with external tools and expanding its
application scope. Looking ahead, I remain committed to continuing my

contributions to FOSSEE projects, particularly in advancing the Signal Processing
Toolbox. I am deeply grateful to my mentor, Ms. Rashmi Patankar, for her

continuous guidance, encouragement, and support. Her insights have been
instrumental in my growth throughout this internship. I also extend my sincere

thanks to Prof. Kannan M. Moudgalya and Prof. Kumar Appaih for their valuable
guidance, as well as my friends for their unwavering support. This internship has

not only strengthened my technical and problem-solving skills but has also
reinforced my passion for open-source development and scientific computing. I
look forward to applying the knowledge and experience gained here to future
projects and continuing my journey as an open-source contributor.

33

Signal processing Toolbox development

Reference

• https:

//github.com/abinash108/Signal-processing-toolkit-devlopment-

• https://github.com/FOSSEE/fossee-scilab-octave-toolbox

• https://octave.sourceforge.io/pkg-repository/signal/

• https:

//scilab.in/fossee-scilab-toolbox/signal-processing-toolbox

• http://www.scicos.org/

• Book : Modeling and Simulation in Scilab Scicos with ScicosLab 4.4

34

https://github.com/abinash108/Signal-processing-toolkit-devlopment-
https://github.com/abinash108/Signal-processing-toolkit-devlopment-
https://github.com/FOSSEE/fossee-scilab-octave-toolbox
https://octave.sourceforge.io/pkg-repository/signal/
https://scilab.in/fossee-scilab-toolbox/signal-processing-toolbox
https://scilab.in/fossee-scilab-toolbox/signal-processing-toolbox
http://www.scicos.org/

	Introduction
	Signal Processing Toolbox Development
	Overview
	Development Workflow
	Reading Octave Implementation
	Line-by-Line Translation
	Comparing In-Built Functions and Writing Missing Ones
	Test And Iterate

	Previous Status
	Current Status
	Documentation pattern
	Functions Completed During Semester Long Internship summer 2024
	Functions Completed During Semester Long Internship Winter 2024
	issues and possible Improvements

	Scilab–Octave Mapping of Functions

	Toolbox Documentation in Scilab
	Toolbox Structure in Scilab
	Directory Layout
	Key Files
	Lifecycle: Build and Load

	Documentation Types in Scilab
	User Documentation Through Function Headers
	The Function Header Comment Structure
	Importance of Auto-Generated Documentation
	XML Files: The Critical Intermediate Format
	From XML to JAR: Final Documentation Format

	The Documentation Generation Process
	Developer Documentation vs. User Documentation
	Developer Documentation Best Practices

	Best Practices for Function Header Documentation
	Documentation in Signal Processing Toolbox
	Conclusion

	Publishing a Scilab Toolbox on ATOMS
	General Concepts
	Toolbox Structure
	Builder and Loader Scripts
	Macros
	Primitives and Gateways
	Help System
	Testing the Toolbox Locally
	Submitting to ATOMS
	Installing a Published Toolbox

	Xcos Architecture Analysis and Multi-Language Integration
	The Background
	Xcos Architecture Analysis
	Core Components
	Simulation Workflow and Efficiency
	Interface and Computation Functions

	Approaches for Integration
	Two Pathways to Integration

	Challenges and Strategic Realizations
	Conclusion and Future Direction

	Learnings
	Conclusion

