
Winter Fellowship Report
On

Integrated Circuit Design using Subcircuit feature of eSim

Submitted by

Varad V. Patil

Electrical Engineering Department

SGGSIE&T

Under the guidance of

Prof.Kannan M. Moudgalya

Chemical Engineering Department

IIT Bombay

February 22, 2025

Acknowledgment

We take this occasion to offer our heartfelt gratitude to the FOSSEE, IIT Bombay
Team for offering us this wonderful opportunity to work on the design and
integration of multiple sub-circuits in eSim. Working on eSim has prov ided us with
invaluable insights into various open-source EDA tools for circuit simulation and
their applications in the practical world.

We extend our sincere regards to Prof. Kannan M. Moudgalya for his valuable
guidance and motivation to throughout this fellowship program.

We would like to express our heartfelt appreciation to the entire FOSSEE team
including our mentors Mr. Sumanto Kar, Mrs. Vineeta Ghavri, and Mrs. Usha
Vishwanathan for constantly guiding and mentoring us throughout the duration of
our internship.

It is with their support that we have been able to fulfill our project demands
successfully. Whenever faced with an issue, our mentors were always accessible to
help us assess and debug them. Our learnings from them have been invaluable and
shall be of paramount importance to us in the future.

Overall, it was a delightful experience interning at FOSSEE and contributing to its
growth and I take away some great insights and knowledge from it. As enthusiastic
beginners in the semiconductor industry, this internship is a milestone for us in our
pursuit of a successful career.

1

Contents

1 Introduction 4
1.1 eSim . 4
1.2 NgSpice . 4
1.3 Makerchip . 5

2 Features Of eSim 6

3 Problem Statement 7
3.1 Approach . 7

4 Integrated Circuit Design 9
4.1 74LVC1G386 . 9

4.1.1 Pin Diagram . 9
4.1.2 Sub Circuit Layout . 10
4.1.3 Test Circuit . 10
4.1.4 Output Waveform . 11

4.2 SN74LVC1G57 . 14
4.2.1 Pin Diagram . 14
4.2.2 Sub Circuit Layout . 15
4.2.3 Test Circuit . 16
4.2.4 Output Waveform . 16

4.3 SN74LVC3G98 . 19
4.3.1 Pin Diagram . 20
4.3.2 Sub Circuit Layout . 21
4.3.3 Test Circuit . 21
4.3.4 Output Waveform . 22

4.4 SN74LVC3G58 . 25
4.4.1 Pin Diagram . 25
4.4.2 Sub Circuit Layout . 26
4.4.3 Test Circuit . 26
4.4.4 Output Waveform . 27

4.5 SN74LVC1G99 . 30
4.5.1 Pin Diagram . 30
4.5.2 Sub Circuit Layout . 31
4.5.3 Test Circuit . 32
4.5.4 Output Waveform . 32

2

5 Adapting eSim for macOS: Dependency Management, Compatibility
Issues, and Solutions 39
5.1 Introduction . 39
5.2 Transition from apt-get to Homebrew 39

5.2.1 Ubuntu Approach . 39
5.2.2 macOS Approach . 39

5.3 Python Package Installation Differences 40
5.3.1 Ubuntu . 40
5.3.2 macOS . 40

5.4 Handling Permissions on macOS . 40
5.4.1 Executable Permissions . 40
5.4.2 Gatekeeper and Security Restrictions 40

5.5 Verilator Configuration and Compatibility Issues 40
5.5.1 Issues Encountered . 40
5.5.2 Solution: Identifying Working Versions 41

5.6 Package Management Issues . 41
5.6.1 Ubuntu-Specific Issues . 41
5.6.2 Homebrew Issues on macOS . 41

5.7 Version Conflicts and Their Impact . 41
5.7.1 Identified Issues . 41
5.7.2 Solution . 41

5.8 Post-Build Issues: Makefile and NGHDL 42
5.8.1 Makefile Issues . 42
5.8.2 NGHDL Compilation Errors . 42

5.9 Clang Compatibility Issues . 42
5.9.1 Problem Statement . 42
5.9.2 Possible Solutions . 42

5.10 Conclusion . 42

6 Conclusion and Future Scope 43

3

Chapter 1

Introduction

FOSSEE which stands for Free/Libre and Open Source Software for Education is an
organization, based at IIT Bombay, as a remarkable initiative aimed at promoting the
use of open-source software in education and research. It was established with the
mission to reduce the dependency on proprietary software and to encourage the adop-
tion of open-source alternatives. FOSSEE offers a wide range of tools and resources
that cater to various academic and professional needs.

It provides comprehensive documentation, tutorials, workshops, and hands-on train-
ing sessions, for empowering students, educators, and professionals to leverage open-
source software for their projects and coursework. The organization’s commitment
to fostering a collaborative and inclusive environment has significantly contributed to
the democratization of technology and has opened up new avenues for innovation and
learning.

1.1 eSim

eSim, created by the FOSSEE project at IIT Bombay, is a versatile open-source soft-
ware tool for circuit design and simulation. It combines various open-source software
packages into one cohesive platform, making it easier to design, simulate, and ana-
lyze electronic circuits. This tool is particularly useful for students, educators, and
professionals who need an affordable and accessible alternative to proprietary software.

eSim offers features for schematic creation, circuit simulation, PCB design, and
includes an extensive library of components. The Subcircuit feature is a significant
enhancement, enabling users to design complex circuits by integrating simpler subcir-
cuits. Through eSim, FOSSEE promotes the use of open-source solutions in engineer-
ing education and professional fields, encouraging innovation and collaboration.

1.2 NgSpice

NgSpice is the open-source spice simulator for electric and electronic circuits. Such a
circuit may comprise JFETs, bipolar and MOS transistors, passive elements like R, L,
or C, diodes, transmission lines and other devices, all interconnected in a netlist.

4

Digital circuits are simulated as well, event-driven and fast, from single gates to
complex circuits and the combination of both analog and digital as well as a mixed-
signal circuits. NgSpice offers a wealth of device models for active, passive, analog,
and digital elements. Model parameters are provided by our collections, by the semi-
conductor device manufacturers, or from semiconductor foundries. The user adds her
circuits as a netlist, and the output is one or more graphs of currents, voltages and
other electrical quantities or is saved in a data file.

1.3 Makerchip

Makerchip is a platform that offers convenient and accessible access to various tools for
digital circuit design. It provides both browser-based and desktop-based environments
for coding, compiling, simulating, and debugging Verilog designs. Makerchip supports
a combination of open-source tools and proprietary ones, ensuring a comprehensive
range of capabilities.

One can simulate Verilog/SystemVerilog/Transaction-Level Verilog code in Mak-
erchip. eSim is interfaced with Makerchip using a Python based application called
Makerchip-App which launches the Makerchip IDE. Makerchip aims to make circuit
design easy and enjoyable for users of all skill levels. The platform provides a user-
friendly interface, intuitive workflows, and a range of helpful features that simplify the
design process and enhance the overall user experience.

The main drawback of these open source tools is that they are not comprehensive.
Some of them are capable of PCB design (e.g. KiCad) while some of them are capable
of performing simulations (e.g. gEDA). To the best of our knowledge, there is no open
source software that can perform circuit design, simulation and layout design together.
eSim is capable of doing all of the above.

5

Chapter 2

Features Of eSim

The objective behind the development of eSim is to provide an open source EDA
solution for electronics and electrical engineers. The software should be capable of
performing schematic creation, PCB design and circuit simulation (analog, digital and
mixed-signal). It should provide facilities to create new models and components. Thus,
eSim offers the following features -

1. Schematic Creation: eSim provides an easy-to-use graphical interface for
drawing circuit schematics, making it accessible for users of all levels. Users can drag
and drop components from the library onto the schematic, simplifying the design pro-
cess. Comprehensive editing tools allow for easy modification of schematics, including
moving, rotating, and labeling components.

2. Circuit Simulation: eSim supports SPICE (Simulation Program with Inte-
grated Circuit Emphasis), a standard for simulating analog and digital circuits. Users
can perform various types of analysis such as transient, AC, and DC, providing insights
into circuit behavior over time and frequency.An integrated waveform viewer helps vi-
sualize simulation results, aiding in the analysis and debugging of circuit designs.

3. PCB Design: The PCB layout editor allows users to place components and
route traces with precision. eSim includes DRC capabilities to ensure that the PCB
design adheres to manufacturing constraints and electrical rules. Users can generate
Gerber files, which are standard for PCB fabrication, directly from their designs.

4. Subcircuit Feature: This feature enables users to create complex circuits by
integrating smaller, simpler subcircuits, promoting modular and hierarchical design
approaches. Subcircuits can be reused in different projects, saving time and effort in
redesigning common circuit elements.

5. Open Source Integration: eSim integrates several open-source tools like
KiCad, Ngspice, and GHDL, providing a comprehensive suite for electronic design
automation. Being open-source, eSim is free to use, making advanced circuit design
tools accessible without the need for expensive licenses.

6

Chapter 3

Problem Statement

To design and develop various Analog and Digital Integrated Circuit Models in the
form of sub-circuits using device model files already present in the eSim library. These
IC models should be useful in the future for circuit designing purposes by developers
and users, once they get successfully integrated into the eSim subcircuit Library.

3.1 Approach

Our approach to implementing the problem statement began with examining datasheets
from prominent Integrated Circuit (IC) manufacturers such as Texas Instruments,
Analog Devices, and NXP Semiconductors. we selected ICs that offer a diverse range
of functionalities, including precision amplifiers, comparators, encoders, and audio
amplifiers. After building the subcircuits, we tested them to verify basic circuit con-
figurations using NgSpice simulations. The step-by-step roadmap of this process is
outlined below :

1. Analyzing Datasheets : The primary step is to browse through various
analog and digital IC datasheets, and hence find suitable circuits to implement in
eSim, that are not previously included into the eSim library. Check for the detailed
schematic of the IC’s and once the component values and the truth table is ascertained,
then finalise the IC to be created.

2. Subcircuit Creation : After deciding the IC, we start modeling it as a sub-
circuit in eSim, using the model files present in the eSim device model library only.
The design is strictly according to the information given in the official data-sheets of
the ICs.This step also includes building the Symbol/Pin diagram of the IC according
to the packaging and pin description given in the data-sheets only.

3. Test Circuit Design : Once the component of the IC is ready, now we can
build the test circuits, according to the data-sheets. In this step we build the test
cases and test circuits using the component IC.

4. Schematic Testing : Once the test circuits are ready, now it’s time to simulate
the test circuits so that the output can be obtained in the form of wave-forms and

7

plots. Here we take help of KiCad to NgSpice conversion and Simulation feature in
eSim

If the output of the test circuit is not as per expectation, this implies that the test
case has failed, and there is some error in the schematic. In such cases we go back
to the design phase of the IC or the test circuits, to look for possible errors and then
repeat the testing process again after making required changes.

Once the expected output of the test cases are correct and satisfy the expected
results, then in such a case the IC is declared successfully working. The test case has
been verified and the designing process is complete.

8

Chapter 4

Integrated Circuit Design

4.1 74LVC1G386

The 74LVC1G386 is used in digital logic applications where an exclusive-OR (XOR)
function is needed with an additional control input. It is commonly used in arithmetic
circuits, parity generators, and data comparison applications. Its low-voltage operation
and high-speed characteristics make it ideal for modern logic systems requiring efficient
and compact logic implementation.

Truth Table :

Figure 4.1: Truth Table

4.1.1 Pin Diagram

The figure shows the physical representation of the 74LVC1G386 IC, indicating the
arrangement of its pins. It includes input pins,

Figure 4.2: Pin Layout

9

an output pin, a power supply pin, and a ground pin. The pin diagram is essen-
tial for correctly integrating the IC into a circuit, ensuring proper connections and
functionality in digital applications.

4.1.2 Sub Circuit Layout

The figure represents the internal design of the 74LVC1G386 IC, showing how logic
gates and components are interconnected within the chip. This layout determines
how the IC processes input signals to generate the required output. Understanding
the sub-circuit helps in optimizing circuit performance and ensuring efficient logic
operation.

Figure 4.3: Sub Circuit Layout

4.1.3 Test Circuit

The figure illustrates a test setup used to verify the performance of the 74LVC1G386
IC. A test circuit includes a power source, input signal generators, and output monitor-
ing devices such as oscilloscopes or logic analyzers. This setup helps evaluate response
time, signal integrity, and overall functionality under different conditions.

10

Figure 4.4: Test Circuit Layout

4.1.4 Output Waveform

The figure shows the signal produced at the output pin of the 74LVC1G386 IC af-
ter processing the input signals. This waveform represents the XOR logic operation
performed by the IC..

Figure 4.5: Input

Figure 4.6: Output

11

Figure 4.7: Input

Figure 4.8: Output

Figure 4.9: Input

Figure 4.10: Output

Figure 4.11: Input

Figure 4.12: Output

12

Figure 4.13: Input

Figure 4.14: Output

Figure 4.15: Input

Figure 4.16: Output

Figure 4.17: Input

Figure 4.18: Output

13

Figure 4.19: Input

Figure 4.20: Output

4.2 SN74LVC1G57

The SN74LVC1G57 is designed for applications that require configurable logic func-
tions within a single device. It is useful in circuits where multiple Boolean functions
need to be implemented with minimal components, such as in control systems, data
processing, and signal manipulation. Its flexibility makes it a preferred choice in em-
bedded systems and logic optimization tasks.

Truth Table :

Figure 4.21: Truth Table

4.2.1 Pin Diagram

The figure shows the physical representation of the SN74LVC1G57 IC, indicating the
arrangement of its pins. This IC is a configurable logic gate that allows the selection
of different logic functions using control inputs.

14

Figure 4.22: Pin Layout

It consists of input pins for logic operations, an output pin for the processed signal,
a power supply pin, and a ground pin. Proper pin configuration is crucial for ensuring
accurate functionality in digital applications.

4.2.2 Sub Circuit Layout

Figure 4.23: Sub Circuit Layout

The figure represents the internal structure of the SN74LVC1G57 IC, showing how
its logic components are interconnected. This IC features configurable logic, allowing
users to implement various Boolean functions based on input selection. The internal
design consists of gates and control mechanisms that determine the final logic oper-
ation. Understanding the sub-circuit layout helps in optimizing circuit performance
and utilizing the IC effectively.

15

4.2.3 Test Circuit

Figure 4.24: Test Circuit Layout

The figure illustrates a test setup designed to verify the operation of the SN74LVC1G57
IC. This test circuit typically includes a power supply, input signal sources, and mea-
suring instruments such as oscilloscopes or logic analyzers. Since this IC provides
configurable logic, testing different input combinations helps ensure that it performs
the desired logic function correctly under varying conditions.

4.2.4 Output Waveform

The figure represents the signal generated at the output pin of the SN74LVC1G57 IC
after processing the input signals. The output waveform reflects the logic function
executed by the IC, ensuring the expected response based on input conditions.

16

Figure 4.25: Input

Figure 4.26: Output

Figure 4.27: Input

Figure 4.28: Output

Figure 4.29: Input

Figure 4.30: Output

17

Figure 4.31: Input

Figure 4.32: Output

Figure 4.33: Input

Figure 4.34: Output

Figure 4.35: Input

Figure 4.36: Output

18

Figure 4.37: Input

Figure 4.38: Output

Figure 4.39: Input

Figure 4.40: Output

4.3 SN74LVC3G98

The SN74LVC3G98 is used in digital circuits where multiple independent logic func-
tions are required. It is particularly useful in applications such as address decoding,
data multiplexing, and custom logic implementation. Its ability to configure different
logic gates in a single IC reduces circuit complexity and improves design efficiency.

Truth Table :

19

Figure 4.41: Truth Table

4.3.1 Pin Diagram

The figure shows the physical representation of the SN74LVC3G98 IC, indicating the
arrangement of its pins. This IC is a triple 3-input configurable logic gate that can
perform multiple logic functions based on its inputs.

Figure 4.42: Pin Layout

It consists of multiple input pins, an output pin for each logic gate, a power supply
pin, and a ground pin. Proper pin configuration is essential for ensuring correct logic
operations and efficient circuit integration.

20

4.3.2 Sub Circuit Layout

Figure 4.43: Sub Circuit Layout

The figure represents the internal structure of the SN74LVC3G98 IC, showing how its
logic gates and internal components are connected. This IC integrates three indepen-
dent configurable logic gates, allowing it to perform various Boolean functions. The
internal design consists of multiple logic elements, enabling flexible circuit design and
optimization. Understanding the sub-circuit layout helps in utilizing the IC effectively
for digital applications.

4.3.3 Test Circuit

Figure 4.44: Test Circuit Layout

21

The figure illustrates a test setup designed to verify the operation of the SN74LVC3G98
IC. The test circuit includes a power source, input signal generators, and measurement
devices such as oscilloscopes or logic analyzers. Since this IC has multiple configurable
logic gates, testing different input combinations ensures that all logic functions operate
correctly under varying conditions.

4.3.4 Output Waveform

The figure represents the signals generated at the output pins of the SN74LVC3G98
IC after processing the input signals. Each output waveform corresponds to the logic
function performed by the respective gate within the IC.

Figure 4.45: Input

Figure 4.46: Output

Figure 4.47: Input

Figure 4.48: Output

22

Figure 4.49: Input

Figure 4.50: Output

Figure 4.51: Input

Figure 4.52: Output

Figure 4.53: Input

Figure 4.54: Output

23

Figure 4.55: Input

Figure 4.56: Output

Figure 4.57: Input

Figure 4.58: Output

Figure 4.59: Input

Figure 4.60: Output

24

4.4 SN74LVC3G58

The SN74LVC3G58 is ideal for applications that require a combination of multiplex-
ing and logic operations. It is commonly used in signal selection, data routing, and
conditional logic circuits. The ability to configure logic operations within a single IC
allows designers to create efficient and space-saving digital systems.

Truth Table :

Figure 4.61: Truth Table

4.4.1 Pin Diagram

The figure shows the physical representation of the SN74LVC3G58 IC, indicating the
arrangement of its pins. This IC is a triple 3-input configurable multiplexer logic gate,
meaning it can perform various logic operations based on input selection.

Figure 4.62: Pin Layout

It consists of multiple input pins, an output pin for each logic function, a power
supply pin, and a ground pin. Correct pin connections are essential to ensure the
desired logic operation and reliable circuit performance.

25

4.4.2 Sub Circuit Layout

Figure 4.63: Sub Circuit Layout

The figure represents the internal structure of the SN74LVC3G58 IC, showing how
its logic components are interconnected. This IC integrates three independent 3-input
logic functions that can be configured as multiplexers or other logic gates. The internal
design includes logic elements that allow flexible operation, enabling users to customize
the logic behavior based on input configurations. Understanding the sub-circuit layout
helps in designing optimized digital circuits.

4.4.3 Test Circuit

Figure 4.64: Test Circuit Layout

26

The figure illustrates a test setup used to verify the operation of the SN74LVC3G58
IC. The test circuit typically includes a power source, signal generators for inputs, and
measurement instruments like oscilloscopes or logic analyzers. Since this IC provides
configurable logic, testing different input combinations ensures that each logic function
operates correctly and meets design specifications.

4.4.4 Output Waveform

The figure represents the signals generated at the output pins of the SN74LVC3G58
IC after processing the input signals. Each output waveform corresponds to the logic
function performed by the IC, whether as a multiplexer or another logic gate.

Figure 4.65: Input

Figure 4.66: Output

Figure 4.67: Input

Figure 4.68: Output

27

Figure 4.69: Input

Figure 4.70: Output

Figure 4.71: Input

Figure 4.72: Output

Figure 4.73: Input

Figure 4.74: Output

28

Figure 4.75: Input

Figure 4.76: Output

Figure 4.77: Input

Figure 4.78: Output

Figure 4.79: Input

Figure 4.80: Output

29

4.5 SN74LVC1G99

The SN74LVC1G99 is widely used in applications requiring configurable logic gates for
flexible circuit design. It is used in control logic, digital signal processing, and memory
address decoding. Its ability to perform multiple logic functions within a single device
helps reduce component count and enhances design flexibility in compact electronic
systems.

Truth Table :

Figure 4.81: Truth Table

4.5.1 Pin Diagram

The figure shows the physical representation of the SN74LVC1G99 IC, indicating the
arrangement of its pins. This IC is a single configurable multiple-function gate that
allows users to implement various logic operations.

30

Figure 4.82: Pin Layout

It consists of multiple input pins for logic selection, an output pin for the processed
signal, a power supply pin, and a ground pin. Proper pin configuration is necessary
for ensuring accurate logic operation and seamless circuit integration.

4.5.2 Sub Circuit Layout

The figure represents the internal structure of the SN74LVC1G99 IC, illustrating how
its internal logic components are interconnected. This IC contains a configurable logic
function that allows it to perform multiple Boolean operations depending on the input
conditions. The internal circuitry includes logic elements and control mechanisms that
enable flexibility in digital designs. Understanding this layout helps in optimizing
circuit performance and functionality.

Figure 4.83: Sub Circuit Layout

31

4.5.3 Test Circuit

The figure illustrates a test setup designed to verify the operation of the SN74LVC1G99
IC. The test circuit typically includes a power supply, input signal generators, and
measuring instruments such as oscilloscopes or logic analyzers. Since this IC supports
multiple logic functions, testing various input combinations ensures that it performs
the intended logic operations correctly under different conditions.

Figure 4.84: Test Circuit Layout

4.5.4 Output Waveform

The figure represents the signal generated at the output pin of the SN74LVC1G99 IC
after processing the input signals. The output waveform corresponds to the logic func-
tion being executed and should match the expected result based on input conditions.
Any deviations in the output signal may indicate incorrect input configurations, power
supply fluctuations, or circuit instability.

32

Figure 4.85: Input Figure 4.86: Output

Figure 4.87: Input Figure 4.88: Output

Figure 4.89: Input
Figure 4.90: Output

33

Figure 4.91: Input
Figure 4.92: Output

Figure 4.93: Input
Figure 4.94: Output

Figure 4.95: Input Figure 4.96: Output

34

Figure 4.97: Input
Figure 4.98: Output

Figure 4.99: Input
Figure 4.100: Output

Figure 4.101: Input Figure 4.102: Output

35

Figure 4.103: Input Figure 4.104: Output

Figure 4.105: Input
Figure 4.106: Output

Figure 4.107: Input Figure 4.108: Output

36

Figure 4.109: Input Figure 4.110: Output

Figure 4.111: Input Figure 4.112: Output

Figure 4.113: Input Figure 4.114: Output

37

Figure 4.115: Input
Figure 4.116: Output

38

Chapter 5

Adapting eSim for macOS:
Dependency Management,
Compatibility Issues, and Solutions

5.1 Introduction

eSim is an open-source EDA tool designed for circuit design, simulation, and PCB
layout. Initially built for Linux (Ubuntu), adapting it to macOS presented various
challenges, including dependency management, compatibility issues, and build failures.

5.2 Transition from apt-get to Homebrew

5.2.1 Ubuntu Approach

In Ubuntu, package dependencies were installed using:

sudo apt-get install <package_name>

Ubuntu’s package manager ensures compatibility with Linux distributions but is not
available on macOS.

5.2.2 macOS Approach

To replace apt-get, Homebrew (brew) was used. All sudo apt-get install com-
mands were replaced with:

brew install <package_name>

For example:

sudo apt-get install verilator

was changed to:

brew install verilator

39

5.3 Python Package Installation Differences

5.3.1 Ubuntu

Python dependencies were managed using:

pip install <package>

or

pip3 install <package>

5.3.2 macOS

On macOS, explicit use of pip3 install was necessary for Python 3 compatibility.
The required Python packages such as watchdog, makerchip-app, and sandpiper-saas
were installed with:

pip3 install watchdog makerchip-app sandpiper-saas

5.4 Handling Permissions on macOS

5.4.1 Executable Permissions

On Ubuntu, files were made executable using:

chmod +x <file_name>

The same command was used on macOS to ensure files were executable.

5.4.2 Gatekeeper and Security Restrictions

macOS uses Gatekeeper, a security feature that blocks unsigned applications. If an
application was blocked, users had to allow it manually via:

sudo spctl --add <file_name>

Although not directly required in the installation script, some users might need to
bypass Gatekeeper for certain executables.

5.5 Verilator Configuration and Compatibility Is-

sues

5.5.1 Issues Encountered

On macOS, configuring Verilator caused compatibility problems due to missing de-
pendencies. The standard:

brew install verilator

command worked, but some versions caused conflicts.

40

5.5.2 Solution: Identifying Working Versions

Through testing, the working version of dependencies was identified from 16/12/24
onwards. Higher versions introduced unexpected errors and needed specific patches.
The stable version was installed using:

brew install verilator@<specific_version>

5.6 Package Management Issues

5.6.1 Ubuntu-Specific Issues

On Ubuntu, dependency errors commonly arose due to:

• Outdated package libraries.

• Missing dependencies due to broken apt sources.

• Conflicts between pre-installed and new libraries.

5.6.2 Homebrew Issues on macOS

Homebrew Compatibility Problems:

• Some formulae were unavailable or outdated.

• Certain packages required additional paths to be set manually.

For example, Verilator required linking using:

brew link verilator

Incorrect Path Configurations: Homebrew installs binaries in /opt/homebrew/bin,
which is not always included in the system path. This was fixed using:

export PATH="/opt/homebrew/bin:$PATH"

5.7 Version Conflicts and Their Impact

5.7.1 Identified Issues

While certain dependency versions built successfully, newer versions created conflicts.
For example:

• The working version of GCC compiled the project without errors.

• A higher GCC version resulted in undefined references during linking.

5.7.2 Solution

Ensuring that only tested versions were installed by using:

brew install gcc@<specific_version>

41

5.8 Post-Build Issues: Makefile and NGHDL

5.8.1 Makefile Issues

After the build process, errors appeared while generating the Makefile. This issue was
resolved using GCC, which compiled and linked the required components successfully.

5.8.2 NGHDL Compilation Errors

NGHDL still faced errors while creating the Makefile. The sudo rm command was
updated to:

sudo rm -rf <directory>

to prevent permission-related problems.

5.9 Clang Compatibility Issues

5.9.1 Problem Statement

Different Clang versions were tested, but the issue persisted. Compilation errors were
encountered even with multiple Clang versions.

5.9.2 Possible Solutions

Further debugging is needed to determine the root cause of Clang-related issues. Po-
tential solutions include:

• Using an alternate compiler like GCC.

• Modifying build flags for better compatibility.

5.10 Conclusion

Porting eSim to macOS required:

• Replacing apt commands with brew equivalents.

• Handling Gatekeeper and macOS permissions.

• Identifying working versions of dependencies.

• Fixing Makefile and NGHDL errors.

While major challenges were resolved, NGHDL and Clang-related issues need further
debugging.

Note : eSim Mac installer is still in developing phase.

42

Chapter 6

Conclusion and Future Scope

Developed a range of subcircuits for both Analog and Digital Integrated Circuits (ICs),
strictly following the specifications from their official datasheets. These include essen-
tial components like Op-Amps, Voltage Regulators, and Comparators, as well as other
foundational digital and analog ICs. Each IC model was thoroughly tested using
appropriate test circuits to ensure accurate performance. These IC models are now
ready for integration into eSim’s subcircuit library, providing a comprehensive set of
building blocks for developers and students to use in a wide array of circuit designs
and simulations. With continued development, more such IC models are expected to
enhance the library’s offerings.

The adaptation of eSim for macOS is still in the development phase. While signifi-
cant progress has been made, including replacing apt-get with brew, resolving major
dependency issues, and ensuring compatibility with Homebrew packages, certain chal-
lenges remain unresolved. NGHDL still faces errors during Makefile generation, and
Clang-related issues persist despite testing multiple versions. Further debugging and
optimization are required to achieve a fully functional macOS installer for eSim. The
development is ongoing, and future efforts will focus on resolving these remaining
issues to ensure a seamless installation and execution process on macOS.

43

Bibliography

[1] FOSSEE Official Website. Available: https://fossee.in/about

[2] eSim Official Website. Available: https://esim.fossee.in/

[3] NXP Semiconductors, ”74LVC1G386 Datasheet.” Available: https://www.

mouser.com/datasheet/2/302/74LVC1G386_2-57080.pdf

[4] Texas Instruments, ”SN74LVC1G57 Datasheet.”
Available: https://www.ti.com/lit/ds/symlink/sn74lvc1g57.pdf

[5] Texas Instruments, ”SN74LVC1G99 Datasheet.”
Available: https://www.ti.com/lit/ds/symlink/sn74lvc1g99.pdf

[6] Texas Instruments, ”SN74LVC3G58 Datasheet.”
Available: https://www.ti.com/lit/ds/symlink/sn74lvc3g58.pdf

[7] Texas Instruments, ”SN74LVC3G98 Datasheet.”
Available: https://www.ti.com/lit/ds/symlink/sn74lvc3g98-q1.pdf

44

