
FOSSEE Winter Internship Report
On

Osdag on Cloud

Submitted by

Samarpita Das

2nd Year B.Tech Student, Department of CSE

Inderprastha Engineering College

Uttar Pradesh

Under the Guidance of

Prof. Siddhartha Ghosh

Department of Civil Engineering

Indian Institute of Technology Bombay

Mentors:

Ajmal Babu M S

Parth Karia

Ajinkya Dahale

January 12, 2025



Acknowledgments

I would like to express my sincere gratitude to everyone who supported and guided me

throughout the course of this project. The journey has been a remarkable experience of

learning and growth, and I am truly thankful for this opportunity.

I extend my heartfelt thanks to the Osdag team, including Ajmal Babu M. S., Ajinkya

Dahale, and Parth Karia, for their invaluable collaboration and support throughout the

project. Their contributions have been instrumental in the success of the work.

Special thanks to the Osdag Principal Investigator (PI), Prof. Siddhartha Ghosh, from

the Department of Civil Engineering at IIT Bombay, for his guidance and mentorship,

which have been critical in shaping the success of this project. His expertise and advice

have played a key role in my personal and professional development.

I would also like to express my gratitude to Prof. Kannan M. Moudgalya, the FOSSEE

PI, and FOSSEE Project Investigator, Department of Chemical Engineering at IIT Bom-

bay, for their unwavering support and for creating such a great platform for knowledge

exchange and skill enhancement. Their encouragement has been truly inspiring.

I appreciate the guidance and support from FOSSEE Managers Usha Viswanathan,

Vineeta Parmar, and their team, whose dedication greatly contributed to the project’s

success. Their efforts in organizing and supporting the work were invaluable.

I would like to acknowledge the support from the National Mission on Education

through Information and Communication Technology (ICT), Ministry of Education (MoE),

Government of India, for their role in facilitating and enabling this project. Their com-

mitment to advancing education through technology has made this project possible.

Lastly, my sincere thanks to my colleagues and teammates, with whom I had the

privilege to work closely during this journey.

1



Contents

1 Introduction 4

1.1 National Mission in Education through ICT . . . . . . . . . . . . . . . . 4

1.1.1 ICT Initiatives of MoE . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 FOSSEE Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Projects and Activities . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Fellowships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Osdag Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Osdag GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Screening Task 9

2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Tasks Done . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Input Data Handling for different Modules 12

3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Tasks Done . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Task 1: Python Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Description of the Script . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.2 Python Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.3 Explanation of the Code . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.4 Full code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Task 1: Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 Directory Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Module Development: Seated Angle Connection 23

4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Tasks Done . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Conclusions 25

2



5.1 Tasks Accomplished . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Skills Developed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A Appendix 26

A.1 Work Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Bibliography 29

3



Chapter 1

Introduction

1.1 National Mission in Education through ICT

The National Mission on Education through ICT (NMEICT) is a scheme under the

Department of Higher Education, Ministry of Education, Government of India. It aims

to leverage the potential of ICT to enhance teaching and learning in Higher Education

Institutions in an anytime-anywhere mode.

The mission aligns with the three cardinal principles of the Education Policy—access,

equity, and quality—by:

• Providing connectivity and affordable access devices for learners and institutions.

• Generating high-quality e-content free of cost.

NMEICT seeks to bridge the digital divide by empowering learners and teachers in

urban and rural areas, fostering inclusivity in the knowledge economy. Key focus areas

include:

• Development of e-learning pedagogies and virtual laboratories.

• Online testing, certification, and mentorship through accessible platforms like EduSAT

and DTH.

• Training and empowering teachers to adopt ICT-based teaching methods.

For further details, visit the official website: www.nmeict.ac.in.

4

https://www.nmeict.ac.in
https://www.nmeict.ac.in


1.1.1 ICT Initiatives of MoE

The Ministry of Education (MoE) has launched several ICT initiatives aimed at students,

researchers, and institutions. The table below summarizes the key details:

No. Resource For Students/Researchers For Institutions

Audio-Video e-content

1 SWAYAM Earn credit via online courses Develop and host courses; accept
credits

2 SWAYAMPRABHA Access 24x7 TV programs Enable SWAYAMPRABHA
viewing facilities

Digital Content Access

3 National Digital Li-
brary

Access e-content in multiple dis-
ciplines

List e-content; form NDL Clubs

4 e-PG Pathshala Access free books and e-content Host e-books

5 Shodhganga Access Indian research theses List institutional theses

6 e-ShodhSindhu Access full-text e-resources Access e-resources for institu-
tions

Hands-on Learning

7 e-Yantra Hands-on embedded systems
training

Create e-Yantra labs with IIT
Bombay

8 FOSSEE Volunteer for open-source soft-
ware

Run labs with open-source soft-
ware

9 Spoken Tutorial Learn IT skills via tutorials Provide self-learning IT content

10 Virtual Labs Perform online experiments Develop curriculum-based exper-
iments

E-Governance

11 SAMARTH ERP Manage student lifecycle digi-
tally

Enable institutional e-
governance

Tracking and Research Tools

12 VIDWAN Register and access experts Monitor faculty research out-
comes

13 Shodh Shuddhi Ensure plagiarism-free work Improve research quality and
reputation

14 Academic Bank of
Credits

Store and transfer credits Facilitate credit redemption

Table 1.1: Summary of ICT Initiatives by the Ministry of Education

5



1.2 FOSSEE Project

The FOSSEE (Free/Libre and Open Source Software for Education) project promotes

the use of FLOSS tools in academia and research. It is part of the National Mission on

Education through Information and Communication Technology (NMEICT), Ministry of

Education (MoE), Government of India.

1.2.1 Projects and Activities

The FOSSEE Project supports the use of various FLOSS tools to enhance education and

research. Key activities include:

• Textbook Companion: Porting solved examples from textbooks using FLOSS.

• Lab Migration: Facilitating the migration of proprietary labs to FLOSS alterna-

tives.

• Niche Software Activities: Specialized activities to promote niche software tools.

• Forums: Providing a collaborative space for users.

• Workshops and Conferences: Organizing events to train and inform users.

1.2.2 Fellowships

FOSSEE offers various internship and fellowship opportunities for students:

• Winter Internship

• Summer Fellowship

• Semester-Long Internship

Students from any degree and academic stage can apply for these internships. Se-

lection is based on the completion of screening tasks involving programming, scientific

computing, or data collection that benefit the FLOSS community. These tasks are de-

signed to be completed within a week.

For more details, visit the official FOSSEE website.

6

https://fossee.in
https://fossee.in


Figure 1.1: FOSSEE Projects and Activities

1.3 Osdag Software

Osdag (Open steel design and graphics) is a cross-platform, free/libre and open-source

software designed for the detailing and design of steel structures based on the Indian

Standard IS 800:2007. It allows users to design steel connections, members, and systems

through an interactive graphical user interface (GUI) and provides 3D visualizations of

designed components. The software enables easy export of CAD models to drafting

tools for construction/fabrication drawings, with optimized designs following industry

best practices [1, 2, 3]. Built on Python and several Python-based FLOSS tools (e.g.,

PyQt and PythonOCC), Osdag is licensed under the GNU Lesser General Public License

(LGPL) Version 3.

7



1.3.1 Osdag GUI

The Osdag GUI is designed to be user-friendly and interactive. It consists of

• Input Dock: Collects and validates user inputs.

• Output Dock: Displays design results after validation.

• CAD Window: Displays the 3D CAD model, where users can pan, zoom, and

rotate the design.

• Message Log: Shows errors, warnings, and suggestions based on design checks.

Figure 1.2: Osdag GUI

1.3.2 Features

• CAD Model: The 3D CAD model is color-coded and can be saved in multiple

formats such as IGS, STL, and STEP.

• Design Preferences: Customizes the design process, with advanced users able to

set preferences for bolts, welds, and detailing.

• Design Report: Creates a detailed report in PDF format, summarizing all checks,

calculations, and design details, including any discrepancies.

For more details, visit the official Osdag website.

8

https://osdag.fossee.in


Chapter 2

Screening Task

2.1 Problem Statement

Development of Osdag on cloud project

• Setup and run Osdag on cloud on their device (on the Linux platform)

• Create a UI for Cleat Angle module in Osdag on cloud modules similar to the

Osdag-Desktop App

• Develop endpoints for cleat angle identical to the already implemented fin plate

and endplate modules

2.2 Tasks Done

The following tasks were performed as part of this screening task:

1. Setup and Configuration of Osdag on Cloud (Linux Platform):

• Installed and configured the required software and dependencies for running

Osdag on a cloud environment, specifically on a Linux platform.

• Ensured the cloud setup adhered to the system requirements of Osdag, includ-

ing setting up necessary databases, web services, and ensuring scalability on

the cloud.

• Deployed Osdag in a virtual machine or containerized environment on the

cloud to facilitate efficient management, scaling, and maintenance.

9



2. User Interface (UI) Creation for Osdag Cloud Modules:

• Designed and developed a user interface for the cloud version of Osdag, ensur-

ing that it was visually consistent with the Osdag-Desktop App.

• Integrated cloud-specific features into the UI, such as user authentication, data

storage, and cloud-based processing.

• Ensured the UI was responsive and intuitive, enabling easy navigation and

usage across various devices and screen sizes.

• Incorporated cloud-specific settings like user roles, permissions, and data man-

agement to streamline the use of Osdag in a cloud environment.

3. Endpoint Development for Cleat Angle Module:

• Developed new endpoints for the cleat angle module, following the same archi-

tecture as the already existing endpoints for fin plate and endplate modules.

• Implemented the necessary logic to handle data input, calculations, and output

for cleat angle similar to the other modules.

• Ensured that the new endpoints were fully integrated with the rest of the cloud

environment, including cloud storage, databases, and other modules.

• Performed unit testing and debugging of the cleat angle module endpoints to

ensure functionality, accuracy, and performance were at optimal levels.

By completing these tasks, the cloud version of Osdag is now functional, with a user-

friendly interface and expanded capabilities to handle cleat angle calculations.

10



Figure 2.1: Cleat Angle Connection

11



Chapter 3

Input Data Handling for different Mod-

ules

3.1 Problem Statement

changed the method of input data handling in order to successflly handle the needs of

different modules such as cleat angle and seated angle

3.2 Tasks Done

created 4 different files in order to handle the input data of different plates according to

their need .

3.3 Task 1: Python Code

This section presents a Python script for handling input data for different modules under

the Osdag On Cloud. The script is designed to facilitate the process of designing differnt

connections by fetching the required data from the database based on user input, ensuring

that the user has the necessary information for connection design calculations. If any of

the parameters are invalid or missing, it returns error responses with appropriate HTTP

status codes.

12



3.3.1 Description of the Script

The script is structured as follows:

• **Input Parameters**: The user specifies parameters such as connectivity type,

bolt diameter, property class, and angle list.

• **Data Fetching**: Based on the input parameters, the script fetches data from

various database tables including columns, beams, materials, bolts, and angles. It

supports both predefined and custom data, depending on the user’s input (e.g.,

email for custom materials).

• **Connectivity Handling**: The script handles different connectivity scenarios

(e.g., ’Column-Flange-Beam-Web’, ’Beam-Beam’, etc.), returning relevant data

such as available column/beam designations and material lists.

• **Customizable Options**: It allows users to customize bolt diameter, property

class, and angles. For customized options, it fetches specific data related to bolts,

property classes, and angle sizes.

3.3.2 Python Code

The Python script is shown below. Each section is commented for clarity.

Listing 3.1: inputDataview.py for inputing data in Osdag

1 %--------------------begin code -------------

2

3 from rest_framework.views import APIView

4 from rest_framework.response import Response

5 from rest_framework import status

6 from rest_framework.parsers import JSONParser

7

8 # Importing models for Columns , Beams , Bolts , and other relevant

entities

9 from osdag.models import Columns , Beams , Bolt , Bolt_fy_fu , Material ,

CustomMaterials

10 from osdag.models import Design

11

13



12 # Importing input data handlers for different types of connections

13 from .inputdata.fin_plate_input import FinPlateInputData

14 from .inputdata.cleat_angle_input import CleatAngleInputData

15 from .inputdata.end_plate_input import EndPlateInputData

16 from .inputdata.seated_angle_input import SeatedAngleInputData

17

18 # Dictionary to map module names to respective input data handlers

19 INPUT_DATA_FACTORY = {

20 ’Fin -Plate -Connection ’: FinPlateInputData (),

21 ’Cleat -Angle -Connection ’: CleatAngleInputData (),

22 ’End -Plate -Connection ’: EndPlateInputData (),

23 ’Seated -Angle -Connection ’: SeatedAngleInputData (),

24 }

25

26

27 class InputData(APIView):

28

29

30 def get(self , request):

31 # Extract query parameters from the GET request

32 email = request.GET.get("email")

33 moduleName = request.GET.get("moduleName")

34 connectivity = request.GET.get("connectivity")

35 boltDiameter = request.GET.get("boltDiameter")

36 propertyClass = request.GET.get("propertyClass")

37 thickness = request.GET.get(’thickness ’)

38 angleList = request.GET.get(’angleList ’)

39 topAngleList = request.GET.get(’topAngleList ’)

40 seatedAngleList = request.GET.get(’seatedAngleList ’)

41 cookie_id = None

42

43 # Check if the module name exists in the query and print it

44 if moduleName is not None:

45 print(moduleName)

46 else:

47 print("module not found")

48

49 # Set cookie_id based on the moduleName received in the request

50 if(moduleName == ’Fin -Plate -Connection ’):

14



51 cookie_id = request.COOKIES.get(’

fin_plate_connection_session ’)

52 print(’cookie_id inside input data: ’, cookie_id)

53 elif(moduleName == ’Cleat -Angle -Connection ’):

54 cookie_id = request.COOKIES.get(’

cleat_angle_connection_session ’)

55 print(’cookie_id inside input data: ’, cookie_id)

56 elif(moduleName == ’End -Plate -Connection ’):

57 cookie_id = request.COOKIES.get(’

end_plate_connection_session ’)

58 print(’cookie_id inside end plate input data: ’, cookie_id)

59 elif(moduleName == "Seated -Angle -Connection"):

60 cookie_id = request.COOKIES.get(’seated_angle_connection ’)

61 print(’cookie id in seated angle connection input data ’,

cookie_id)

62

63 # Error handling if cookie_id is not found or is empty

64 if cookie_id is None or cookie_id == ’’:

65 return Response("Error: Please open module", status=status.

HTTP_400_BAD_REQUEST)

66

67 # Check if the design session exists in the Design model

68 if not Design.objects.filter(cookie_id=cookie_id).exists ():

69 print(’The design session does not exists ’)

70 return Response("Error: This design session does not exist"

, status=status.HTTP_404_NOT_FOUND)

71

72 # Check if the module name is valid and exists in the

INPUT_DATA_FACTORY dictionary

73 if not (moduleName in INPUT_DATA_FACTORY):

74 return Response ({"error": "Bad Query Parameter"}, status=

status.HTTP_400_BAD_REQUEST)

75

76 # Print email for debugging purposes

77 print("///////////////////////////////////////// ", email)

78

79 # Get the appropriate input data handler for the given module

80 input_data_handler = INPUT_DATA_FACTORY.get(moduleName)

81

15



82 # Call the ‘process ‘ method of the appropriate input data

handler

83 return input_data_handler.process(

84 connectivity=connectivity ,

85 boltDiameter=boltDiameter ,

86 propertyClass=propertyClass ,

87 thickness=thickness ,

88 angleList=angleList ,

89 seatedAngleList=seatedAngleList ,

90 topAngleList=topAngleList ,

91 email=email

92 )

93

94

95 %-------------------- end code ---------------

3.3.3 Explanation of the Code

• Line 1-5: Import necessary classes and functions from rest framework for handling

API requests, responses, and parsing JSON data.

• Line 7-11: Import models for structural components such as Columns, Beams, Bolt,

etc., along with the Design model for session tracking.

• Line 13-17: Import input data handlers for different connection types, such as

FinPlateInputData, CleatAngleInputData, etc., for processing input data based on

module type.

• Line 19-23: Define a dictionary, INPUT DATA FACTORY, which maps the con-

nection module names (e.g., ’Fin-Plate-Connection’) to their corresponding input

data handler classes.

• the rest of the code was written in fin plate input.py and other files which is then

imported into this file for proper handaling of data

3.3.4 Full code

16



from .input_data_base import InputDataBase

from rest_framework import status

from rest_framework.response import Response

from osdag.models import Columns , Beams , Bolt , Bolt_fy_fu ,

Material , CustomMaterials , Angles

import traceback

class CleatAngleInputData(InputDataBase):

def process(self , ** kwargs):

connectivity , boltDiameter , angleList = kwargs["

connectivity"], kwargs["boltDiameter"], kwargs["

angleList"]

propertyClass , email = kwargs["propertyClass"], kwargs["

email"]

if (connectivity is None and boltDiameter is None and

propertyClass is None and angleList is None):

# fetch the list of all the connectivity options for

Fin -Plate -Connection

print("\n\n")

print(’inside connectivtityList handling ’)

print("\n\n")

connectivityList = [’Column Flange -Beam -Web’ , ’

Column Web -Beam -Web’, ’Beam -Beam’]

response = {

’connectivityList ’: connectivityList

}

return Response(response , status=status.HTTP_200_OK)

if(connectivity == ’Column -Flange -Beam -Web’ or

connectivity == ’Column -Web -Beam -Web’):

# print(’connectivity : ’, connectivity)

try:

# fetch all records from Column table

17



# fetch all records from Beam table

# fetch all records from Material table

columnList = list(Columns.objects.values_list(

’Designation ’, flat=True))

beamList = list(Beams.objects.values_list(

’Designation ’, flat=True))

materialList = list(Material.objects.filter ().

values ())

if email:

custom_material = list(CustomMaterials.

objects.filter(email=email).values ())

materialList = materialList + custom_material

materialList.append ({"id": -1, "Grade": ’Custom ’

})

response = {

’columnList ’: columnList ,

’beamList ’: beamList ,

’materialList ’: materialList

}

return Response(response , status=status.

HTTP_200_OK)

except Exception as err:

print(err)

return Response ({"error": "Bad request"}, status=

status.HTTP_400_BAD_REQUEST)

elif (connectivity == ’Beam -Beam’):

# print(’connectivity : ’, connectivity)

18



# fetch all records from Beams table

# fetch all recorsd from the Material Table

try:

beamList = list(Beams.objects.values_list(

’Designation ’, flat=True))

materialList = list(Material.objects.all().values

())

materialList.append ({"id": -1, "Grade": ’Custom ’

})

response = {

’beamList ’: beamList ,

’materialList ’: materialList

}

return Response(response , status =200)

except:

return Response ({"error": "Bad request"}, status=

status.HTTP_400_BAD_REQUEST)

elif (boltDiameter == ’Customized ’):

# print(’boltDiameter : ’, boltDiameter)

# fetch the data from Bolt table

try:

# print(’fetching ’)

boltList = list(Bolt.objects.values_list(

’Bolt_diameter ’, flat=True))

boltList.sort()

print(’boltList : ’ , boltList)

response = {

’boltList ’: boltList

}

19



return Response(response , status=status.

HTTP_200_OK)

except:

return Response ({"error": "Something went wrong"

}, status=status.HTTP_400_BAD_REQUEST)

elif (propertyClass == ’Customized ’):

print(’propertyClass : ’, propertyClass)

# fetch the data from Bolt_fy_fu table

try:

#boltFyFuList = list(Bolt_fy_fu.objects.

values_list(

# ’Property_Class ’, flat=True))

boltFyFuList = [’3.6’, ’4.6’, ’4.8’, ’5.6’, ’5.8’

, ’6.8’, ’8.8’, ’9.8’, ’10.9’, ’12.9’]

# boltFyFuList.sort()

response = {

’propertyClassList ’: boltFyFuList

}

print(’propertyFyFuList : ’, boltFyFuList)

return Response(response , status=status.

HTTP_200_OK)

except:

return Response ({"error": "Something went wrong"

}, status=status.HTTP_400_BAD_REQUEST)

elif (angleList == ’Customized ’):

try:

20



# angleList = list(Angles.objects.values_list(’

Designation ’, flat=True))

angleList = [’50 x 50 x 3’, ’50 x 50 x 4’, ’50 x

50 x 5’, ’50 x 50 x 6’, ’55 x 55 x 4’, ’55 x

55 x 5’, ’55 x 55 x 6’, ’55 x 55 x 8’, ’60 x

60 x 4’, ’60 x 60 x 5’, ’60 x 60 x 6’, ’60 x

60 x 8’, ’65 x 65 x 4’, ’65 x 65 x 5’, ’65 x

65 x 6’, ’65 x 65 x 8’, ’70 x 70 x 5’, ’70 x

70 x 6’, ’70 x 70 x 8’, ’70 x 70 x 10’, ’75 x

75 x 5’, ’75 x 75 x 6’, ’75 x 75 x 8’, ’75 x

75 x 10’, ’80 x 80 x 6’, ’80 x 80 x 8’, ’80 x

80 x 10’, ’80 x 80 x 12’, ’90 x 90 x 6’, ’90 x

90 x 8’, ’90 x 90 x 10’, ’90 x 90 x 12’, ’100

x 100 x 6’, ’100 x 100 x 8’, ’100 x 100 x 10’

, ’100 x 100 x 12’, ’110 x 110 x 8’, ’110 x

110 x 10’, ’110 x 110 x 12’, ’110 x 110 x 16’,

’130 x 130 x 8’, ’130 x130 x 10’, ’130 x130 x

12’, ’130 x130 x 16’, ’150 x 150 x 10’, ’150

x 150 x 12’, ’150 x 150 x 16’, ’150 x 150 x 20

’, ’200 x 200 x 12’, ’200 x 200 x 16’, ’200 x

200 x 20’, ’200 x 200 x 25’, ’50 x 50 x 7’, ’

50 x 50 x 8’, ’55 x 55 x 10’, ’60 x 60 x 10’,

’65 x 65 x 10’, ’70 x 70 x 7’, ’100 x 100 x 7’

, ’100 x 100 x 15’, ’120 x 120 x 8’, ’120 x

120 x 10’, ’120 x 120 x 12’, ’120 x 120 x 15’,

’130 x 130 x 9’, ’150 x 150 x 15’, ’150 x 150

x 18’, ’180 x 180 x 15’, ’180 x 180 x 18’, ’

180 x 180 x 20’, ’200 x 200 x 24’]

response = {

’angleList ’: angleList

}

return Response(response , status=status.

HTTP_200_OK)

except:

21



traceback.print_exc ()

return Response ({’error’: ’Something went wrong’

}, status=status.HTTP_400_BAD_REQUEST)

return super ().process(kwargs)

3.4 Task 1: Documentation

3.4.1 Directory Structure

OSDAG-WEB

inputdata

cleat angle input.py

end plate input.py

fin plate input.py

input data base.py

seated angle input.py

inputDataview.py

...

22



Chapter 4

Module Development: Seated Angle

Connection

4.1 Problem Statement

To develop the Seated Angle module for the Osdag on Cloud platform, the goal was to

create the necessary UI components, develop new backend endpoints, and integrate the

module with the existing backend logic. This would enable the seamless calculation and

analysis of seated angle connections within the cloud-based platform.

4.2 Tasks Done

The following tasks were performed as part of the Seated Angle Connection module

development:

1. UI Development for Seated Angle Connection:

• Designed and implemented a user interface specifically for the Seated Angle

Connection module.

• Ensured visual consistency with the existing Osdag-Desktop app, while adapt-

ing the UI to suit cloud-specific requirements.

2. Backend Endpoint Development:

23



• Developed new backend endpoints for the Seated Angle module, following the

same architecture as the existing endpoints for other modules like the fin plate

and end plate.

• Implemented logic to handle data input, perform necessary calculations, and

output results for the Seated Angle Connection module.

4.3 Outcome

The development and integration of the Seated Angle Connection module success-

fully enhanced the Osdag on Cloud platform by providing a seamless user interface

that adapts to various devices and integrates smoothly with the cloud-based en-

vironment. The new backend endpoints were fully functional, ensuring accurate

data handling, calculations, and result outputs for seated angle connections. The

module was thoroughly tested to ensure its performance, scalability, and stability,

thereby expanding the platform’s capabilities and offering a comprehensive solution

for seated angle connection design and analysis.

Figure 4.1: Seated Angle Connection

24



Chapter 5

Conclusions

5.1 Tasks Accomplished

The development of the Seated Angle Connection module included designing and

implementing a user interface for the cloud platform. Additionally, backend end-

points were created for efficient data handling, calculations, and result generation.

The input data handling process was significantly modified to support various mod-

ules, ensuring seamless integration and accurate design calculations.

5.2 Skills Developed

Throughout this project, I enhanced my technical skills in React and Django Rest

Framework. I gained proficiency in both technologies, along with problem-solving

and debugging skills, especially in managing complex design calculations and data

integration across modules. Professionally, I also developed skills in task manage-

ment, workflow prioritization, and team collaboration to achieve project goals.

25



Chapter A

Appendix

A.1 Work Reports

26



Name Samarpita Das 

Project Osdag on cloud 

Internship FOSSEE Winter Internship 2024 

 

Date Day Task 
Hours 

spent 

12-11-2024 Tuesday Joining | downloading and setting up Osdag-web 4 

13-11-2024 Wednesday 

- Merged the ICFOSS fellowship branch into the project.  

- Finding the issue causing the project to not open after the 

merge. 4 

14-11-2024 

15-11-2024 

16-11-2024 

Thursday 

Friday 

Saturday 

Resolved merge conflicts, identified dependencies  

causing issues, and integrated changes. 12 

17-11-2024 Sunday WEEKLY HOLIDAY 
 

18-11-2024 

19-11-2024 Monday 

learning about freecad  

-trying to understand why the freecad model was not opening 9 

20-11-2024 Wednesday handling the cookies and sessions properly 4 

21-11-2024 

22-11-2024 

23-11-2024 

Thursday 

Friday 

Saturday 

rewriting code for cleat angle 

- input data handling 

- output generation 12 

25-11-2024 Monday fixing minor bugs in cleat angle connection 4 

26-11-2024 Tuesday Updating the previous input data handling for fin plate 4 

27-11-2024 Wednesday Updating the previous input data handling for end plate 5 

28-11-2024 

29-11-2024 

30-11-2024 Thursday 

creating the output dock and output generation for cleat 

angle 12 

02-12-2024 Monday resolving errors from the client side of cleat angle connection 4 

03-12-2024 Tuesday resolving issue with setting angleList in cleat angle connection 6 

04-12-2024 Wednesday some final changes in cleat angle module 3 

05-12-2024 Thursday creating frontend for seated angle module  4 

06-12-2024 Friday 
handling session creation and cookie creation for seated angle 

module 5 



07-12-2024 

9-12-2024 

10-12-2024 

11-12-2024 

Saturday 

Monday 

Tuesday 

Wednesday 

handling angle list in seated angle connection and working on 

the api  

endpoints 15 

12-12-2024 Thursday 

handling angle List in the frontend and also fetching it from the 

backend  

in seated angle connection 3 

13-12-2024 

14-12-2024 

16-12-2024 Friday handling top angle list in seated angle connection 11 

17-12-2024 Tuesday 

handling top angle List in the frontend and also fetching it from 

the backend  

in seated angle connection 2 

18-12-2024 - 

31-12-2024 

Wednesday 

- Tuesday 

connnected the frontend to the backend in seated angle 

connection 

processed all the missing elements error  

made some changes in the pre existing backend in order to 

effectively handle osdag on cloud 

created new logs for seated angle connection 30 

 



Bibliography

[1] Siddhartha Ghosh, Danish Ansari, Ajmal Babu Mahasrankintakam,

Dharma Teja Nuli, Reshma Konjari, M. Swathi, and Subhrajit Dutta.

Osdag: A Software for Structural Steel Design Using IS 800:2007. In Sondipon

Adhikari, Anjan Dutta, and Satyabrata Choudhury, editors, Advances in

Structural Technologies, volume 81 of Lecture Notes in Civil Engineering, pages

219–231, Singapore, 2021. Springer Singapore.

[2] FOSSEE Project. FOSSEE News - January 2018, vol 1 issue 3. Accessed:

2024-12-05.

[3] FOSSEE Project. Osdag website. Accessed: 2024-12-05.

29


	Introduction
	National Mission in Education through ICT
	ICT Initiatives of MoE

	FOSSEE Project
	Projects and Activities
	Fellowships

	Osdag Software
	Osdag GUI
	Features


	Screening Task
	Problem Statement
	Tasks Done

	Input Data Handling for different Modules
	Problem Statement
	Tasks Done
	Task 1: Python Code
	Description of the Script
	Python Code
	Explanation of the Code
	Full code

	Task 1: Documentation
	Directory Structure


	Module Development: Seated Angle Connection
	Problem Statement
	Tasks Done
	Outcome

	Conclusions
	Tasks Accomplished
	Skills Developed

	Appendix
	Work Reports

	Bibliography

