
FOSSEE Winter Internship Report
On

Development of Algorithm for Lacing Module and

Documentation on Report Generation for Osdag

Submitted by

Shubham Kumar

3rd Year B.Tech Student, Department of Civil and Infrastructure Engineering

Indian Institute of Technology Jodhpur

Jodhpur Rajasthan

Under the Guidance of

Prof. Siddhartha Ghosh

Department of Civil Engineering

Indian Institute of Technology Bombay

Mentors:

Ajmal Babu M S

Parth Karia

Ajinkya Dahale

January 5, 2025

Acknowledgments

• I would like to sincerely thank the Osdag and FOSSEE teams at IIT Bombay

for giving me this wonderful opportunity. Through this internship, I was able to

learn new things, and it was a truly great experience for me.

• A special thanks to our mentors, Parth Karia, Ajinkya Dahale, and Ajmal

Babu M. S., project staff at the Osdag team, for their constant support during

the internship and for teaching us new skills that have greatly enriched our learning

experience.

• I am deeply grateful to Prof. Siddhartha Ghosh, Principal Investigator (PI)

of the Osdag Project and Professor in the Department of Civil Engineering at IIT

Bombay, for his invaluable guidance and support throughout the project.

• I extend my sincere thanks to Prof. Kannan M. Moudgalya, Principal Inves-

tigator (PI) of the FOSSEE Project, Department of Chemical Engineering, IIT

Bombay, for providing me with this opportunity and for his continuous encourage-

ment.

• My special thanks to FOSSEE Managers, Ms. Usha Viswanathan and Ms.

Vineeta Parmar, and their entire team for their support and coordination, which

greatly facilitated the project’s progress.

• I extend my heartfelt thanks to my colleagues Amrutha, Anuanjani, and De-

bayan for their help and collaboration throughout this internship.

• I also want to express my gratitude to my professors from the Civil and Infras-

tructure Engineering Department at IIT Jodhpur for their guidance and

support during my academic journey.

1

Contents

1 Introduction 4

1.1 National Mission in Education through ICT 4

1.1.1 ICT Initiatives of MoE . 5

1.2 FOSSEE Project . 6

1.2.1 Projects and Activities . 6

1.2.2 Fellowships . 6

1.3 Osdag Software . 7

1.3.1 Osdag GUI . 8

1.3.2 Features . 8

2 Screening Task 9

2.1 Problem Statement . 9

2.2 Tasks Done . 10

2.3 Python Code for Beam Design Checks 11

2.4 Python Code for Beam Design Checks 11

2.4.1 Python Code . 11

2.4.2 Explanation of the Code . 15

3 Internship Task 1 : Development of Lacing Module 17

3.1 Task 1: Problem Statement . 17

3.2 Task 1: Tasks Done . 17

3.3 Task 1: Flowchart . 18

4 Internship Task 2: Report Generation in OSDAG 21

4.1 Task 2: Problem Statement . 21

4.2 Task 2: Tasks Done . 21

4.3 Task 2: Documentation . 21

5 Internship Task 3: Development of Purlin Module 22

5.1 Task 3: Problem Statement . 22

5.2 Task 3: Tasks Done . 22

2

6 Conclusions 23

6.1 Tasks Accomplished . 23

6.2 Skills Developed . 23

A Appendix 24

A.1 Work Reports . 24

Bibliography 28

3

Chapter 1

Introduction

1.1 National Mission in Education through ICT

The National Mission on Education through ICT (NMEICT) is a scheme under the

Department of Higher Education, Ministry of Education, Government of India. It aims

to leverage the potential of ICT to enhance teaching and learning in Higher Education

Institutions in an anytime-anywhere mode.

The mission aligns with the three cardinal principles of the Education Policy—access,

equity, and quality—by:

• Providing connectivity and affordable access devices for learners and institutions.

• Generating high-quality e-content free of cost.

NMEICT seeks to bridge the digital divide by empowering learners and teachers in

urban and rural areas, fostering inclusivity in the knowledge economy. Key focus areas

include:

• Development of e-learning pedagogies and virtual laboratories.

• Online testing, certification, and mentorship through accessible platforms like EduSAT

and DTH.

• Training and empowering teachers to adopt ICT-based teaching methods.

For further details, visit the official website: www.nmeict.ac.in.

4

https://www.nmeict.ac.in
https://www.nmeict.ac.in

1.1.1 ICT Initiatives of MoE

The Ministry of Education (MoE) has launched several ICT initiatives aimed at students,

researchers, and institutions. The table below summarizes the key details:

No. Resource For Students/Researchers For Institutions

Audio-Video e-content

1 SWAYAM Earn credit via online courses Develop and host courses; accept
credits

2 SWAYAMPRABHA Access 24x7 TV programs Enable SWAYAMPRABHA
viewing facilities

Digital Content Access

3 National Digital Li-
brary

Access e-content in multiple dis-
ciplines

List e-content; form NDL Clubs

4 e-PG Pathshala Access free books and e-content Host e-books

5 Shodhganga Access Indian research theses List institutional theses

6 e-ShodhSindhu Access full-text e-resources Access e-resources for institu-
tions

Hands-on Learning

7 e-Yantra Hands-on embedded systems
training

Create e-Yantra labs with IIT
Bombay

8 FOSSEE Volunteer for open-source soft-
ware

Run labs with open-source soft-
ware

9 Spoken Tutorial Learn IT skills via tutorials Provide self-learning IT content

10 Virtual Labs Perform online experiments Develop curriculum-based exper-
iments

E-Governance

11 SAMARTH ERP Manage student lifecycle digi-
tally

Enable institutional e-
governance

Tracking and Research Tools

12 VIDWAN Register and access experts Monitor faculty research out-
comes

13 Shodh Shuddhi Ensure plagiarism-free work Improve research quality and
reputation

14 Academic Bank of
Credits

Store and transfer credits Facilitate credit redemption

Table 1.1: Summary of ICT Initiatives by the Ministry of Education

5

1.2 FOSSEE Project

The FOSSEE (Free/Libre and Open Source Software for Education) project promotes

the use of FLOSS tools in academia and research. It is part of the National Mission on

Education through Information and Communication Technology (NMEICT), Ministry of

Education (MoE), Government of India.

1.2.1 Projects and Activities

The FOSSEE Project supports the use of various FLOSS tools to enhance education and

research. Key activities include:

• Textbook Companion: Porting solved examples from textbooks using FLOSS.

• Lab Migration: Facilitating the migration of proprietary labs to FLOSS alterna-

tives.

• Niche Software Activities: Specialized activities to promote niche software tools.

• Forums: Providing a collaborative space for users.

• Workshops and Conferences: Organizing events to train and inform users.

1.2.2 Fellowships

FOSSEE offers various internship and fellowship opportunities for students:

• Winter Internship

• Summer Fellowship

• Semester-Long Internship

Students from any degree and academic stage can apply for these internships. Se-

lection is based on the completion of screening tasks involving programming, scientific

computing, or data collection that benefit the FLOSS community. These tasks are de-

signed to be completed within a week.

For more details, visit the official FOSSEE website.

6

https://fossee.in
https://fossee.in

Figure 1.1: FOSSEE Projects and Activities

1.3 Osdag Software

Osdag (Open steel design and graphics) is a cross-platform, free/libre and open-source

software designed for the detailing and design of steel structures based on the Indian

Standard IS 800:2007. It allows users to design steel connections, members, and systems

through an interactive graphical user interface (GUI) and provides 3D visualizations of

designed components. The software enables easy export of CAD models to drafting

tools for construction/fabrication drawings, with optimized designs following industry

best practices [1, 2, 3]. Built on Python and several Python-based FLOSS tools (e.g.,

PyQt and PythonOCC), Osdag is licensed under the GNU Lesser General Public License

(LGPL) Version 3.

7

1.3.1 Osdag GUI

The Osdag GUI is designed to be user-friendly and interactive. It consists of

• Input Dock: Collects and validates user inputs.

• Output Dock: Displays design results after validation.

• CAD Window: Displays the 3D CAD model, where users can pan, zoom, and

rotate the design.

• Message Log: Shows errors, warnings, and suggestions based on design checks.

Figure 1.2: Osdag GUI

1.3.2 Features

• CAD Model: The 3D CAD model is color-coded and can be saved in multiple

formats such as IGS, STL, and STEP.

• Design Preferences: Customizes the design process, with advanced users able to

set preferences for bolts, welds, and detailing.

• Design Report: Creates a detailed report in PDF format, summarizing all checks,

calculations, and design details, including any discrepancies.

For more details, visit the official Osdag website.

8

https://osdag.fossee.in

Chapter 2

Screening Task

2.1 Problem Statement

The task involves preparing a Python program to facilitate the design of flexural

members, specifically those that are laterally supported and subjected to low shear

conditions. The program should include the following key functionalities:

Design Checks: Perform comprehensive design checks based on the guidelines specified

in IS 800:2007. These checks should ensure the structural integrity and safety of the

flexural member under given loading conditions.

Input Handling: Accept input parameters such as the shear force, bending moment,

and effective span of the member from a designated input text file.

Output Generation: Produce detailed design results and assessments in an organized

output text file.

Documentation: Generate a complete report summarizing the design procedure, input

parameters, output results, and adherence to IS 800:2007 standards.

The deliverables for this task include:

-The Python program developed for the design process.

-Input and output text files demonstrating the program’s functionality.

-A comprehensive report detailing the design methodology and results.

9

2.2 Tasks Done

Comprehensive Review of IS:800:2007 The task began with a thorough study of the

Indian Standard IS:800:2007, which provides guidelines for the design of steel structures.

This knowledge formed the foundation for developing the program, ensuring compliance

with the safety and design criteria specified in the standard.

Development of a Python Program A Python program was developed to assess the

structural capacity of beams based on the given input parameters. The key functionali-

ties of the program included:

Input Reading: The program reads beam design parameters from a formatted text file,

ensuring flexibility and reusability.

Inputs include span length, moment, shear force, yield strength, section modulus, mo-

ment of inertia, and cross-sectional area.

Capacity Analysis: Functions were created to check the moment capacity, shear ca-

pacity, and deflection limits of the beam.

The calculations adhered to the IS:800:2007 guidelines, incorporating safety factors and

material constants.

Output Generation: After performing the analysis, the program outputs the results to

a text file, detailing whether the beam satisfies the moment, shear, and deflection criteria

for each test case.

Validation of Input and Output Formats

Ensured that the input file format was correctly structured, including the mandatory

fields and their respective units.

Any mismatch in column names or missing data was accounted for to avoid processing

errors.

The output file was designed to be user-friendly, summarizing the applied values, calcu-

lated capacities, and status (Pass/Fail) for each parameter.

Incorporation of Design Constants and Factors

The program included pre-defined constants such as the modulus of elasticity (200

GPa for steel) and a partial safety factor for material strength (gammamo = 1.1).

Thesevaluescouldbemodifiedtomeetspecificdesignrequirements.

Execution and Debugging

10

The program was executed for multiple test cases, ensuring accurate results across

different scenarios. Any identified errors or inconsistencies were resolved to refine the

program.

Preparation for Beam Analysis Tool Integration

As a personal initiative (not required as part of the screening task), additional efforts

were made to extend the program’s functionality. This included laying the groundwork

for generating default input files and preparing for potential integration with other beam

analysis tools.

2.3 Python Code for Beam Design Checks

This section presents the Python code written for the screening task, along with a detailed

explanation of its functionality. The code is designed to perform moment, shear, and

deflection checks for beams based on the IS:800:2007 standards.

2.4 Python Code for Beam Design Checks

This section presents the Python code written for the screening task, along with a detailed

explanation of its functionality. The code is designed to perform moment, shear, and

deflection checks for beams based on the IS:800:2007 standards.

2.4.1 Python Code

Design Check For Beams

import math

Constants and design factors from IS :800:2007

E = 200000 # Modulus of elasticity in MPa (for steel)

gamma_mo = 1.1 # Partial safety factor for material strength

def read_input(file_path):

with open(file_path , ’r’) as f:

data = f.readlines ()

11

Process data to handle multiple test cases

inputs_list = []

inputs = {}

for line in data:

if "Test Case" in line:

if inputs:

inputs_list.append(inputs)

inputs = {}

elif line.strip():

key , value = line.strip().split(’:’)

value = ’’.join(filter(lambda x: x.isdigit () or x ==

’.’, value.strip ()))

inputs[key.strip ()] = float(value)

if inputs:

inputs_list.append(inputs)

return inputs_list

def moment_capacity_check(Z, fy , beta_b =1.0, gamma_mo =1.1):

Md = beta_b * Z * fy / gamma_mo

return Md

def shear_capacity_check(shear_force , area , fy):

Vd = 0.6 * area * fy / gamma_mo

return Vd, Vd >= shear_force

def deflection_check(span , moment , I):

delta = (5 * moment * span **2) / (48 * E * I)

max_deflection = span / 250

return delta , delta <= max_deflection

12

def design_flexural_member(inputs):

span = inputs["Span"]

moment = inputs["Moment"]

shear_force = inputs["Shear Force"]

fy = inputs["Yield Strength"]

Z = inputs["Section Modulus"]

I = inputs["Moment of Inertia"]

area = inputs["Cross -sectional Area"]

results = {}

Md = moment_capacity_check(Z, fy)

moment_limit = 1.2 * Z * fy / gamma_mo

failure_status = Md < moment and Md < moment_limit

if failure_status:

if Md < moment:

reason = "Moment capacity is less than the applied

moment."

if Md < moment_limit:

reason = "Moment capacity is within the permissible

limit."

else:

reason = "Moment capacity is sufficient to resist the

applied moment."

results[’Moment Capacity Check’] = {

’Applied Moment (k N m)’: moment ,

’Moment Capacity (k N m)’: Md ,

’Status ’: ’Fail’ if failure_status else ’Pass’,

’Reason ’: reason

}

13

Vd , shear_status = shear_capacity_check(shear_force , area , fy

)

results[’Shear Capacity Check’] = {

’Applied Shear Force (kN)’: shear_force ,

’Shear Capacity (kN)’: Vd ,

’Status ’: ’Pass’ if shear_status else ’Fail’

}

delta , deflection_status = deflection_check(span , moment , I)

results[’Deflection Check’] = {

’Calculated Deflection (mm)’: delta ,

’Permissible Deflection (mm)’: span / 250,

’Status ’: ’Pass’ if deflection_status else ’Fail’

}

return results

def write_output(results_list , file_path):

with open(file_path , ’w’) as f:

for i, results in enumerate(results_list , 1):

f.write(f"Results for Test Case {i}:\n")

for check , details in results.items():

f.write(f"{check }:\n")

for key , value in details.items():

f.write(f" {key}: {value }\n")

f.write("\n")

f.write("\n")

if __name__ == "__main__":

try:

inputs_list = read_input(’/content/input.txt’)

results_list = [design_flexural_member(inputs) for inputs

in inputs_list]

write_output(results_list , ’beam_design_output.txt’)

14

print("Output file ’beam_design_output.txt’ has been

created successfully.")

except Exception as e:

print(f"An error occurred: {e}")

from google.colab import files

files.download(’beam_design_output.txt’)

[Python Code for Beam Design Checks]

2.4.2 Explanation of the Code

The code is structured as follows:

• Constants and Factors: Key constants such as the modulus of elasticity for steel

(200 GPa) and the partial safety factor (γmo = 1.1) are defined.

• Input Reading: The read input function parses a text file containing beam

parameters for multiple test cases and organizes them into dictionaries.

• Capacity Checks: Three functions (moment capacity check, shear capacity check,

and deflection check) calculate the moment, shear, and deflection capacities,

comparing them with applied values to determine the beam’s safety.

• Design Analysis: The design flexural member function aggregates the checks

and prepares a results dictionary for each test case.

• Output Writing: The write output function generates a summary of results for

all test cases in a formatted text file.

• Main Execution Block: Reads input, executes the analysis, and writes output

while handling potential errors.

15

graphicx

16

Chapter 3

Internship Task 1 : Development of

Lacing Module

3.1 Task 1: Problem Statement

The problem involved creating a structured flowchart to develop an algorithm for the lac-

ing module in Osdag. The task required defining a logical sequence of steps: determining

input parameters, evaluating conditions, and establishing decision points.

3.2 Task 1: Tasks Done

To develop the algorithm for the lacing module in Osdag, the following methodologies

and processes were implemented: 1. Research and Standards Compliance The de-

velopment process was guided by the provisions of IS 800:2007 and the Osdag DDCL

(Design Details Checklist Logic). These resources provided the technical framework for

checks, calculations, and design requirements essential for the algorithm.

2. Flowchart Development A detailed flowchart was created using Canva to define the

algorithm’s logical sequence. The flowchart (as attached) includes the following elements:

Inputs and Initialization: User provides inputs such as material grade, section size, and

end conditions.

Section Classification: Determines if the section is compact, semi-compact, or plastic,

following specific conditions.

Design Checks and Calculations: Includes checks for slenderness ratio, angle, spacing,

17

and compressive strength calculations.

Iterative Decision Points: Conditions like whether the section meets design requirements

or needs to be revised, ensuring all constraints are satisfied.

Output: Generates comprehensive results, including dimensions, forces, and connection

details for lacing.

3. Implementation Strategy The algorithm incorporated critical calculations such as:

Effective Area: Based on the steel table and effective area parameter.

Compressive and Tensile Strength Checks: Satisfied using equations from the DDCL.

Connection Design: Covered both bolted and welded options, ensuring compliance with

standards.

For each iteration, feedback loops were established to refine the output based on design

conditions.

4. Validation and Documentation

The flowchart was iteratively reviewed to address potential issues and ensure complete-

ness. Documentation for each step was detailed for future reference and user understand-

ing.

3.3 Task 1: Flowchart

Description of the Flowchart

The flowchart for the Lacing Module Algorithm in Osdag represents a comprehensive

sequence of steps and decision points to ensure the design meets structural and code

requirements. Below is a detailed explanation of its components:

1. Input Section

• Materials and Section Data: Inputs include material grade, section size, and

unsupported lengths in y and z directions.

• Lacing Profile and Pattern: Specifies the lacing type (flat, angle, or channel)

and pattern (single or double).

18

Buckling Imperfection Factor
Class C =0.49

Lacing Pattern

Section Profile

Back To Back Toe to Toe

End Conditions

Find Area from steel table
(if not same choose the next greater one)

Continue Block Removed, Feedback Loops Added

Rev #5

YES

YES

YES YES

YES

Is Semi Compact Allowed ?

NO

NO

NO
NO

NO

Plastic Semi-CompactCompact

Section Classification
Conditions

Choose an Effective
Length Factor = K

Compressive Stress Calculation (2.2.5)

Design Compressive Strength

Design of tie-plate

Lacing Design

Final Dimensions of tie plate

Calculations for Spacing (2.2.9.1)

Angle Check - Clause 7.6.4

Effective Slend. Ratio Check (2.2.9.2)

Design Load & Compressive Force

Design of tie-plate

Column Spacing (2.2.7)

Effective Slenderness Ratio

Size of lacing

Flat

Calculate the radius of gyration
using eq. 2.28

r min = t /√ 12

NO

Yes

Design Stregth Check
for lacing

YES

Size of the lacing

Based on 2.2.9.5

NO

Connection Desgin

Lacing
Design
Algorithm
Chart
As On 3-12-2024
Equations from OSDAG Lacing DDCL

N=1 for single lacing
N=2 for double lacing

Select new section (next larger one)

Bolted Connection

find no.of bolts with the help of
eq. 2.41-2.47

Welded connection
Length of weld using

Eq. 2.48-2.50

Compressive strength Check

satishfy eq. 2.35

Tensile Strength Check

satisfy eq 2.36 and 2.37

Select new section (next
larger one)

If No section left
return invalid inputs or No

section is apporpriate

If No Section left
Return

OUTPUT

effective length, end condition,
for both directions,fcd value, effective slenderness ratio,

design compressive strength, spacing between channels,tie plates dimension,lacing spacing,angle, force on lacing,
dimension of lacing section, design compressive and tensile strength,no.of bolts or length of welds

Axial factored load
Effective Area Parameter

Section Size

Effective Area= area from steel table * effective
Area Parameter*.5

Type of Connection (bolded or welded)

Dimension of Connection (bolt diameter or
weld length)

Lacing Profile
(Flat, Angel and channel)

lacing profile section(from the given list)
for defaults refer ddcl

Unsupported length in y and z directions

Materials Grade

Figure 3.1: Flowchart for Lacing Module Algorithm

• End Conditions and Connection Type: Users define the type of connection

(bolted or welded) and the effective length factor (K).

2. Section Classification

• Evaluates whether the section is plastic, semi-compact, or compact based on IS

800:2007.

• If the section is unsuitable(either slender or semi-compact(if its not allowed)), the

algorithm selects the next larger section or returns an error if no section is left.

3. Design Calculations

• Effective Area and Compressive Stress: Calculations are performed to deter-

mine the effective area and compressive stress using equations from the DDCL.

• Slenderness Ratio Check: Ensures compliance with slenderness limits.

• Spacing and Angle Checks: Verifies spacing between lacings and checks the

angle against standard requirements.

19

4. Lacing and Connection Design

• Lacing Design: Determines dimensions and spacing of lacing elements based on

load and slenderness requirements.

• Connection Design: For bolted connections, calculates the number of bolts

needed using relevant equations. For welded connections, computes the required

weld length.

5. Iterative Decision Points

• Includes multiple checks such as: Does the design meet compressive and tensile

strength requirements? Are the spacing and angle within allowable limits?

• If a check fails, the algorithm adjusts parameters or selects a new section.

6. Output Section

Provides detailed results, including:

• Effective length and end conditions.

• Design compressive strength and effective slenderness ratio.

• Dimensions of tie plates and lacings, angle specifications, and connection details

(bolts or welds).

20

Chapter 4

Internship Task 2: Report Genera-

tion in OSDAG

4.1 Task 2: Problem Statement

Develop and debug the report generation program for the compression module and column

module, and document the process of report generation in OSdag(How report is being

generated in Osdag and what commands/files are referred).

4.2 Task 2: Tasks Done

Debugged the program using DDCL and IS 800:2007 standards, and developed the cor-

rected program for report generation in the column and compression modules. Studied

the process in other modules and applied similar methods to these modules. Additionally,

created documentation detailing the report generation process.

4.3 Task 2: Documentation

Attached is the PDF file detailing the report generation process. Click here to view the

report generation process.

21

https://drive.google.com/file/d/1V4QMa8nzemhThinLV47Pz4YezXsO2BJC/view?usp=drive_link
https://drive.google.com/file/d/1V4QMa8nzemhThinLV47Pz4YezXsO2BJC/view?usp=drive_link

Chapter 5

Internship Task 3: Development of

Purlin Module

5.1 Task 3: Problem Statement

The task involved assisting in programming the Python code for the Purlin module in

Osdag.

5.2 Task 3: Tasks Done

Studied the Purlin module using DDCL and contributed to developing functions for

design checks, including moment check, shear check, and web resistance checks. Also

worked on section classification and compiled details necessary for output documentation

and report generation.

22

Chapter 6

Conclusions

6.1 Tasks Accomplished

The algorithm for the lacing module in Osdag has been successfully completed. Fixes

were implemented in the report generation feature for both column and compression

modules. Additionally, comprehensive documentation on the report generation process

in Osdag was created. Progress was also made on the purlin module program, which is

now nearly complete.

6.2 Skills Developed

During the fellowship, I acquired basic knowledge of GitHub for version control and col-

laboration and developed skills in using LaTeX for creating professional documentation.

My Python programming skills were significantly enhanced, and I improved my design

capabilities using Canva. Additionally, I honed teamwork and coordination skills, which

have been essential for collaborative projects.

23

Chapter A

Appendix

A.1 Work Reports

24

Internship Work Report

Name: Shubham Kumar
Project: Osdag

Internship: FOSSEE Winter Fellowship 2024

Work Log

Date Day Task Hours
Worked

13-Nov-
2024

Wednesday Studied the basics of the steel engineering and IS Code
800 2007

4

14-Nov-
2024

Thursday Tried installing the osdag in the windows 10 4

15-Nov-
2024

Friday Meeting regarding the development of lacing module 3

18-Nov-
2024

Monday Exam Break 0

19-Nov-
2024

Tuesday Exam Break 0

20-Nov-
2024

Wednesday Exam Break 0

21-Nov-
2024

Thursday Exam Break 0

22-Nov-
2024

Friday Exam Break 0

23-Nov-
2024

Saturday Exam Break 0

24-Nov-
2024

Sunday Exam Break 0

25-Nov-
2024

Monday Exam Break 0

26-Nov-
2024

Tuesday Exam Break 0

27-Nov-
2024

Wednesday Studied the theory for development of lacing module and
the review meeting

5

28-Nov-
2024

Thursday Development of algorithm for lacing Module 4

29-Nov-
2024

Friday Development of algorithm for lacing Module 4

1

30-Nov-
2024

Saturday Development of algorithm for lacing Module 4

01-Dec-
2024

Sunday Development of algorithm for lacing Module 4

02-Dec-
2024

Monday Development of algorithm for lacing Module 4

03-Dec-
2024

Tuesday Final review meeting of Lacing Module’s Algorithm 4

04-Dec-
2024

Wednesday Make the last changes in Lacing Module 4

05-Dec-
2024

Thursday Final Submission of Algorithm for lacing module 4

06-Dec-
2024

Friday Started the calculation for the report generation for
compression Module

4

07-Dec-
2024

Saturday calculation for the report generation for compression
Module

4

08-Dec-
2024

Sunday Work meeting regarding the report generation and
preparation of code for the same (buckling class)

4

09-Dec-
2024

Monday Work meeting regarding the report generation and
preparation of code for the same (section classification)

4

10-Dec-
2024

Tuesday Work meeting regarding the report generation and
preparation of code for the same (Design Checks)

4

11-Dec-
2024

Wednesday Work meeting regarding the report generation 4

12-Dec-
2024

Thursday Worked for the debugging of savereportfunction 5

13-Dec-
2024

Friday Worked for the debugging of savereportfunction 4

14-Dec-
2024

Saturday Held review meeting with mentor to discuss progress and
future tasks

4

16-Dec-
2024

Monday Studied the purlin module 4

17-Dec-
2024

Tuesday First meeting regarding the development of purlin mod-
ule code

4

18-Dec-
2024

Wednesday Worked for the development of purlin module 4

19-Dec-
2024

Thursday Worked for the development of purlin module 4

20-Dec-
2024

Friday Worked for the development of purlin module 4

21-Dec-
2024

Saturday Started working for the documentation of report gener-
ation

4

22-Dec-
2024

Sunday Documentation of report genration 4

2

23-Dec-
2024

Monday Review meeting on the report generation documnet and
helped in the development of output dock for purlin
module

4

24-Dec-
2024

Tuesday Completed the google doc version of the report genera-
tion document

3

25-Dec-
2024

Wednesday Made the changes suggested by mentor in the report 3

26-Dec-
2024

Thursday Final document of report generation is submitted 3

27-Dec-
2024

Friday Prepared final internship report and compiled all work
done during the period

4

28-Dec-
2024

Saturday Prepared final internship report and compiled all work
done during the period

3

30-Dec-
2024

Monday Made the changes in the report generation document 1

3

Bibliography

[1] Siddhartha Ghosh, Danish Ansari, Ajmal Babu Mahasrankintakam, Dharma Teja

Nuli, Reshma Konjari, M. Swathi, and Subhrajit Dutta. Osdag: A Software for

Structural Steel Design Using IS 800:2007. In Sondipon Adhikari, Anjan Dutta, and

Satyabrata Choudhury, editors, Advances in Structural Technologies, volume 81 of

Lecture Notes in Civil Engineering, pages 219–231, Singapore, 2021. Springer Singa-

pore.

[2] FOSSEE Project. FOSSEE News - January 2018, vol 1 issue 3. Accessed: 2024-12-05.

[3] FOSSEE Project. Osdag website. Accessed: 2024-12-05.

28

	Introduction
	National Mission in Education through ICT
	ICT Initiatives of MoE

	FOSSEE Project
	Projects and Activities
	Fellowships

	Osdag Software
	Osdag GUI
	Features

	Screening Task
	Problem Statement
	Tasks Done
	Python Code for Beam Design Checks
	Python Code for Beam Design Checks
	Python Code
	Explanation of the Code

	Internship Task 1 : Development of Lacing Module
	Task 1: Problem Statement
	Task 1: Tasks Done
	Task 1: Flowchart

	Internship Task 2: Report Generation in OSDAG
	Task 2: Problem Statement
	Task 2: Tasks Done
	Task 2: Documentation

	Internship Task 3: Development of Purlin Module
	Task 3: Problem Statement
	Task 3: Tasks Done

	Conclusions
	Tasks Accomplished
	Skills Developed

	Appendix
	Work Reports

	Bibliography

