
eSim Winter Internship Report

On

eSim for Ubuntu 23.04

Submitted by

Jayanth Tatineni
B.Tech in CSE (Cyber Security), GITAM University

Under the guidance of

Sumanto Kar

IIT Bombay

February 23, 2025

Acknowledgment

I sincerely extend my gratitude to the FOSSEE team for providing me with this
significant opportunity to contribute to an open-source project like eSim. I am truly
honored to have been selected for this internship.

I would like to express my heartfelt appreciation to my mentor, Sumanto Kar Sir,
for his invaluable guidance, patience, and support throughout this journey.

This experience has strengthened my motivation to contribute to open-source projects
while enhancing my skills and career.

1

Contents

1 Introduction 4
1.1 FOSSEE: Promoting Open-Source Software for Education 4
1.2 eSim: An Open-Source EDA Tool . 4

1.2.1 Key Features of eSim . 5
1.2.2 Components Integrated with eSim 5

2 Problem Statement 6
2.1 Challenges in eSim Installation . 6

2.1.1 Issues Encountered During Installation 6
2.1.2 Approach to Address These Challenges 7

3 Modifying install-eSim.sh 8
3.1 Handling NgVeri dependencies . 8

3.1.1 Overview . 8
3.1.2 Problem Faced . 8
3.1.3 Virtual Environment Implementation 8
3.1.4 Dependency Installation within the Virtual Environment . . . 9
3.1.5 Conclusion . 10

3.2 Addressing Package Installation Issues Due to Outdated sources.list 10
3.2.1 Overview . 10
3.2.2 Problem Faced . 10
3.2.3 Implementation to Update sources.list 11
3.2.4 How the Solution Works . 12
3.2.5 Conclusion . 12

3.3 Additional Modifications . 12
3.3.1 Updates to createDesktopStartScript 12
3.3.2 Enhancements to the Uninstallation Process 13
3.3.3 Conclusion . 13

4 Modifying install-nghdl.sh 14
4.1 Updating LLVM Version . 14
4.2 Updating GHDL Installation . 15

4.2.1 Previous Method . 15
4.2.2 Updated Method . 15
4.2.3 Advantages of the New Method 16

4.3 Fixing Verilator Compilation Error 16
4.4 Conclusion . 17

2

5 Verification and Successful Installation 18
5.1 Overview . 18
5.2 Verifying eSim Installation . 18
5.3 Successful Installation Confirmation 19
5.4 Successful Uninstallation Confirmation 20
5.5 Conclusion . 20

6 Conclusion and Future Scope 21
6.1 Conclusion . 21
6.2 Future Scope . 21

Bibliography 23

3

Chapter 1

Introduction

1.1 FOSSEE: Promoting Open-Source Software

for Education

The Free/Libre and Open Source Software for Education (FOSSEE) project is an
initiative by IIT Bombay under the National Mission on Education through Informa-
tion and Communication Technology (ICT), funded by the Ministry of Education,
Government of India. The project aims to reduce dependency on proprietary soft-
ware in academic and research institutions by promoting the adoption of Free and
Open Source Software (FOSS) alternatives. [1]

FOSSEE works toward this goal through multiple initiatives:

• Development and Enhancement: Creating new open-source tools and improv-
ing existing ones to meet industry and academic needs.

• Workshops and Training: Conducting training programs and workshops to
encourage open-source software adoption.

• Collaborations: Partnering with institutions, researchers, and professionals to
integrate FOSS into mainstream education.

• Translation and Documentation: Converting open-source software documen-
tation into multiple regional languages to enhance accessibility.

Through these efforts, FOSSEE ensures that high-quality software remains freely
available, eliminating the financial barriers associated with proprietary tools and
empowering individuals to learn, contribute, and innovate.

1.2 eSim: An Open-Source EDA Tool

One of FOSSEE’s most significant contributions to the open-source ecosystem is
eSim, a free and open-source Electronic Design Automation (EDA) tool for circuit
design, simulation, analysis, and PCB design. Developed by IIT Bombay, eSim
integrates multiple FLOSS tools to provide a complete design and simulation envi-
ronment for electrical and electronics engineers. [2]

4

1.2.1 Key Features of eSim

eSim is designed to offer similar functionalities to commercially available EDA tools
such as OrCAD, Xpedition, and HSPICE, but without the associated licensing costs.
Some of its key features include:

• Schematic Capture: Users can create detailed circuit schematics using an in-
teractive graphical interface.

• Simulation Support: Integration with NgSpice, allowing transient, AC, and
DC circuit analysis.

• VHDL and Verilog Simulation: Powered by GHDL and Verilator, enabling
mixed-mode simulations.

• PCB Layout and Design: Seamless integration with KiCad, a powerful open-
source PCB design tool.

• Microcontroller Support: Offers features for designing embedded systems by
integrating microcontrollers into circuits.

• Open-Source Licensing: Released under GPL, ensuring unrestricted access and
modification.

1.2.2 Components Integrated with eSim

eSim brings together multiple open-source tools to create a comprehensive EDA
suite:

• KiCad: Used for schematic capture and PCB design.

• NgSpice: A general-purpose circuit simulation program for analyzing AC, DC,
and transient circuits.

• GHDL: A VHDL simulator that allows digital circuit design verification.

• Verilator: A fast Verilog simulator widely used for hardware verification.

By leveraging these tools, eSim provides an affordable, flexible, and powerful al-
ternative to proprietary EDA software, making it a preferred choice for students,
researchers, and professionals in circuit design and simulation.

While eSim continues to be a powerful tool for circuit design and simulation, its
installation process across different Ubuntu versions has presented challenges, neces-
sitating improvements to ensure seamless user experience. These issues are explored
in the following section.

5

Chapter 2

Problem Statement

To update the eSim installer script to install eSim 2.4 on Ubuntu 23.04 (Lunar
Lobster) without errors.

2.1 Challenges in eSim Installation

2.1.1 Issues Encountered During Installation

While attempting to install eSim 2.4 on Ubuntu 23.04, several challenges arose
that prevented successful installation. These issues stemmed from dependency mis-
matches, outdated packages, and software incompatibilities. The key problems en-
countered were:

• Improper Installation of NgVeri Dependencies: The installation script
failed to properly install certain dependencies required for NgVeri, a crucial
component for simulation. This was primarily due to missing or improperly
configured package sources.

• Incompatibility of LLVM, GHDL, and Verilator: The default installa-
tion script attempted to install older versions of LLVM, GHDL, and Verilator,
leading to multiple compatibility issues. Specifically, the script was designed
for an earlier version of Ubuntu, where LLVM 9 was available. However, LLVM
9 was no longer supported in Ubuntu 23.04, causing package resolution errors.
Similarly, GHDL failed due to an unhandled LLVM version, and Verilator
required additional modifications to build successfully.

• Outdated Package Sources in sources.list: The script relied on out-
dated package sources, which resulted in missing dependencies. The default
sources.list file did not include all necessary repositories, leading to errors
when attempting to fetch certain packages. This problem was compounded by
the fact that some required dependencies had been moved to different reposi-
tories or were no longer maintained.

These challenges caused repeated failures in the installation process, requiring
manual intervention at multiple stages. Resolving them required modifying the
script to ensure compatibility with the latest Ubuntu release.

6

2.1.2 Approach to Address These Challenges

To overcome these installation issues, several strategic modifications were made to
the script. The revised approach included the following key improvements:

• Implementing a Virtual Environment for NgVeri Dependencies: To
avoid conflicts with system-wide dependencies, a virtual environment was set
up for NgVeri. This ensured that all necessary dependencies were installed in
an isolated environment without affecting the system’s default package ver-
sions. The virtual environment allowed for better dependency management
and minimized compatibility issues with other installed software.

• Updating the Script to Install Newer Versions of LLVM and Verila-
tor, and Manually Installing GHDL: The script was modified to install a
newer version of LLVM (version 15) instead of the outdated LLVM 9, which
was no longer available in Ubuntu 23.04. Similarly, the Verilator installation
was updated to fix build errors by ensuring proper inclusion of necessary C++
headers. GHDL, which previously failed due to an unhandled LLVM version,
was manually downloaded and installed using wget to fetch the appropriate
release from GitHub.

• Checking and Updating sources.list if Needed: Since outdated pack-
age sources were a major cause of missing dependencies, the script was mod-
ified to verify and update sources.list before proceeding with the installa-
tion. This step ensured that the correct repositories were available, preventing
failures due to missing packages. Additionally, package lists were refreshed
using sudo apt update before installation to avoid errors caused by stale
metadata.

These modifications significantly improved the reliability of the installation pro-
cess, reducing manual intervention and ensuring compatibility with the latest system
updates.

7

Chapter 3

Modifying install-eSim.sh

This chapter describes the modifications made to the ‘install-eSim.sh‘ script to en-
sure compatibility with the latest system configurations and resolve errors encoun-
tered during installation. [6]

3.1 Handling NgVeri dependencies

3.1.1 Overview

NgVeri requires several dependencies for proper functionality. Managing these de-
pendencies efficiently ensures that the software runs smoothly across different sys-
tems without conflicts. To achieve this, a virtual environment was implemented to
isolate package installations from the system-wide Python environment.

3.1.2 Problem Faced

Initially, dependencies were installed globally using system package managers such
as apt. This approach had several drawbacks:

• Conflicts between system-wide and project-specific package versions.

• Difficulty in maintaining consistent environments across different machines.

• Potential issues when upgrading or uninstalling packages.

• Risk of affecting other Python projects on the system.

3.1.3 Virtual Environment Implementation

To mitigate these issues, a Python virtual environment was implemented in the
script. This prevents conflicts between system-wide and project-specific packages
and allows controlled dependency management.The virtual environment setup fol-
lows these steps:

8

Creating the Virtual Environment

Before creating a virtual environment, the script checks if the directory venv already
exists:

1 if [! -d "venv"]; then

2 echo "Creating␣virtual␣environment ..."

3 python3 .11 -m venv venv

4 else

5 echo "Virtual␣environment␣already␣exists."

6 fi

If the directory does not exist, the command python3.11 -m venv venv creates
a new virtual environment named venv. If the directory already exists, the script
skips the creation step to avoid redundant setups.

Activating the Virtual Environment

Once the virtual environment is set up, it is activated using:

1 source ./venv/bin/activate

This ensures that all subsequent Python-related commands use the isolated envi-
ronment rather than system-wide Python installations.

Ensuring Proper Deactivation

To ensure that the virtual environment is deactivated when the script exits, a trap
is set:

1 trap 'if [[-d "venv"]]; then deactivate; fi ' EXIT

This guarantees that when the script terminates, the virtual environment is exited
cleanly, preventing potential conflicts in future commands executed in the terminal.

3.1.4 Dependency Installation within the Virtual Environ-
ment

Once the virtual environment is activated, dependencies are installed using pip.
The package installation is handled as follows:

• Using pip: Packages such as Watchdog, PyQt5, and Matplotlib are installed
inside the virtual environment:

1 pip install watchdog PyQt5 matplotlib

• Using pip3: Some dependencies, such as Hdlparse, Makerchip, and Sand-
Piper SaaS, are installed using pip3:

1 pip3 install --upgrade https :// github.com/hdl/

pyhdlparser/tarball/master

2 pip3 install hdlparse

3 pip3 install makerchip -app sandpiper -saas

9

The use of pip3 ensures compatibility with Python 3 and avoids conflicts with
system-wide installations.

3.1.5 Conclusion

By implementing a virtual environment for dependency management, the script
ensures:

• Dependencies are installed in an isolated manner, avoiding interference with
system-wide packages.

• The environment remains consistent across different machines, improving re-
producibility.

• Proper cleanup via deactivation upon script exit, preventing persistent envi-
ronment modifications.

3.2 Addressing Package Installation Issues Due to

Outdated sources.list

3.2.1 Overview

Ubuntu releases have a defined support lifecycle, after which they reach End of Life
(EOL). For instance, Ubuntu 23.04 (Lunar Lobster) reached EOL on January 25,
2024 [8]. Post-EOL, official package repositories are moved to an archive server, ne-
cessitating updates to the system’s sources.list to maintain package management
functionality.

3.2.2 Problem Faced

After Ubuntu 23.04 reached EOL, its standard repositories were relocated to
old-releases.ubuntu.com. Systems continuing to use the default sources.list
encountered errors during package installations and updates due to inaccessible
repositories.

Figure 3.1: Error due to outdated sources.list

10

3.2.3 Implementation to Update sources.list

To resolve this, a script was implemented to detect the Ubuntu version and, if
necessary, update the sources.list to point to the archived repositories:

1 # Update Sources list if necessary

2 # Get Ubuntu version

3 UBUNTU_VERSION=$(lsb_release -rs)

4 UBUNTU_CODENAME=$(lsb_release -cs)

5

6 echo "Detected␣Ubuntu␣version:␣$UBUNTU_VERSION␣(
$UBUNTU_CODENAME)"

7

8 # Check if running Ubuntu 23.04 (Lunar)

9 if [["$UBUNTU_CODENAME" == "lunar"]]; then

10 echo "Ubuntu␣23.04␣detected.␣Checking␣sources␣list ..."

11

12 # Check if the old -releases mirror is already set

13 if grep -q "old -releases.ubuntu.com" /etc/apt/sources.

list; then

14 echo "Old -releases␣mirror␣is␣already␣in␣use.␣No␣

changes␣needed."

15 else

16 echo "Switching␣to␣old -releases␣mirror ..."

17

18 # Backup existing sources.list (only if not backed up

before)

19 if [! -f /etc/apt/sources.list.bak]; then

20 sudo cp /etc/apt/sources.list /etc/apt/sources.

list.bak

21 fi

22

23 # Replace standard mirrors with old -releases

24 sudo sed -i 's|http ://\(.*\).ubuntu.com/ubuntu|http
://old -releases.ubuntu.com/ubuntu|g' /etc/apt/

sources.list

25

26 echo "Updated␣sources.list␣to␣use␣old -releases.␣

Running␣apt␣update ..."

27

28 # Update package lists

29 sudo apt update -y && sudo apt upgrade -y

30 fi

31 else

32 echo "Not␣running␣Ubuntu␣23.04,␣no␣changes␣needed."

33 fi

11

3.2.4 How the Solution Works

The script operates as follows:

1. Version Detection: Utilizes lsb release to obtain the Ubuntu version and
codename.

2. EOL Check: Verifies if the system is running Ubuntu 23.04 (codename ”lu-
nar”).

3. Mirror Verification: Checks if the sources.list already points to old-releases.ubuntu.com.

4. Backup Creation: If not already backed up, creates a backup of the current
sources.list.

5. Source Update: Replaces standard repository URLs with the archived ones.

6. Package Update: Runs apt update and apt upgrade to refresh package
lists and upgrade installed packages.

3.2.5 Conclusion

By implementing this script, systems running Ubuntu 23.04 can seamlessly transi-
tion to using the archived repositories post-EOL. This ensures continued access to
package installations and updates without manual intervention.

3.3 Additional Modifications

3.3.1 Updates to createDesktopStartScript

the createDesktopStartScript function was modified to ensure seamless execu-
tion of eSim using the virtual environment. The previous implementation manually
activated the virtual environment using the source command, whereas the new
implementation directly references the Python interpreter inside the virtual envi-
ronment.

1 # Generating new esim -start.sh

2 echo '#!/bin/bash ' > esim -start.sh

3 echo "cd␣$eSim_Home/src/frontEnd␣||␣exit" >> esim -start.

sh

4 echo "$eSim_Home/venv/bin/python␣Application.py" >> esim -

start.sh

12

Previous implementation:

1 # Generating new esim -start.sh

2 echo '#!/bin/bash ' > esim -start.sh

3 echo "cd␣$eSim_Home/src/frontEnd" >> esim -start.sh

4 echo "source␣$config_dir/env/bin/activate" >> esim -start.

sh

5 echo "python3␣Application.py" >> esim -start.sh

The new approach simplifies execution by eliminating the need to explicitly ac-
tivate the virtual environment, improving maintainability and reducing potential
environment-related issues.

3.3.2 Enhancements to the Uninstallation Process

Additional cleanup steps were introduced in the uninstall section to properly re-
move dependencies and the virtual environment. This ensures a complete and clean
uninstallation of eSim.

Newly added lines:

1 # Uninstalling pip3 dependencies

2 pip3 uninstall -y hdlparse makerchip -app sandpiper -saas

3

4 # Removing the virtual environment

5 if [[-d "venv"]]; then

6 deactivate

7 rm -rf venv

8 fi

These changes ensure that all installed dependencies are removed, and the virtual
environment is properly deactivated and deleted, preventing residual configurations
from interfering with future installations.

3.3.3 Conclusion

The modifications to createDesktopStartScript and the uninstall process enhance
the efficiency and maintainability of the eSim installation. The new approach en-
sures:

• A streamlined execution process by directly referencing the virtual environ-
ment’s Python interpreter.

• A cleaner uninstallation by properly removing installed dependencies and de-
activating the virtual environment.

• Reduced risk of conflicts with system-wide configurations.

13

Chapter 4

Modifying install-nghdl.sh

This chapter describes the modifications made to the ‘install-nghdl.sh‘ script to
ensure compatibility with the latest system configurations and resolve errors en-
countered during installation. [7]

4.1 Updating LLVM Version

The script originally attempted to install LLVM version 9 with the following com-
mand:

echo "Installing LLVM-9.."

sudo apt install -y llvm-9 llvm-9-dev

However, this resulted in an error since llvm-9 and llvm-9-dev were not avail-
able in the repositories for Ubuntu Lunar. The following error messages were en-
countered:

E: Unable to locate package llvm-9

E: Unable to locate package llvm-9-dev

LLVM version 9 is outdated and has been removed from the default Ubuntu
Lunar repositories. This led to a failure in the installation process, preventing other
dependent tools from compiling correctly.

To resolve this issue, the LLVM version was updated to 15:

llvm_version="15"

echo "Installing LLVM-${llvm_version}.."

sudo apt install -y llvm-${llvm_version} llvm-${llvm_version}-dev

LLVM 15 is a more recent version with better optimizations, improved support
for modern architectures, and compatibility with the latest toolchains. The update
not only resolved package availability issues but also ensured better performance
and stability for tools depending on LLVM.

14

Furthermore, updating to LLVM 15 helped maintain compatibility with GHDL,
which previously encountered issues due to an unrecognized LLVM version. By mak-
ing this change, the script successfully installed the necessary dependencies without
errors, allowing GHDL and other components to function correctly.

Additionally, to prevent future issues, it was verified that the correct LLVM
version was installed by running:

llvm-config --version

This command confirmed that the expected version (LLVM 15) was correctly
installed and available for use in subsequent compilation steps.

4.2 Updating GHDL Installation

4.2.1 Previous Method

Initially, the script extracted ghdl-0.37 from a local archive and configured the
build process manually. The installation involved the following steps:

• Extracting the ghdl-0.37 archive.

• Running the configure script to set up the build.

• Compiling GHDL from source using make.

• Installing it using sudo make install.

However, this method resulted in an error due to LLVM version incompatibility:

Unhandled version llvm 15.0.7

4.2.2 Updated Method

To resolve this issue, the installation process was modified. Instead of extracting a
pre-existing archive, the script now downloads the latest compatible version directly
from the official GHDL GitHub releases. The following changes were made:

• A new directory is created to store the GHDL files.

• The script fetches the pre-built GHDL binary using wget:

wget https://github.com/ghdl/ghdl/releases/download/v4.1.0/$ghdl.tgz

• The archive is extracted without requiring compilation.

• Instead of using make install, the necessary files are manually copied:

sudo cp bin/* /usr/local/bin/

sudo cp -r include/* /usr/local/include/

sudo cp -r lib/* /usr/local/lib/

15

4.2.3 Advantages of the New Method

• Faster Installation: Skips the compilation step, reducing installation time.

• Avoids LLVM Compatibility Issues: Uses pre-built binaries optimized for
the target platform.

• Reliability: Ensures that the latest stable version of GHDL is used by fetch-
ing it dynamically.

The updated method successfully installs GHDL while maintaining compatibility
with LLVM 15.

4.3 Fixing Verilator Compilation Error

During the installation of Verilator, the following compilation error occurred:

./V3Const.cpp:35:1: note: ‘std::unique_ptr’ is defined in header ‘<memory>’;

did you forget to ‘#include <memory>’?

To resolve this issue, the `#include <memory>` directive was added to

`V3Const.cpp` using the `sed` command:

sed -i '/#include <algorithm>/a #include <memory>'

./verilator-4.210/src/V3Const.cpp

Figure 4.1: modified file after execution of the command

This modification was applied within the ‘installVerilator‘ function to ensure the
build process completes successfully. Instead of requiring users to manually edit files
to fix compilation errors, the script automatically modifies the necessary source files
before compilation.

By incorporating the sed command, the script inserts the required memory
header into V3Const.cpp dynamically. This ensures that the build process does
not fail due to missing headers, eliminating the need for manual intervention.

Additionally, the function automates the entire installation process, including
extracting the archive, setting executable permissions, configuring, compiling, and
installing Verilator. This streamlined approach not only ensures consistency across
multiple installations but also reduces the risk of user errors when making manual
changes.

16

function installVerilator

{

echo "Installing $verilator......................."

tar -xJf $verilator.tar.xz

sed -i '/#include <algorithm>/a #include <memory>'

./verilator-4.210/src/V3Const.cpp

cd $verilator

chmod +x configure

./configure

make -j$(nproc)

sudo make install

echo "Verilator installed successfully"

cd ../

}

These changes ensure that the installation process for ‘nghdl‘ functions correctly
on the target system.

4.4 Conclusion

In this chapter, we analyzed and modified the install-nghdl.sh script to address
compatibility issues and improve its functionality. The primary changes included
updating the LLVM version from 9 to 15 to resolve package availability issues, mod-
ifying the GHDL installation process to fetch the required version dynamically using
wget, and implementing an automated fix for Verilator’s missing header dependency.

These modifications ensure that the script is fully compatible with modern
Ubuntu distributions, eliminating the need for manual interventions during installa-
tion. By automating key aspects of the process, such as downloading and extracting
necessary files, configuring builds, and applying necessary patches, the updated
script streamlines the installation of NgHDL components.

Overall, the refined script enhances usability, reliability, and maintainability,
making it more adaptable to future updates in dependencies.

17

Chapter 5

Verification and Successful
Installation

5.1 Overview

After modifying the installation scripts to resolve compatibility issues with LLVM,
GHDL, and Verilator, it is essential to verify whether eSim has been successfully in-
stalled. This chapter details the verification steps and confirms that the installation
process now functions correctly.

5.2 Verifying eSim Installation

To ensure that eSim has been installed properly, the following verification steps were
performed:

1. Checking Installed Components:

• Verified the installed LLVM version using:

llvm-config --version

• Confirmed that GHDL is installed and operational:

ghdl --version

• Checked the Verilator version to ensure compatibility:

verilator --version

2. Testing NgVeri and Verilog Simulations:

• Ran a sample Verilog simulation using NgVeri to confirm correct func-
tionality.

18

• Ensured that the compiled Verilog designs produced the expected out-
puts.

3. Launching eSim:

• Started eSim from the terminal using:

esim

• Verified that the eSim GUI opened without errors.

5.3 Successful Installation Confirmation

After executing all verification steps, it was confirmed that eSim was successfully
installed on Ubuntu 23.04. The modified script now ensures a smooth installation
process by addressing dependency issues and using updated package versions.

Figure 5.1: Successful launch of eSim after installation

19

5.4 Successful Uninstallation Confirmation

In addition to verifying the installation, it is important to ensure that eSim and its
dependencies can be completely removed if required.

Figure 5.2: Verification of successful uninstallation

5.5 Conclusion

This chapter confirmed that the modifications made to the installation script effec-
tively resolved compatibility issues, ensuring that eSim and its dependencies function
correctly. The successful execution of test cases validates that users can seamlessly
install and utilize eSim for circuit simulation and verification.

Additionally, the uninstallation process was tested and verified to ensure that
eSim and its dependencies can be removed cleanly without leaving unnecessary files
or configurations. This provides flexibility for users who may need to reinstall eSim
or switch between different versions, making the installation process more robust
and user-friendly.

20

Chapter 6

Conclusion and Future Scope

6.1 Conclusion

The installation of eSim 2.4 on Ubuntu 23.04 presented several challenges due to
outdated dependencies, incompatibilities, and missing package sources. The primary
issues included improper installation of NgVeri dependencies, the unavailability of
LLVM 9 in the default repositories, GHDL failing due to LLVM version conflicts,
and Verilator requiring additional configurations for successful compilation.

To address these challenges, the installation script was systematically modified.
A virtual environment was implemented to ensure proper installation of NgVeri
dependencies without affecting system-wide packages. The script was updated to
install LLVM version 15 instead of LLVM 9, ensuring compatibility with Ubuntu
23.04. Additionally, the manual installation of GHDL using wget resolved its com-
patibility issues. Furthermore, necessary modifications were made to the Verilator
installation process to prevent build failures. The script was also enhanced to verify
and update sources.list when required, reducing dependency-related errors.

Through these modifications, the installation process became more reliable, re-
ducing manual intervention and ensuring smooth deployment of eSim. This work
highlights the importance of keeping installation scripts updated to match evolving
system environments.

6.2 Future Scope

While the modified script successfully resolves the existing installation issues, further
improvements can be explored to enhance its efficiency and adaptability:

• Automated Dependency Resolution: Future iterations of the script can
include automated checks to detect missing dependencies dynamically and
install appropriate versions based on the user’s operating system.

• Version Detection and Compatibility Checks: Integrating version de-
tection mechanisms can help the script adapt to different Ubuntu releases,
ensuring that it selects compatible software versions automatically.

21

• Precompiled Binary Packages: Instead of manually compiling tools like
GHDL and Verilator, precompiled binaries can be used to speed up installation
and reduce potential build errors.

• Docker-based Installation: A containerized approach using Docker could
be explored to provide a pre-configured environment for eSim, eliminating
compatibility issues across different operating systems.

• Continuous Integration and Testing: Regular testing on different Ubuntu
versions through CI/CD pipelines can help ensure that future updates do not
introduce new compatibility issues.

By incorporating these improvements, the script can be made more robust, user-
friendly, and adaptable to evolving software environments, further simplifying the
installation process for future users.

22

Bibliography

[1] FOSSEE Official Website, 2020. Available at:
https://fossee.in/about

[2] eSim Official Website, 2020. Available at:
https://esim.fossee.in/

[3] Ubuntu Official Webpage, 2020. Available at:
https://ubuntu.com/tutorials/.../command-line-for-beginners

[4] GitHub - FOSSEE eSim Repository, 2020. Available at:
https://github.com/FOSSEE/eSim

[5] GitHub - FOSSEE NGHDL Repository, 2020. Available at:
https://github.com/FOSSEE/nghdl

[6] install-eSim.sh, 2024. Available at:
https://github.com/FOSSEE/eSim/.../install-eSim.sh

[7] install-nghdl.sh, 2024. Available at:
https://github.com/FOSSEE/nghdl/.../install-nghdl.sh

[8] Ubuntu 23.04 End of Life, 2024. Available at:
https://fridge.ubuntu.com/.../ubuntu-23-04-lunar-lobster-reached-end-of-life

23

https://fossee.in/about
https://esim.fossee.in/
https://ubuntu.com/tutorials/command-line-for-beginners
https://github.com/FOSSEE/eSim
https://github.com/FOSSEE/nghdl
https://github.com/FOSSEE/eSim/blob/installers/Ubuntu/install-eSim.sh
https://github.com/FOSSEE/nghdl/blob/installers/Ubuntu/install-nghdl.sh
https://fridge.ubuntu.com/2024/01/26/ubuntu-23-04-lunar-lobster-reached-end-of-life-on-january-25-2024/

	Introduction
	FOSSEE: Promoting Open-Source Software for Education
	eSim: An Open-Source EDA Tool
	Key Features of eSim
	Components Integrated with eSim

	Problem Statement
	Challenges in eSim Installation
	Issues Encountered During Installation
	Approach to Address These Challenges

	Modifying install-eSim.sh
	Handling NgVeri dependencies
	Overview
	Problem Faced
	Virtual Environment Implementation
	Dependency Installation within the Virtual Environment
	Conclusion

	Addressing Package Installation Issues Due to Outdated sources.list
	Overview
	Problem Faced
	Implementation to Update sources.list
	How the Solution Works
	Conclusion

	Additional Modifications
	Updates to createDesktopStartScript
	Enhancements to the Uninstallation Process
	Conclusion

	Modifying install-nghdl.sh
	Updating LLVM Version
	Updating GHDL Installation
	Previous Method
	Updated Method
	Advantages of the New Method

	Fixing Verilator Compilation Error
	Conclusion

	Verification and Successful Installation
	Overview
	Verifying eSim Installation
	Successful Installation Confirmation
	Successful Uninstallation Confirmation
	Conclusion

	Conclusion and Future Scope
	Conclusion
	Future Scope

	Bibliography

