/),

Winter internship Report
On

Upgradation of eSim installer to Ubuntu 22.04(Seamless
Upgradaion)

Submitted by

Sangati shiva krishna reddy

Under the guidance of

Prof.Kannan M. Moudgalya
Chemical Engineering Department
II'T Bombay

February 19, 2025

Acknowledgment

I would like to express my heartfelt gratitude and appreciation to the entire
FOSSEE eSim team for providing me with the incredible opportunity to be a part
of their esteemed organization as an intern. My experience with the FOSSEE eSim
internship program has been nothing short of exceptional, and I am immensely
grateful for the valuable knowledge and skills I have gained during this period.

I would like to express my special appreciation to my mentors Sumanto Kar Sir,
whose guidance and mentorship have been instrumental in shaping my internship
experience. Their patience, knowledge, and encouragement have helped me develop
a deeper understanding of eSim and its applications. Working under their super-
vision has not only enhanced my technical skills but also instilled in me a sense of
confidence to tackle complex challenges.

I am also grateful to the entire FOSSEE eSim community for their collaborative
spirit and the welcoming environment they foster. Interacting with fellow interns
and contributors has been an enriching experience, allowing me to exchange ideas,
seek advice, and engage in meaningful discussions. The communitys commitment
to open-source values and the shared goal of making quality education accessible to
all has been truly inspiring.

[am immensely grateful for the invaluable learning experiences, the supportive com-
munity, and the opportunities for personal and professional growth that the FOSSEE
eSim internship has provided me. I am confident that the skills and knowledge I
have acquired will continue to benefit me in my future endeavors. Once again, thank
you to the entire FOSSEE eSim team for this incredible opportunity.

Contents

2.1 Approach lakeno

Installing Ubuntu 22.04 1n a Virtual Environmentf

Analyzing Soitware Dependencles

ldenftitying and Resolving FPackage Installation lssues

Version Upgrades and Functional Changes

brror Handhing and Debugeing

lesting and Vermcation

Version Upgrade Detalld

Necessity of Upgrading to KiCad §

Kev Improvements m KiCad &

Impact on eSim Integration

Version Upgrade Detalld

Necessity of Upgrading to LLVM 1o

Impact on ed>im Integration

Version Upgrade Detalld

Necessity of Upgrading to GHDL 4.1.

Impact on ed>im Integration

Version Upgrade Detalld

Necessity of Upgrading to Verilator o.U0s4

Key Improvements 1 Verilator 0.Us4

Impact on ed>im Integration

Updated Verilator Installation Scripy

Changes Made 1n KiCad Installation and Library Copy dcripty

oK Y 150 PDK Installation deriptfo o000

2 Problem Statement and Approach
E.I1
.12
2.1.3
.14
R.1.5
£.1.6
22 Ontcomd
P Version Upgradeg
BT KiCad
B.II
B.1.2
b.l.o
B.1.4
B2 _TIVM
B2.1
B.2.2
B.2.3
B3 GHDI
b.o.l
b.o.2
B.3.3
a4 Verilatol
b.o.5
b.o.6
b.o.7
B.3.8
4 Changes Made 1n Script File
.1
.2
.3
1!

Dependency Installation Scrip

b Frraors Encountered and hesolutions

b.l Pyvthono-Distutils Package Installation Erroy
p.L.1 Rrror Description
bhl?2 Resolutionl L
bla Outcomd e e e

n?2 1IVMY Installation Failard
p.2.1 Hrror Description
h272 Resolution
bh2as Outecomd. L

b GHDI O A/ Installation Failard L L,
p.o.l Hrror Description00
bho?2 Resolutionl L.
baa Outcomd

EC [I

I(__Reterences

24
24
24
24
25
25
25
26
26
26
26
26
27

28

29

Chapter 1

Introduction

The Free/Libre and Open Source Software for Education (FOSSEE) project pro-
motes the use of FLOSS tools to enhance the quality of education in India. Its
primary objective is to reduce dependency on proprietary software in educational
institutions by advocating for equivalent open-source alternatives.

FOSSEE achieves this through various initiatives, including:

e Encouraging FLOSS adoption in academia and research.

e Developing and upgrading open-source tools to meet educational and indus-
trial requirements.

e Conducting training programs, workshops, and collaborative projects to spread
awareness.

The FOSSEE project is a part of the National Mission on Education through
Information and Communication Technology (ICT), Ministry of Human Resource
Development (MHRD), Government of India.

eSim is a free and open-source Electronic Design Automation (EDA) tool developed
by the FOSSEE team at II'T Bombay. It serves as an alternative to proprietary
EDA tools by integrating multiple open-source software packages, creating a unified
environment for circuit design, simulation, analysis, and PCB development.

eSim incorporates the following open-source tools to enhance its functionality:

e KiCad for schematic capture and PCB layout design.

Ngspice for analog circuit simulation.

GHDL for digital circuit simulation using VHDL.

OpenModelica for system modeling and analysis.

Verilator for high-performance digital verification.

Makerchip for cloud-based HDL simulation and verification.

SkyWater SKY130 PDK for open-source semiconductor design.

4

Importance in Circuit Design and Simulation.
eSim provides a comprehensive EDA environment, enabling users to:

e Design Schematics: Create detailed circuit diagrams using KiCad.

Simulate Circuits: Perform simulations with Ngspice for analog circuits and
GHDL for digital circuits.

Analyze Performance: Utilize OpenModelica for system modeling and anal-
ysis.

Design PCBs: Develop printed circuit board layouts and generate manufac-
turing files.

By combining these functionalities, eSim streamlines the workflow from circuit
design to PCB production, enhancing efficiency and reducing errors.

Common Use Cases and User Base
Due to its open-source nature and feature-rich environment, eSim is widely adopted

by:
e Students for hands-on learning in circuit design and simulation.
e Researchers to prototype and validate new circuit concepts.
e Engineers for designing and testing circuits before moving to production.

eSim empowers individuals and institutions to engage in electronics design with-
out the constraints of proprietary software, making it a valuable tool for education,
research, and industry.

Chapter 2

Problem Statement and Approach

With the release of Ubuntu 22.04 (Jammy Jellyfish), various software packages and
dependencies have undergone significant updates. eSim, an open-source EDA tool
for circuit design and simulation, was initially developed and tested on older versions
of Ubuntu. However, attempting to install and run eSim 2.4 on Ubuntu 22.04 results
in compatibility issues due to outdated dependencies and missing package support.

To analyze and resolve these issues, Ubuntu 22.04 was installed using an ISO file
on Oracle VirtualBox. This provided an isolated environment for testing, debugging,
and upgrading eSim 2.4 without affecting the host operating system.

Some key challenges encountered during this process include:

e Dependency Issues: Several libraries and tools required by eSim 2.4 are no
longer available in the standard repositories of Ubuntu 22.04.

e Version Mismatches: Software such as KiCad, LLVM, GHDL,Verilator and
Python packages have undergone major updates, making older versions incom-
patible.

e Error Resolution: Errors related to package installation, missing reposi-
tories, and broken dependencies need to be addressed to ensure a seamless
installation and execution process.

e Performance and Security Enhancements: Updating to newer software
versions ensures better performance, stability, and security.

2.1 Approach Taken

To resolve the above challenges and successfully upgrade eSim 2.4 for Ubuntu 22.04,
the following approach was taken:

2.1.1 Installing Ubuntu 22.04 in a Virtual Environment

To ensure a controlled testing environment, Ubuntu 22.04 was installed on Oracle
VirtualBox using an ISO file. This setup allowed for:

e Testing software compatibility without affecting the primary operating system.

6

e Easily reverting to snapshots if any installation caused critical failures.

e Debugging installation issues systematically in an isolated environment.

2.1.2 Analyzing Software Dependencies

A detailed study of the required dependencies was conducted to identify outdated
and missing packages. Compatibility with Ubuntu 22.04 was verified for each re-
quired component.

2.1.3 Identifying and Resolving Package Installation Issues

For packages that were no longer available in the standard repositories, alternative
installation methods were used, such as:

e Installing via Personal Package Archives (PPAs) where available.
e Using tarball installations for unsupported software.

e Creating virtual environments for Python package dependencies.

2.1.4 Version Upgrades and Functional Changes

A structured approach was followed to upgrade essential components of eSim to
ensure compatibility with Ubuntu 22.04:

e KiCad Upgrade: Transitioning from version 6.0 to 8.0 to support newer
schematic capture and PCB layout features.

e LLVM Upgrade: Upgrading from LLVM 9 to LLVM 13 to resolve missing
repository issues.

e GHDL Upgrade: Moving from GHDL 0.37 to 4.1.0, installed via tarball
since older repositories were unavailable.

e Verilator Upgrade: Upgraded from Verilator 4.210 to Verilator 5.032 to
improve simulation performance, enhance SystemVerilog support, and resolve
compatibility issues with newer toolchains.

e Python Dependencies: Managing missing modules such as python3-distutils

by using virtual environments.

2.1.5 Error Handling and Debugging
During the upgrade process, multiple errors were encountered, including:

e Repository Not Found: Packages like KiCad 6.0 were unavailable in Ubuntu
22.04 repositories, requiring manual source installation.

e Package Installation Failures: Errors such as missing 11vm-9 and 11vm-9-dev

required an upgrade to LLVM 13.

e Broken Dependencies: The removal of python3-distutils from the de-
fault Ubuntu repositories led to installation failures, which were resolved using
virtual environments.

2.1.6 Testing and Verification

After successful upgradation, rigorous testing was conducted to verify the proper
functionality of eSim. The following aspects were tested:

e Successful Installation: Ensuring all components installed without errors.

e Compatibility Check: Verifying that eSim runs properly with upgraded
components.

e Simulation Accuracy: Checking that circuit simulations produce expected
results.

2.2 QOutcome

By following the above approach, eSim 2.4 was successfully upgraded and made fully
compatible with Ubuntu 22.04. The key outcomes include:

All missing dependencies were installed using alternative methods.

Essential software components were upgraded to the latest supported versions.

Compatibility issues were resolved, and eSim runs without errors.

Performance and stability improvements were achieved with the latest software
updates.

This report provides a comprehensive analysis of the upgrade process, detailing
the challenges encountered, solutions implemented, and the successful transition to
Ubuntu 22.04.

Chapter 3

Version Upgrades

3.1 KiCad

KiCad is a free and open-source electronics design automation (EDA) suite. It fea-
tures schematic capture, integrated circuit simulation, printed circuit board (PCB)
layout, 3D rendering, and plotting/data export to numerous formats. KiCad also
includes a high-quality component library featuring thousands of symbols, foot-
prints, and 3D models. KiCad has minimal system requirements and runs on Linux,
Windows, and macOS.

3.1.1 Version Upgrade Details

e Previous Version: KiCad 6

e Updated Version: KiCad 8

3.1.2 Necessity of Upgrading to KiCad 8
The upgrade from KiCad 6 to KiCad 8 was essential for the following reasons:

e Compatibility with Ubuntu 22.04: KiCad 6 had dependency conflicts
with newer Ubuntu 22.04, leading to installation and runtime issues.

e Enhanced Performance: KiCad 8 introduced better memory management,
reducing crashes and improving stability.

e Improved User Interface: A more modern Ul with refined toolbar arrange-
ments, better component searching, and enhanced usability.

e Advanced Simulation Features: New SPICE simulation capabilities, mak-
ing it more efficient for circuit validation.

e Better PCB Design Features: Improvements in routing, DRC (Design
Rule Check), and footprint management.

e Updated Library and Symbol Management: More extensive library sup-
port with better component organization.

9

3.1.3 Key Improvements in KiCad 8

The major improvements in KiCad 8 that benefited the upgrade process include:

1. Faster PCB Rendering: KiCad 8 introduced an optimized graphics engine
for better rendering performance.

2. Multi-Threaded Processing: Improved efficiency in schematic and PCB
layout operations.

3. Enhanced Gerber Exporting: More accurate and streamlined export op-
tions for manufacturing.

4. New Python API Features: Better scripting support for automation in

circuit design.

3.1.4 Impact on eSim Integration

¢ Resolved Compatibility Issues: KiCad 8 fixed issues that previously caused
crashes in eSim when working with complex PCB layouts.

e Improved Workflow: Enhanced GUI and component libraries streamlined
the design process.

e Stability Improvements: Reduced crashes and enhanced performance in
handling large circuit projects.

3.2 LLVM

LLVM is a collection of modular and reusable compiler and toolchain technologies
used for developing compiler frontends and backends. It is widely used in various
programming environments, including eSim, for code optimization and compilation.

3.2.1 Version Upgrade Details
e Previous Version: LLVM 9

e Updated Version: LLVM 13

3.2.2 Necessity of Upgrading to LLVM 13
The upgrade from LLVM 9 to LLVM 13 was necessary due to the following reasons:

e Incompatibility with Ubuntu 22.04: LLVM 9 was not available in the
default Ubuntu 22.04 repositories, causing installation failures.

e Dependency Issues: eSim requires newer LLVM versions for proper compi-
lation and execution.

10

e Performance Improvements: LLVM 13 provides better optimization tech-
niques, reducing compilation time.

e Support for Newer C++ Standards: LLVM 13 has improved support for
C++17 and C++20, making the development process smoother.

e Security Fixes and Stability Enhancements: Bug fixes and security

patches were applied in LLVM 13, reducing vulnerabilities.

3.2.3 Impact on eSim Integration

The upgrade to LLVM 13 provided the following benefits:

e Resolved Installation Issues: Allowed seamless installation on Ubuntu
22.04.

e Improved Compilation Efficiency: Faster compilation time and optimized
code generation.

e Better Debugging Support: LLVM 13 enhanced debugging capabilities for
eSim.

e Future Compatibility: Ensured long-term compatibility with upcoming
eSim versions.

3.3 GHDL

GHDL is an open-source VHDL simulator that enables hardware designers to ana-
lyze, debug, and validate digital designs using VHDL. It is crucial for simulations
in eSim.

3.3.1 Version Upgrade Details
e Previous Version: GHDL 0.37

e Updated Version: GHDL 4.1.0

3.3.2 Necessity of Upgrading to GHDL 4.1.0
The upgrade from GHDL 0.37 to 4.1.0 was necessary due to the following reasons:

e Incompatibility with Ubuntu 22.04: GHDL 0.37 was not available in the
default Ubuntu 22.04 repositories.

e Performance Improvements: GHDL 4.1.0 provides faster simulation speeds
and better optimization for VHDL designs.

e Extended VHDL-2008 Support: Improved support for the latest VHDL-
2008 features.

11

e Improved Debugging and Logging: Better error handling and debugging
tools.

e Enhanced Compatibility with GCC and LLVM: GHDL 4.1.0 includes
better integration with modern compilers.

3.3.3 Impact on eSim Integration

The upgrade to GHDL 4.1.0 provided the following benefits:

e Resolved Installation Issues: Allowed smooth installation on Ubuntu 22.04.

e Enhanced Simulation Performance: Faster and more reliable processing
of VHDL designs.

e Improved Debugging and Error Handling: Reduced runtime errors and
better simulation logs.

e Future Compatibility: Ensured long-term support for upcoming eSim ver-
sions.

3.3.4 Verilator

Verilator is an open-source high-performance Verilog simulator widely used for func-
tional verification of digital circuits. It converts Verilog code into C++ or SystemC,
enabling fast and efficient simulation of large hardware designs. Due to its speed and
accuracy, Verilator is extensively used in academia and industry for digital circuit
modeling and verification.

3.3.5 Version Upgrade Details

e Previous Version: Verilator 4.210 (installed using tarball)

e Updated Version: Verilator 5.032 (installed from Verilator GitHub reposi-
tory)

3.3.6 Necessity of Upgrading to Verilator 5.032

The upgrade from Verilator 4.210 to 5.032 was essential due to the following reasons:

e Improved Installation Method: Previously, Verilator was installed using
tarball extraction, which required manual configuration. The updated in-
stallation directly pulls the latest stable release from the Verilator GitHub
repository, ensuring seamless updates and version control.

e Compatibility with Ubuntu 22.04: Verilator 4.210 had certain depen-
dency conflicts with Ubuntu 22.04, making installation and execution chal-
lenging.

12

e Enhanced Performance and Speed: Verilator 5.032 includes significant
optimizations that improve simulation speed and memory efficiency.

e Expanded Language Support: Support for SystemVerilog constructs and
enhancements in Verilog parsing for better compliance with IEEE standards.

e Improved Multithreading: New parallel simulation capabilities, reducing
simulation runtime for large circuits.

e Better Debugging Features: Enhanced tracing and waveform generation
capabilities for easier debugging of digital designs.

e Bug Fixes and Stability Improvements: Addressed several known issues

in Verilator 4.210, leading to a more stable simulation environment.

3.3.7 Key Improvements in Verilator 5.032

The major improvements in Verilator 5.032 that benefited the upgrade process in-
clude:

1. Faster Compilation and Execution: Improved performance through bet-
ter code generation and optimization techniques.

2. Extended SystemVerilog Support: Improved compatibility with advanced
SystemVerilog features, including enhanced assertion handling.

3. Optimized Memory Usage: Reduced memory footprint when simulating
large circuits, making it more efficient.

4. Better Integration with Open-Source EDA Tools: Improved interoper-
ability with tools like GHDL, Yosys, and eSim.

3.3.8 Impact on eSim Integration

e Seamless Simulation Workflow: The upgrade ensures Verilator works ef-
ficiently with eSims digital simulation pipeline.

e Reduced Simulation Time: Faster execution allows users to verify digital
circuits more quickly.

e Enhanced Stability and Fewer Errors: Verilator 5.032 minimizes unex-
pected crashes and improves debugging capabilities in eSim.

e Improved Compatibility with Mixed-Signal Designs: Ensures better
interoperability when co-simulating digital and analog circuits within eSim.

13

Chapter 4

Changes Made in Script File

4.1 Updated Verilator Installation Script

The Verilator installation script has been updated to enhance reliability, improve
error handling, and switch from tarball-based installation to repository-based instal-
lation.
Previous Script Version

The previous script installed Verilator using a tarball extraction approach, man-
ually configuring and building it as follows:

function installVerilator

{

echo "Installing $verilator....................... "

tar -xJf $verilator.tar.xz

echo "$verilator successfully extracted"

echo "Changing directory to $verilator installation"

cd $verilator

echo "Configuring $verilator build as per requirements"
chmod +x configure

./configure

make -j$(nproc)

sudo make install

echo "Removing the unessential verilator files........

rm
rm
rm
rm
rm
1s

-r docs
-r examples

-r

include

-r test_regress
-r bin

-1

| grep -E -v ’config.status|configure.ac|Makefile.in|verilator.1|configur

echo "Verilator installed successfully"
cd ..

Updated Script Version
The updated script improves upon the previous version by:

14

Installing Verilator directly from the GitHub repository instead of using a
tarball.

Adding error handling for each installation step to prevent failures.

Automating repository updates and selecting the appropriate Verilator version.

Ensuring cleanup operations are handled safely and effectively.
The new script is as follows:

function installVerilator {
echo "Installing Verilator from repository..."

sudo apt-get update

sudo apt-get install -y git help2man perl python3 make autoconf g++ flex bison
libgoogle-perftools-dev numactl perl-doc libfl2 libfl-dev \
zliblg zliblg-dev || { echo "Error: Failed to install dependencies"; exit 1

if [! -d "verilator"]; then

git clone https://github.com/verilator/verilator || { echo "Error: Failed t
fi
cd verilator || { echo "Error: Failed to enter Verilator directory"; exit 1; }
git pull || { echo "Error: Failed to update Verilator repository"; exit 1; }
git checkout stable

unset VERILATOR_ROOT

autoconf || { echo "Error: autoconf failed"; exit 1; }
./configure || { echo "Error: Configuration failed"; exit 1; }

make -j $(nproc) || { echo "Error: Build failed"; exit 1; }
sudo make install || { echo "Error: Installation failed"; exit 1; }
verilator --version || { echo "Error: Verilator installation verification faile

echo "Removing unessential Verilator files..."
rm -rf docs examples include test_regress bin || { echo "Error: Failed to remov

1ls -1 | grep -E -v ’config.status|configure.ac|Makefile.in|verilator.1|configur

echo "Verilator installed successfully!"
cd ..

15

4.2 Changes Made in KiCad Installation and Li-
brary Copy Scripts

Updated KiCad Installation Script

The KiCad installation script has been updated to install the latest version
(KiCad 8.0) instead of the older KiCad 6.0. The script also includes better repository
checking and a streamlined installation process.

Previous Script Version

The previous script installed KiCad 6.0 and included additional KiCad libraries:

function installKicad

{
echo "Installing KiCad........... un. "
kicadppa="kicad/kicad-6.0-releases"
findppa=$(grep -h -r "“deb.x*$kicadppax" /etc/apt/sources.list* > /dev/null 2>&1
if [-z "$findppa"]; then
echo "Adding KiCad-6 ppa to local apt-repository"
sudo add-apt-repository -y ppa:kicad/kicad-6.0-releases
sudo apt-get update
else
echo "KiCad-6 is available in synaptic"
fi
sudo apt-get install -y -—-no-install-recommends kicad kicad-footprints kicad-1i
}

Updated Script Version
The updated script now installs KiCad 8.0, ensuring compatibility with the latest
release and improving efficiency:

function installKicad {
echo "Installing KiCad..."

kicadppa="kicad/kicad-8.0-releases"
findppa=$(grep -h -r "“deb.*$kicadppax" /etc/apt/sources.list* > /dev/null 2>&1

if [-z "$findppa"]; then
echo "Adding KiCad-8 PPA to local apt repository..."
sudo add-apt-repository -y ppa:kicad/kicad-8.0-releases
sudo apt update

else
echo "KiCad-8 PPA is already added."

fi

echo "Installing KiCad and necessary libraries..."
sudo apt install -y --no-install-recommends kicad

16

echo "KiCad installation completed successfully!"

Key Improvements

e Upgraded KiCad installation from version 6.0 to 8.0.
e Simplified package installation by removing unnecessary libraries.

e Improved repository check and update mechanism.

Updated KiCad Library Copy Script
The KiCad library copy script has been enhanced to improve error handling,

detect the latest KiCad version dynamically, and ensure smoother installation of
custom libraries.

Previous Script Version
The older script used a fixed path for KiCad 6.0 configuration and manually

copied files:

function copyKicadLibrary

{

Extract custom KiCad Library
tar -xJf library/kicadLibrary.tar.xz

if [-d “/.config/kicad/6.0]; then
echo "kicad config folder already exists"
else
echo ".config/kicad/6.0 does not exist"
mkdir -p “/.config/kicad/6.0
fi

Copy symbol table for eSim custom symbols
cp kicadLibrary/template/sym-lib-table ~/.config/kicad/6.0/

echo "symbol table copied in the directory"

Copy KiCad symbols made for eSim
sudo cp -r kicadLibrary/eSim-symbols/* /usr/share/kicad/symbols/

set +e # Temporarily disable exit on error
trap "" ERR # Do not trap on error of any command

Remove extracted KiCad Library - not needed anymore
rm -rf kicadLibrary

set -e # Re—enable exit on error
trap error_exit ERR

17

Change ownership from Root to the User
sudo chown -R $USER:$USER /usr/share/kicad/symbols/

Updated Script Version
The updated script dynamically detects the installed KiCad version, improves
error handling, and enhances reliability:

function copyKicadLibrary {
set —e # Exit immediately on error
trap ’echo "An error occurred! Exiting..."; exit 1’ ERR

echo "Extracting custom KiCad Library..."
tar -xJf library/kicadLibrary.tar.xz -C library || { echo "Extraction failed!";

Detect the latest installed KiCad version
kicad_config_dir="$HOME/.config/kicad"
latest_version=$(1ls "$kicad_config_dir" | grep -E "~ [0-9]+\.[0-9]+$" | sort -V

if [-z "$latest_version"]; then

latest_version="8.0" # Default to the latest known version

mkdir -p "$kicad_config_dir/$latest_version"

echo "Created KiCad config directory: $kicad_config dir/$latest_version"
else

echo "Using existing KiCad version: $latest_version"
fi

kicad_version_dir="$kicad_config_dir/$latest_version"

Copy the symbol table for eSim custom symbols
echo "Copying symbol table..."
cp library/kicadlLibrary/template/sym-lib-table "$kicad_version_dir/"

Ensure KiCad symbols directory exists
kicad_symbols_dir="/usr/share/kicad/symbols"
if [! -d "$kicad_symbols_dir"]; then
echo "Creating KiCad symbols directory..."
sudo mkdir -p "$kicad_symbols_dir"
fi

Copy custom symbols using rsync for better reliability
echo "Copying eSim custom symbols..."
sudo rsync -av library/kicadLibrary/eSim-symbols/ "$kicad_symbols_dir/"

Cleanup: Remove extracted KiCad Library (not needed anymore)

echo "Removing extracted KiCad library..."
rm -rf library/kicadLibrary

18

Change ownership from root to the user only if needed

if ["$(stat -c "%4U" "$kicad_symbols_dir")" != "$USER"]; then
echo "Changing ownership of KiCad symbols directory..."
sudo chown -R "$USER:$USER" "$kicad_symbols_dir"

fi

echo "KiCad Library successfully copied and configured!"

4.3 SKY130 PDK Installation Script

The SKY 130 PDK installation script has been updated to enhance the copying pro-
cess by using cp -R instead of mv, ensuring a more reliable copy operation without
altering the source directory structure.

Previous Script Version
The previous script used the mv command to move the SKY130 PDK library to

the system-wide location. The script steps were as follows:

function installSky130Pdk

{

echo "Installing SKY130 PDK...................... "

Extract SKY130 PDK
tar -xJf library/sky130_fd_pr.tar.xz

Remove any previous skyl30-fd-pdr instance, if any
sudo rm -rf /usr/share/local/sky130_fd_pr

Copy SKY130 library

echo "Copying SKY130 PDK............. "

sudo mkdir -p /usr/share/local/

echo "Directory created"

sudo mv skyl130_fd_pr /usr/share/local/

placing the SKY130 PDK in a standard, system-wide location.

Change ownership from root to the user
sudo chown -R $USER:$USER /usr/share/local/sky130_fd_pr/
Updated Script Version

The updated script improves upon the previous version by:

e Replacing the mv command with cp -R for a safer and more robust copying
process.

19

e Removing the source directory after a successful copy, ensuring a clean working
environment.

The new script is as follows:

function installSky130Pdk

{
echo "Installing SKY130 PDK...................... "

Extract SKY130 PDK
tar -xJf library/sky130_fd_pr.tar.xz

Remove any previous skyl30-fd-pdr instance, if any
sudo rm -rf /usr/share/local/sky130_fd_pr

Copy SKY130 library

echo "Copying SKY130 PDK............. "
sudo mkdir -p /usr/share/local/

echo "Directory created"

sudo cp -R skyl130_fd_pr /usr/share/local/
sudo rm -rf skyl30_fd_pr

Change ownership from root to the user
sudo chown -R $USER:$USER /usr/share/local/sky130_fd_pr/

4.4 Dependency Installation Script

The dependency installation script has been updated to enhance package manage-
ment by introducing a Python virtual environment. This ensures better isolation of
dependencies, reduces system-wide package conflicts, and allows for easier manage-
ment of the installed packages.

Previous Script Version

The previous script installed all dependencies globally without using a virtual
environment. This could potentially lead to conflicts between project dependencies
and system-wide Python packages.

function installDependency

{
Update apt repository
echo "Updating apt index files................... "
sudo apt-get update

echo "Installing Xterm................ "
sudo apt-get install -y xterm

20

echo "Installing Psutil.......................... "
sudo apt-get install -y python3-psutil

echo "Installing PyQto......... "
sudo apt-get install -y python3-pyqtb

echo "Installing Matplotlib...................... "
sudo apt-get install -y python3-matplotlib

echo "Installing Distutils....................... "
sudo apt-get install -y python3-distutils

Install NgVeri Dependencies
echo "Installing Pip3........... "
sudo apt install -y python3-pip

echo "Installing Watchdog........................ "
pip3 install watchdog

echo "Installing Hdlparse........................ "
pip3 install --upgrade https://github.com/hdl/pyhdlparser/tarball/master

echo "Installing Makerchip....................... "
pip3 install makerchip-app

echo "Installing SandPiper Saas.................. "
pip3 install sandpiper-saas

echo "Installing Hdlparse again.................. "
pip3 install hdlparse

echo "Installing Matplotlib...................... "
pip3 install matplotlib

echo "Installing PyQtb.......... "
pip3 install PyQtb

Updated Script Version
The updated script introduces the following enhancements:

e Virtual Environment: A virtual environment is created using virtualenv to
isolate the projects Python packages.

e Package Upgrades: Pip is upgraded within the virtual environment for the
latest package support.

21

e Environment Isolation: All Python dependencies are installed within the vir-
tual environment, reducing the chances of conflicts with system-wide packages.

The updated script is as follows:

function installDependency

{
set +e # Temporarily disable exit on error
trap "" ERR # Ignore errors temporarily

Update apt repository
echo "Updating apt index files................... "
sudo apt-get update

set -e # Re-enable exit on error
trap error_exit ERR

echo "Installing virtualenv....................... "
sudo apt install python3-virtualenv

echo "Creating virtual environment to isolate packages"
virtualenv $config_dir/env

echo "Starting the virtual env................... "
source $config_dir/env/bin/activate

echo "Upgrading Pip........... i "
pip install --upgrade pip

echo "Installing Xterm........................... "
sudo apt-get install -y xterm

echo "Installing Psutil.................... "
sudo apt-get install -y python3-psutil

echo "Imnstalling PyQtS......... "
sudo apt-get install -y python3-pyqtd

echo "Installing Matplotlib...................... "
sudo apt-get install -y python3-matplotlib

echo "Installing Distutils....................... "
sudo apt-get install -y python3-distutils

Install NgVeri Dependencies

echo "Installing Pip3............ "
sudo apt install -y python3-pip

22

echo "Installing Watchdog........................ "
pip3 install watchdog

echo "Installing Hdlparse...................
pip3 install --upgrade https://github.com/hdl/pyhdlparser/tarball/master

echo "Installing Makerchip.......................
pip3 install makerchip-app

echo "Installing SandPiper Saas..................
pip3 install sandpiper-saas

echo "Installing Hdlparse again..................
pip3 install hdlparse

echo "Installing Matplotlib...................... "
pip3 install matplotlib

echo "Installing PyQtb.......... "
pip3 install PyQtb

23

Chapter 5

Errors Encountered and
Resolutions

5.1 Python3-Distutils Package Installation Error

5.1.1 Error Description

During the installation process of eSim on Ubuntu 22.04, the following error occurred
while trying to install python3-distutils:

Package python3-distutils is not available but is referred to by another package.
This may mean that the package is missing, has been obsoleted, or
is only available from another source.

E: Package ’python3-distutils’ has no installation candidate.

This error occurs because python3-distutils is no longer available in the de-
fault Ubuntu 22.04 repositories. The package has been removed or replaced in newer
versions of Ubuntu.

5.1.2 Resolution

To resolve this issue, a virtual environment was created and used to install the
required dependencies. The following steps were taken:

1. Install Python Virtual Environment (if not already installed):

sudo apt install python3-venv

2. Create a Virtual Environment:

python3 -m venv my_env

3. Activate the Virtual Environment:

24

source my_env/bin/activate

4. Install Python3-Distutils inside the virtual environment:

sudo apt install python3-distutils -y

5. Verify Installation:

python3 -m ensurepip

6. Exit the Virtual Environment when done:

deactivate

5.1.3 Outcome

After setting up the virtual environment and installing the required dependencies,
the installation of eSim proceeded without any further issues.

5.2 LLVM 9 Installation Failure

5.2.1 Error Description

During the installation process of eSim on Ubuntu 22.04, the following error occurred
while attempting to install LLVM 9:

Installing LLVM-O. i e
Reading package lists... Done

Building dependency tree... Done

Reading state information... Done

E: Unable to locate package 1llvm-9

E: Unable to locate package 1llvm-9-dev

Error! Kindly resolve above error(s) and try again.

Aborting Installation...

This error indicates that Ubuntu 22.04 does not include LLVM 9 in its package
repositories by default, making installation impossible without additional configu-
ration.

25

5.2.2 Resolution

To resolve this issue, the following steps were taken:
1. Removed any existing references to LLVM 9.

2. Added the official LLVM repository for Ubuntu 22.04:

sudo apt update && sudo apt upgrade
sudo apt install 1lvm-13 1llvm-13-dev clang-13 11db-13 11d4-13

3. Updated eSim’s build configuration to use LLVM 13.

4. Recompiled eSim with LLVM 13 and verified successful execution.

5.2.3 Outcome

After upgrading to LLVM 13, the installation proceeded without errors, and eSim
successfully compiled and ran on Ubuntu 22.04.

5.3 GHDL 0.37 Installation Failure

5.3.1 Error Description

During the installation process of eSim on Ubuntu 22.04, the following error occurred
when trying to install GHDL 0.37:

E: Unable to locate package ghdl-0.37
E: Package ’ghdl-0.37’ has no installation candidate

Error! Kindly resolve above error(s) and try again.

Aborting Installation...

This error occurred because GHDL 0.37 was not available in Ubuntu 22.04’s offi-
cial package repositories. Since GHDL 4.1.0 was not available via standard package
managers, it was installed manually using a tarball file.

5.3.2 Resolution

To resolve this issue, the following steps were taken:

1. Manually downloaded the official GHDL 4.1.0 tarball from the GitHub releases
page and incorporated it into the workflow:

wget https://github.com/ghdl/ghdl/releases/download/v4.1.0/ghdl-4.1.0.tar.

26

2. Extracted the downloaded tarball:

tar -xvf ghdl-4.1.0.tar.xz

3. Verified the successful installation of GHDL 4.1.0:

ghdl --version

4. Incorporated the manually installed GHDL 4.1.0 into the eSim workflow by
updating eSim’s configuration files to reference the new GHDL version.

5.3.3 Outcome

After upgrading to GHDL 4.1.0, the installation proceeded without errors, and eSim
successfully ran VHDL simulations with improved performance and compatibility.

27

Chapter 6

Conclusion

The upgradation of eSim 2.4 to be compatible with Ubuntu 22.04 was a necessary
step to ensure seamless installation, execution, and stability of the software. The
process involved resolving multiple dependency issues, upgrading key components
such as KiCad, LLVM, and GHDL, and addressing errors related to outdated repos-

itories and missing packages.

By leveraging alternative installation methods, including PPAs, manual package
installations, and virtual environments, all compatibility issues were successfully
resolved. The upgraded version of eSim now runs efficiently on Ubuntu 22.04, ben-
efiting from enhanced performance, security, and long-term support. This report
serves as a comprehensive guide for future upgrades and troubleshooting similar
compatibility issues.

28

Chapter 7

References

The following resources were used for the upgradation process of eSim 2.4:

GHDL installation details were obtained from GHDL Releases.

KiCad version updates and installation were referenced from KiCad Ubuntu
Download Page.

Official eSim downloads and documentation were used from eSim Official
Downloads.

LLVM package updates were verified using LLVM Official Website.

Ngspice and nghdl repository details were taken from nghdl GitHub Reposi-
tory.

29

	Introduction
	Problem Statement and Approach
	Approach Taken
	Installing Ubuntu 22.04 in a Virtual Environment
	Analyzing Software Dependencies
	Identifying and Resolving Package Installation Issues
	Version Upgrades and Functional Changes
	Error Handling and Debugging
	Testing and Verification

	Outcome

	Version Upgrades
	KiCad
	Version Upgrade Details
	Necessity of Upgrading to KiCad 8
	Key Improvements in KiCad 8
	Impact on eSim Integration

	LLVM
	Version Upgrade Details
	Necessity of Upgrading to LLVM 13
	Impact on eSim Integration

	GHDL
	Version Upgrade Details
	Necessity of Upgrading to GHDL 4.1.0
	Impact on eSim Integration
	Verilator
	Version Upgrade Details
	Necessity of Upgrading to Verilator 5.032
	Key Improvements in Verilator 5.032
	Impact on eSim Integration

	Changes Made in Script File
	Updated Verilator Installation Script
	Changes Made in KiCad Installation and Library Copy Scripts
	SKY130 PDK Installation Script
	Dependency Installation Script

	Errors Encountered and Resolutions
	Python3-Distutils Package Installation Error
	Error Description
	Resolution
	Outcome

	LLVM 9 Installation Failure
	Error Description
	Resolution
	Outcome

	GHDL 0.37 Installation Failure
	Error Description
	Resolution
	Outcome

	Conclusion
	References

