
FOSSEE Winter Internship Report
On

Development of CADs for Osdag

Submitted by

Aryan Gupta

3rd Year B.Tech Student, Department of Computer Science and Engineering

Manipal Institute of Technology, Manipal

Manipal Academy of Higher Education

Under the Guidance of

Prof. Siddhartha Ghosh

Department of Civil Engineering

Indian Institute of Technology Bombay

Mentors:

Ajmal Babu M S

Parth Karia

Ajinkya Dahale

February 3, 2025

Acknowledgments

I am deeply grateful to everyone who supported and guided me throughout my intern-

ship project. This experience has been invaluable, and I would like to express my sincere

appreciation to several individuals and organizations who made this journey possible.

First and foremost, I would like to thank the Osdag team, particularly Ajmal Babu

M. S., Ajinkya Dahale, and Parth Karia, for their continuous guidance, patience, and

technical support during my internship. Their expertise and collaborative spirit were

instrumental in helping me navigate the complexities of the project.

I am particularly indebted to Prof. Siddhartha Ghosh from the Department of Civil

Engineering at IIT Bombay, the Principal Investigator of the Osdag project, for providing

me with this remarkable opportunity to contribute to meaningful research.

My gratitude also extends to Prof. Kannan M. Moudgalya, the FOSSEE Project

Investigator from the Department of Chemical Engineering at IIT Bombay, whose lead-

ership and vision have been crucial in driving innovative educational initiatives.

I am thankful to FOSSEE Managers Usha Viswanathan and Vineeta Parmar, along

with their entire team, for creating a supportive and dynamic work environment that

fostered learning and professional growth.

Special acknowledgement is due to the National Mission on Education through In-

formation and Communication Technology (ICT), Ministry of Education (MoE), Gov-

ernment of India, for their financial support and commitment to advancing educational

technology and research.

Lastly, I would like to thank my colleagues who worked alongside me during this in-

ternship, sharing knowledge, providing feedback, and creating a collaborative atmosphere

that made this experience both educational and enjoyable.

1

2

Contents

1 Introduction 5

1.1 National Mission in Education through ICT 5

1.1.1 ICT Initiatives of MoE . 6

1.2 FOSSEE Project . 7

1.2.1 Projects and Activities . 7

1.2.2 Fellowships . 7

1.3 Osdag Software . 8

1.3.1 Osdag GUI . 9

1.3.2 Features . 9

2 Screening Task 10

2.1 Problem Statement . 10

2.2 Tasks Done . 11

2.3 Calculations and Formulas . 18

3 Internship Task 1: CAD for Columns with known support conditions 21

3.1 Task 1: Problem Statement . 21

3.2 Task 1: Tasks Done . 21

3.3 Task 1: Python Codes . 22

3.3.1 create model() in osdag/cad/items/ISection.py 22

3.3.2 createColumnGeometry() in osdag/cad/CompressionMembers/col-

umn.py . 23

3.3.3 createColumnInFrameCAD() in osdag/cad/common logic.py . . . 25

4 Internship Task 2: Creating CADs for Struts in Trusses 29

4.1 Task 2: Problem Statement . 29

4.2 Task 2: Tasks Done . 29

4.2.1 Methodology . 29

4.3 Task 2: Python Codes . 30

4.3.1 class BackToBackAnglesWithGussetsSameSide in osdag/cad/item-

s/double angles.py . 30

3

4.3.2 class BackToBackAnglesWithGussetsOppSide in osdag/cad/item-

s/double angles.py . 35

4.3.3 createStrutsInTrusses() in osdag/cad/common logic.py 40

5 Internship Task 3: Creating CADs for Flexural Members 45

5.1 Task 3: Problem Statement . 45

5.2 Task 3: Tasks Done . 45

5.2.1 Methodology Behind the Creation of the CAD Model 45

5.3 Task 3: Python Codes . 46

5.3.1 create model() in osdag/cad/items/ISection.py 46

5.3.2 createcolumnFlexGeometry() in osdag/cad/CompressionMem- bers/-

column.py . 48

5.3.3 createSimplySupportedBeam() in osdag/cad/common logic.py . . 49

5.3.4 Explanation of the Code . 51

6 CAD Manual 52

7 Conclusions 53

7.1 Tasks Accomplished . 53

7.1.1 Task 1: CAD for Columns with known support conditions 53

7.1.2 Task 2: Creating CADs for Struts in Trusses 53

7.1.3 Task 3: Creating CADs for Flexural Members 54

7.2 Skills Developed . 54

A Appendix 56

A.1 Work Reports . 56

Bibliography 58

4

Chapter 1

Introduction

1.1 National Mission in Education through ICT

The National Mission on Education through ICT (NMEICT) is a scheme under the

Department of Higher Education, Ministry of Education, Government of India. It aims

to leverage the potential of ICT to enhance teaching and learning in Higher Education

Institutions in an anytime-anywhere mode.

The mission aligns with the three cardinal principles of the Education Policy—access,

equity, and quality—by:

• Providing connectivity and affordable access devices for learners and institutions.

• Generating high-quality e-content free of cost.

NMEICT seeks to bridge the digital divide by empowering learners and teachers in

urban and rural areas, fostering inclusivity in the knowledge economy. Key focus areas

include:

• Development of e-learning pedagogies and virtual laboratories.

• Online testing, certification, and mentorship through accessible platforms like EduSAT

and DTH.

• Training and empowering teachers to adopt ICT-based teaching methods.

For further details, visit the official website: www.nmeict.ac.in.

5

https://www.nmeict.ac.in
https://www.nmeict.ac.in

1.1.1 ICT Initiatives of MoE

The Ministry of Education (MoE) has launched several ICT initiatives aimed at students,

researchers, and institutions. The table below summarizes the key details:

No. Resource For Students/Researchers For Institutions

Audio-Video e-content

1 SWAYAM Earn credit via online courses Develop and host courses; accept
credits

2 SWAYAMPRABHA Access 24x7 TV programs Enable SWAYAMPRABHA
viewing facilities

Digital Content Access

3 National Digital Li-
brary

Access e-content in multiple dis-
ciplines

List e-content; form NDL Clubs

4 e-PG Pathshala Access free books and e-content Host e-books

5 Shodhganga Access Indian research theses List institutional theses

6 e-ShodhSindhu Access full-text e-resources Access e-resources for institu-
tions

Hands-on Learning

7 e-Yantra Hands-on embedded systems
training

Create e-Yantra labs with IIT
Bombay

8 FOSSEE Volunteer for open-source soft-
ware

Run labs with open-source soft-
ware

9 Spoken Tutorial Learn IT skills via tutorials Provide self-learning IT content

10 Virtual Labs Perform online experiments Develop curriculum-based exper-
iments

E-Governance

11 SAMARTH ERP Manage student lifecycle digi-
tally

Enable institutional e-
governance

Tracking and Research Tools

12 VIDWAN Register and access experts Monitor faculty research out-
comes

13 Shodh Shuddhi Ensure plagiarism-free work Improve research quality and
reputation

14 Academic Bank of
Credits

Store and transfer credits Facilitate credit redemption

Table 1.1: Summary of ICT Initiatives by the Ministry of Education

6

1.2 FOSSEE Project

The FOSSEE (Free/Libre and Open Source Software for Education) project promotes

the use of FLOSS tools in academia and research. It is part of the National Mission on

Education through Information and Communication Technology (NMEICT), Ministry of

Education (MoE), Government of India.

1.2.1 Projects and Activities

The FOSSEE Project supports the use of various FLOSS tools to enhance education and

research. Key activities include:

• Textbook Companion: Porting solved examples from textbooks using FLOSS.

• Lab Migration: Facilitating the migration of proprietary labs to FLOSS alterna-

tives.

• Niche Software Activities: Specialized activities to promote niche software tools.

• Forums: Providing a collaborative space for users.

• Workshops and Conferences: Organizing events to train and inform users.

1.2.2 Fellowships

FOSSEE offers various internship and fellowship opportunities for students:

• Winter Internship

• Summer Fellowship

• Semester-Long Internship

Students from any degree and academic stage can apply for these internships. Se-

lection is based on the completion of screening tasks involving programming, scientific

computing, or data collection that benefit the FLOSS community. These tasks are de-

signed to be completed within a week.

For more details, visit the official FOSSEE website.

7

https://fossee.in
https://fossee.in

Figure 1.1: FOSSEE Projects and Activities

1.3 Osdag Software

Osdag (Open steel design and graphics) is a cross-platform, free/libre and open-source

software designed for the detailing and design of steel structures based on the Indian

Standard IS 800:2007. It allows users to design steel connections, members, and systems

through an interactive graphical user interface (GUI) and provides 3D visualizations of

designed components. The software enables easy export of CAD models to drafting

tools for construction/fabrication drawings, with optimized designs following industry

best practices [1, 2, 3]. Built on Python and several Python-based FLOSS tools (e.g.,

PyQt and PythonOCC), Osdag is licensed under the GNU Lesser General Public License

(LGPL) Version 3.

8

1.3.1 Osdag GUI

The Osdag GUI is designed to be user-friendly and interactive. It consists of

• Input Dock: Collects and validates user inputs.

• Output Dock: Displays design results after validation.

• CAD Window: Displays the 3D CAD model, where users can pan, zoom, and

rotate the design.

• Message Log: Shows errors, warnings, and suggestions based on design checks.

Figure 1.2: Osdag GUI

1.3.2 Features

• CAD Model: The 3D CAD model is color-coded and can be saved in multiple

formats such as IGS, STL, and STEP.

• Design Preferences: Customizes the design process, with advanced users able to

set preferences for bolts, welds, and detailing.

• Design Report: Creates a detailed report in PDF format, summarizing all checks,

calculations, and design details, including any discrepancies.

For more details, visit the official Osdag website.

9

https://osdag.fossee.in

Chapter 2

Screening Task

2.1 Problem Statement

3D Modeling of a Portal Frame Structure

The task was to create a 3D model of a steel portal frame based on the provided figure.

An incomplete portal frame.py script was given to generate a parametric model of the

portal frame, where the dimensions of the frame components are adjustable. The final

model was to be visualized using the OCC library.

Figure 2.1: Structure of a simple portal frame with vertical columns, inclined rafters, and
horizontal purlins.

10

2.2 Tasks Done

• Libraries used: The script uses the following libraries:

– Open Cascade Technology (OCCT): A powerful CAD kernel for 3D mod-

eling and computation.

– Geometric primitives and transformations: gp Vec, gp Trsf, gp Ax1,

gp Pnt, gp Dir

– Shape creation: BRepPrimAPI MakeBox (To create box shapes)

– Boolean operations: BRepAlgoAPI Fuse (To perform Boolean operations,

e.g., fusing shapes)

– Transformations: BRepBuilderAPI Transform (To apply geometric trans-

formations to shapes)

– STEP file export: STEPControl Writer, STEPControl AsIs (To export

shapes to STEP files)

– Visualization: init display (For displaying shapes using a simple GUI)

– Mathematical operations: math (For mathematical operations such as

trigonometric functions)

Listing 2.1: Library imports

1 %--------------------begin code -------------

2 from OCC.Core.gp import gp_Vec , gp_Trsf , gp_Ax1 , gp_Pnt , gp_Dir

3 from OCC.Core.BRepPrimAPI import BRepPrimAPI_MakeBox

4 from OCC.Core.BRepAlgoAPI import BRepAlgoAPI_Fuse

5 from OCC.Core.BRepBuilderAPI import BRepBuilderAPI_Transform

6 from OCC.Core.STEPControl import STEPControl_Writer ,

STEPControl_AsIs

7 from OCC.Display.SimpleGui import init_display

8 import math

9 %-------------------- end code ---------------

• Columns: Create vertical columns using the create i section function.

• Rafters: Create inclined rafters using the create i section function to connect the

tops of the columns.

11

Listing 2.2: Complete create i section function for columns and rafters

1 %--------------------begin code -------------

2 def create_i_section(length , width , depth , flange_thickness ,

web_thickness):

3 # Calculate web height

4 web_height = depth - 2 * flange_thickness

5

6 # Create bottom flange

7 bottom_flange = BRepPrimAPI_MakeBox(length , width ,

flange_thickness).Shape()

8

9 # Create top flange

10 top_flange = BRepPrimAPI_MakeBox(length , width ,

flange_thickness).Shape()

11 trsf = gp_Trsf ()

12 trsf.SetTranslation(gp_Vec(0, 0, depth - flange_thickness))

13 top_flange_transform = BRepBuilderAPI_Transform(top_flange ,

trsf , True).Shape()

14

15 # Create web

16 web = BRepPrimAPI_MakeBox(length , web_thickness , web_height).

Shape()

17 trsf.SetTranslation(gp_Vec(0, (width - web_thickness) / 2,

flange_thickness))

18 web_transform = BRepBuilderAPI_Transform(web , trsf , True).Shape

()

19

20 # Fuse flanges and web to create I-section

21 i_section_solid = BRepAlgoAPI_Fuse(bottom_flange ,

top_flange_transform).Shape()

22 i_section_solid = BRepAlgoAPI_Fuse(i_section_solid ,

web_transform).Shape ()

23

24 return i_section_solid

25 %-------------------- end code ---------------

• Purlins: Add horizontal purlins at intervals along the length of the rafters using

the create rectangular prism function.

12

• Inclination Angle: The angle of inclination for the rafters should be a parametric

input.

Listing 2.3: Complete create purlin layout function for creation and proper placement of

purlins

1 %--------------------begin code -------------

2 def create_purlin_layout(num_purlins , purlin_width , purlin_height ,

purlin_depth , rafter_angle):

3 # Create purlin shape

4 purlin = BRepPrimAPI_MakeBox(purlin_width , purlin_depth ,

purlin_height).Shape ()

5

6 # Calculate roof rise based on rafter angle

7 roof_rise = (8400 / 2) * math.tan(math.radians(rafter_angle)) #

8400/2

8 purlins = None

9

10 # Loop to position each purlin

11 for i in range(num_purlins):

12 x = i * (8000 - purlin_width) / (num_purlins - 1)

13 if i < num_purlins / 2:

14 z = column_height + roof_rise - (num_purlins / 2 - i) *

(roof_rise / (num_purlins / 2))

15 else:

16 z = column_height + roof_rise - (i - num_purlins / 2 +

1) * (roof_rise / (num_purlins / 2))

17

18 # Translate purlin to correct position

19 trsf = gp_Trsf ()

20 trsf.SetTranslation(gp_Vec(x, 0, z))

21 purlin_instance = BRepBuilderAPI_Transform(purlin , trsf ,

True).Shape ()

22

23 # Fuse purlins together

24 if purlins is None:

25 purlins = purlin_instance

26 else:

27 purlins = BRepAlgoAPI_Fuse(purlins , purlin_instance).

Shape ()

13

28

29 return purlins

30 %-------------------- end code ---------------

• Assumptions: Standard dimensions for the components are assumed, but they

should be adjustable through variables.

Listing 2.4: create portal frame function for creating the complete portal frame using the

above functions

1 %--------------------begin code -------------

2 def create_portal_frame(column_length , column_width , column_height ,

column_flange_thickness , column_web_thickness ,

3 rafter_width , rafter_depth ,

rafter_flange_thickness ,

rafter_web_thickness , rafter_angle ,

num_rafters ,

4 purlin_width , purlin_height , purlin_depth):

5 # Create column I-sections

6 column = create_i_section(column_length , column_width ,

column_height , column_flange_thickness , column_web_thickness

)

7 columns = None

8 column_spacing = purlin_depth / (num_columns_per_side - 1)

9

10 # Loop to position columns

11 for i in range(num_columns_per_side):

12 y = i * column_spacing

13 x_left = 0

14 trsf_left = gp_Trsf ()

15 trsf_left.SetTranslation(gp_Vec(x_left , y, 0))

16 column_instance_left = BRepBuilderAPI_Transform(column ,

trsf_left , True).Shape()

17

18 x_right = 8000

19 trsf_right = gp_Trsf ()

20 trsf_right.SetTranslation(gp_Vec(x_right , y, 0))

21 column_instance_right = BRepBuilderAPI_Transform(column ,

trsf_right , True).Shape ()

22

14

23 # Fuse columns together

24 if columns is None:

25 columns = BRepAlgoAPI_Fuse(column_instance_left ,

column_instance_right).Shape ()

26 else:

27 columns = BRepAlgoAPI_Fuse(columns ,

column_instance_left).Shape()

28 columns = BRepAlgoAPI_Fuse(columns ,

column_instance_right).Shape ()

29

30 # Create purlins layout

31 purlins = create_purlin_layout(num_purlins , purlin_width ,

purlin_height , purlin_depth , rafter_angle)

32

33 # Calculate rafter length and create I-section

34 rafter_length = 8000 / 2 / math.cos(math.radians(rafter_angle))

35 rafter = create_i_section(rafter_length , rafter_width ,

rafter_depth , rafter_flange_thickness , rafter_web_thickness)

36 rafters = None

37 rafter_spacing = purlin_depth / (num_rafters - 1)

38

39 # Loop to position rafters

40 for i in range(num_rafters):

41 y = i * rafter_spacing

42

43 # Left rafter

44 trsf_left = gp_Trsf ()

45 trsf_left.SetTranslation(gp_Vec(0, y, column_height))

46 rafter_instance_left = BRepBuilderAPI_Transform(rafter ,

trsf_left , True).Shape()

47

48 # Rotate left rafter upward

49 rotation_left = gp_Trsf ()

50 rotation_left.SetRotation(gp_Ax1(gp_Pnt(0, y, column_height

), gp_Dir(0, -1, 0)), math.radians(rafter_angle))

51 rafter_instance_left = BRepBuilderAPI_Transform(

rafter_instance_left , rotation_left , True).Shape ()

52

53 # Right rafter

15

54 trsf_right = gp_Trsf ()

55 trsf_right.SetTranslation(gp_Vec (4000 , y, column_height))

56 rafter_instance_right = BRepBuilderAPI_Transform(rafter ,

trsf_right , True).Shape ()

57

58 # Rotate right rafter downward

59 rotation_right = gp_Trsf ()

60 rotation_right.SetRotation(gp_Ax1(gp_Pnt (4000, y,

column_height), gp_Dir(0, -1, 0)), math.radians(-

rafter_angle))

61 rafter_instance_right = BRepBuilderAPI_Transform(

rafter_instance_right , rotation_right , True).Shape()

62

63 # Shift right rafter to align with purlins

64 alignment_shift = gp_Trsf ()

65 alignment_shift.SetTranslation(gp_Vec(0, 0, (8000 / 2) *

math.tan(math.radians(rafter_angle))))

66 rafter_instance_right = BRepBuilderAPI_Transform(

rafter_instance_right , alignment_shift , True).Shape()

67

68 # Fuse rafters together

69 if rafters is None:

70 rafters = BRepAlgoAPI_Fuse(rafter_instance_left ,

rafter_instance_right).Shape ()

71 else:

72 rafters = BRepAlgoAPI_Fuse(rafters ,

rafter_instance_left).Shape()

73 rafters = BRepAlgoAPI_Fuse(rafters ,

rafter_instance_right).Shape ()

74

75 # Combine all components into the portal frame

76 portal_frame_solid = BRepAlgoAPI_Fuse(columns , purlins).Shape ()

77 portal_frame_solid = BRepAlgoAPI_Fuse(portal_frame_solid ,

rafters).Shape()

78

79 return portal_frame_solid

80 %-------------------- end code ---------------

• Save to STEP file: This function saves the generated shape to a STEP file. The

16

shape is transferred to a STEP writer and written to the specified file.

Listing 2.5: save to step function for saving the created shape to a STEP file

1 %--------------------begin code -------------

2 def save_to_step(shape , filename):

3 # Save the shape to a STEP file

4 step_writer = STEPControl_Writer ()

5 step_writer.Transfer(shape , STEPControl_AsIs)

6 status = step_writer.Write(filename)

7 return status == 1

8 %-------------------- end code ---------------

Listing 2.6: main function which takes parameters set by the user and displays the result

1 %--------------------begin code -------------

2 if __name__ == "__main__":

3 # Define the parameters for the portal frame

4 column_height = 4000

5 column_length = 100

6 column_width = 200

7 column_flange_thickness = 15

8 column_web_thickness = 5

9 num_columns_per_side = 6

10

11 num_rafters = 10

12 rafter_width = 200

13 rafter_depth = 100

14 rafter_flange_thickness = 15.01

15 rafter_web_thickness = 4.67

16 rafter_angle = 30

17

18

19 num_purlins = 9

20 purlin_width = 125 #x-axis

21 purlin_height = 175

22 purlin_depth = 6000.0

23

24 # Create portal frame

25 portal_frame = create_portal_frame(column_length , column_width ,

column_height , column_flange_thickness ,

17

column_web_thickness ,

26 rafter_width , rafter_depth ,

rafter_flange_thickness

, rafter_web_thickness ,

rafter_angle ,

num_rafters ,

27 purlin_width , purlin_height

, purlin_depth)

28

29 display , start_display , add_menu , add_function_to_menu =

init_display ()

30 display.DisplayShape(portal_frame , update=True)

31 display.FitAll ()

32

33 # Save as a STEP file

34

35 filename = "portal_frame.stp"

36 if save_to_step(portal_frame , filename):

37 print(f"Successfully saved the portal frame to {filename}")

38 else:

39 print(f"Failed to save the portal frame to {filename}")

40

41 start_display ()

42

43 %-------------------- end code ---------------

2.3 Calculations and Formulas

• Roof Rise: This calculates the vertical rise of the roof at the midpoint.

roof rise =

(
8400

2

)
× tan(radians(rafter angle))

• Purlin Positioning: Purlins are evenly spaced along the width of the roof. The

z-coordinate of each purlin is calculated based on its position relative to the roof

rise.

x = i× 8000− purlin width

num purlins− 1

18

if i <
num purlins

2
:

z = column height + roof rise−
(
num purlins

2
− i

)
×

(
roof rise

num purlins/2

)

else :

z = column height + roof rise−
(
i− num purlins

2
+ 1

)
×
(

roof rise

num purlins/2

)

where i=0 refers to the first purlin, i=1 refers to the second purlin and so on.

• Rafter Length: This calculates the length of each rafter based on the roof angle.

rafter length =
8000

2 cos(radians(rafter angle))

• Column Spacing: This calculates the space between two consecutive columns

based on the depth of the purlin and the number of columns entered by the user.

column spacing =
purlin depth

num columns per side− 1

19

Figure 2.2: Final Portal Frame

20

Chapter 3

Internship Task 1: CAD for Columns

with known support conditions

3.1 Task 1: Problem Statement

Display CADs for Columns with known support conditions in the CAD window.

3.2 Task 1: Tasks Done

The CAD displayed should have optimum dimensions that are calculated based on the

user input. The column needs to use the existing ISection.py file to accurately create and

place the column vertically.

Methodology

1. Geometry Construction: The process starts with defining points, which are

used to create edges. These edges form a continuous boundary (wire), which is

then converted into a planar surface (face) representing the cross-section of the

member.

2. Extrusion: The cross-sectional face is extruded along a specific direction and

length to create a 3D prism, representing the volume of the structural member.

3. Feature Integration: Optional features like notches are incorporated by calculat-

ing their position relative to the main geometry. The notch is modeled separately

21

and subtracted from the prism using Boolean operations, creating voids or recesses

in the final geometry.

4. Coordinate System Definition: A local coordinate system ensures consistent

orientation. For example, the z-axis is aligned vertically for columns, while other

axes define horizontal directions.

5. Section Placement: The cross-section is placed at a specified origin and aligned

according to the defined directions before extrusion, ensuring accurate positioning

in 3D space.

3.3 Task 1: Python Codes

3.3.1 create model() in osdag/cad/items/ISection.py

This function takes a set of defined points and transforms them into a 3D solid model. It

starts by generating edges, assembling them into a wire, and then constructing a face from

that wire. The face is extruded along a specified direction to create a prism. If a notch

feature is provided, it positions and integrates the notch by subtracting its geometry from

the solid using a boolean cut.

Python Code

The Python script is shown below. Each section is commented for clarity.

Listing 3.1: create model()

1 %--------------------begin code -------------

2 def create_model(self):

3

4 edges = makeEdgesFromPoints(self.points)

5 wire = makeWireFromEdges(edges)

6 aFace = makeFaceFromWire(wire)

7 extrudeDir = self.length * self.wDir # extrudeDir is a numpy

array

8 prism = makePrismFromFace(aFace , extrudeDir)

9

10 if self.notchObj is not None:

22

11 uDir = numpy.array ([-1.0, 0.0, 0])

12 wDir = numpy.array ([0.0, 1.0, 0.0])

13 shiftOri = self.D / 2.0 * self.vDir + self.notchObj.width /

2.0 * self.wDir + self.B / 2.0 * -self.uDir # + self.

notchObj.width* self.wDir + self.T/2.0 * -self.uDir

14 origin2 = self.sec_origin + shiftOri

15

16 self.notchObj.place(origin2 , uDir , wDir)

17

18 notchModel = self.notchObj.create_model ()

19 prism = BRepAlgoAPI_Cut(prism , notchModel).Shape ()

20

21 return prism

22 %-------------------- end code ---------------

Explanation of the Code

• Lines 2-6: Transforms a set of points into basic geometric elements by creating

edges, linking them into a continuous wire, and forming a face that represents the

cross-sectional profile.

• Lines 7-8: Extrudes the face along a specified direction (scaled by the structural

member’s length) to form a solid prism.

• Lines 10-18: If a notch feature is defined, computes its precise position using vector

operations, positions the notch accordingly, creates the notch model, and removes

the corresponding material from the prism through a boolean cut.

• Return: Provides the final 3D model with integrated features (if any notch is

present).

3.3.2 createColumnGeometry() in osdag/cad/CompressionMem-

bers/column.py

This function defines the spatial orientation for a column, ensuring that it remains vertical

along the z-axis. It sets the local coordinate system with specific unit vectors and places

23

the cross-sectional geometry at a defined origin. Once placed, the column model is created

based on this orientation, ensuring consistent alignment for the final structural member.

Python Code

The Python script is shown below. Each section is commented for clarity.

Listing 3.2: createColumnGeometry()

1 %--------------------begin code -------------

2 def createcolumnGeometry(self):

3 """

4 Ensures the column is always vertical along the z-axis.

5

6 :return: Geometric orientation of this component

7 """

8 # The origin of the column

9 columnOriginL = numpy.array ([0.0 , 0.0, 0.0])

10

11 # Set the column ’s local u-direction and w-direction

12

13 uDir = numpy.array ([1.0, 0.0, 0.0]) # Along x-axis

14 wDir = numpy.array ([0.0, 0.0, 1.0]) # Along z-axis (vertical)

15

16 # Place the section at the specified origin with the

orientation defined

17 self.sec.place(columnOriginL , uDir , wDir)

18

19 # Create the column model based on the section and orientation

20 self.columnModel = self.sec.create_model ()

21 %-------------------- end code ---------------

Explanation of the Code

• Lines 9-14: Establishes the column’s local coordinate system by defining an origin

and assigning unit vectors for the horizontal (u-direction) and vertical (w-direction)

axes.

• Lines 16-19: Places the cross-sectional geometry at the established origin with the

defined orientation to ensure the column stands vertically (aligned along the z-axis).

24

• Final Step: Generates the complete column model based on the oriented cross-

section, ensuring a consistent vertical alignment throughout the component.

3.3.3 createColumnInFrameCAD() in osdag/cad/common logic.py

The function starts by retrieving the module’s column designation and printing it. It then

checks if the designation belongs to hollow sections (RHS/SHS), circular hollow sections

(CHS), or rolled sections (beams/columns).

For RHS or SHS, it creates the corresponding section property object, extracts key di-

mensions (flange width, depth, etc.), and generates a rectangular hollow section model.

For CHS, it calculates the radius, prints the required parameters, and creates a circular

hollow section model.

For rolled sections, it attempts to create either a beam or a column model based on the

designation and extracts detailed section properties such as web thickness, flange thick-

ness, depth, flange width, and radii.

It then creates an ISection object using these parameters and builds a compression mem-

ber CAD model.

Finally, the function generates the 3D model and returns the section object.

Python Code

The Python script is shown below. Each section is commented for clarity.

Listing 3.3: Beam-to-Column Connection Design in Osdag

1 %--------------------begin code -------------

2 def createColumnInFrameCAD(self):

3 """

4 :return: The calculated values/parameters to create 3D CAD

model of individual components.

5 """

6

7 Col = self.module_class

8 print("COL_DESIGINATION :",Col.result_designation)

9

10 if ’RHS’ in Col.result_designation or ’SHS’ in Col.

result_designation: # hollow sections ’RHS and SHS’

11 if ’RHS’ in Col.result_designation:

25

12 result = RHS(designation=Col.result_designation ,

material_grade=Col.material)

13 else:

14 result = SHS(designation=Col.result_designation ,

material_grade=Col.material)

15 Col.section_property = result

16 print(f"Parameter L (flange width): {float(Col.

section_property.flange_width)}")

17 print(f"Parameter W (depth): {float(Col.section_property.

depth)}")

18 print(f"Parameter H (length/height): {float(Col.length_zz)}

")

19 print(f"Parameter T (flange thickness): {float(Col.

section_property.flange_thickness)}")

20 sec = RectHollow(L=float(Col.section_property.flange_width)

, W=float(Col.section_property.depth),

21 H=float(Col.length_zz), T=float(Col.

section_property.flange_thickness))

22 col = CompressionMemberCAD(sec)

23 sec=sec.create_model ()

24 col.create_3DModel ()

25 elif ’CHS’ in Col.result_designation: # CHS

26 result = CHS(designation=Col.result_designation ,

material_grade=Col.material)

27 Col.section_property = result

28 print(f"Parameter r (radius): {float(Col.section_property.

depth) / 2}")

29 print(f"Parameter T (thickness): {float(Col.

section_property.flange_thickness)}")

30 print(f"Parameter H (height/length): {float(Col.length_zz)}

")

31 sec = CircularHollow(r=float(Col.section_property.depth) /

2, T=float(Col.section_property.flange_thickness),

32 H=float(Col.length_zz))

33 col = CompressionMemberCAD(sec)

34 sec=sec.create_model ()

35 col.create_3DModel ()

36 else: # Beams and Columns (rolled sections)

37 try:

26

38 result = Beam(designation=Col.result_designation ,

material_grade=Col.material)

39 except:

40 result = Column(designation=Col.result_designation ,

material_grade=Col.material)

41 Col.section_property = result

42

43 column_tw = float(Col.section_property.web_thickness)

44 print(f"column_tw (Web Thickness): {column_tw}")

45

46 column_T = float(Col.section_property.flange_thickness)

47 print(f"column_T (Flange Thickness): {column_T}")

48

49 column_d = float(Col.section_property.depth)

50 print(f"column_d (Depth): {column_d}")

51

52 column_B = float(Col.section_property.flange_width)

53 print(f"column_B (Flange Width): {column_B}")

54

55 column_R1 = float(Col.section_property.root_radius)

56 print(f"column_R1 (Root Radius): {column_R1}")

57

58 column_R2 = float(Col.section_property.toe_radius)

59 print(f"column_R2 (Toe Radius): {column_R2}")

60

61 column_alpha = 94 # Todo: connect this. Waiting for danish

to give variable

62 column_length = float(Col.length_zz)

63

64 sec = ISection(B=column_B , T=column_T , D=column_d , t=

column_tw , R1=column_R1 , R2=column_R2 ,

65 alpha=column_alpha , length=column_length ,

notchObj=None)

66 col = CompressionMemberCAD(sec)

67 sec=sec.create_model ()

68

69 col.create_3DModel ()

70

71 return sec

27

72 %-------------------- end code ---------------

Explanation of the Code

Branch for Hollow Sections (RHS/SHS)

• Lines 7–8: Retrieves the module’s column designation and prints it to indicate the

type of section.

• Lines 10–19: Checks for hollow sections (‘RHS’ or ‘SHS’), creates the appropriate

section property object, and prints key parameters such as flange width, depth, and

thickness.

• Lines 20–24: Constructs a rectangular hollow section using the extracted dimen-

sions, creates a compression member CAD object, then builds and displays the 3D

model.

Branch for Circular Hollow Sections (CHS)

• Lines 25–30: Identifies a CHS designation, creates its section property object, and

prints parameters like radius, thickness, and height.

• Lines 31–35: Uses these parameters to instantiate a circular hollow section, creates

a compression member CAD, and builds the 3D model.

Branch for Rolled Sections (Beams and Columns)

• Lines 36–41: In the absence of hollow section designations, the code attempts to cre-

ate a beam or column section, extracting detailed properties such as web thickness,

flange thickness, depth, flange width, and radii.

• Lines 42–65: Prints each of these measured parameters, assigns a constant value

for an additional geometric parameter (alpha), and creates an ISection object.

• Lines 66–67: Instantiates a compression member CAD object with the ISection,

generates the 3D model, and completes the construction of the geometric represen-

tation.

• Return: The final section model is returned for further use.

28

Chapter 4

Internship Task 2: Creating CADs

for Struts in Trusses

4.1 Task 2: Problem Statement

Create and display CADs for the ’Struts in Trusses’ submodule. Specifically, create

separate CADs for each of the three section profiles: Angles, Back to Back Angles-Same

side of gusset and Back to Back Angles-Opposite side of gusset.

4.2 Task 2: Tasks Done

Code to create a single angles is available in osdag/cad/items/angle.py. Similarly, the

code to create an individual gusset plate is given in osdag/cad/items/Gasset plate.py.

They need to be used to create CADs for the Back to Back Angles section profiles as

well.

4.2.1 Methodology

1. Component Instantiation: Individual geometric objects representing two angles

and two gusset plates are created, each with specific design parameters. This mod-

ular approach ensures that each element is defined separately before integration.

2. Spatial Organization: A strategic placement strategy is employed, where ori-

entation vectors and offsets are calculated to accurately position each component.

29

This involves determining a central reference point, setting rotational directions,

and applying offsets to ensure the angles are arranged back-to-back with a defined

spacing, while gussets are precisely positioned at each end.

3. Transformation Consistency: The logic emphasizes maintaining consistent co-

ordinate systems and orientation for all parts. This guarantees that the relative

positioning of the angles and gusset plates aligns correctly in the overall assembly

without misalignments or gaps.

4. Model Integration: Finally, Boolean fusion operations are used to combine the

individual models into a unified structure. This step consolidates the separate

elements, ensuring that they interact as a single component in the final 3D model.

4.3 Task 2: Python Codes

4.3.1 class BackToBackAnglesWithGussetsSameSide in osdag/-

cad/items/double angles.py

The code defines a class that constructs two back-to-back angle components and two

gusset plates based on provided dimensions and orientation parameters.

It sets up the individual components by instantiating separate objects for the angles and

gussets, storing key design dimensions and calculated offsets.

A placement method is used to align the angles with specific rotations and to position

the gusset plates at calculated end locations relative to a central reference.

Finally, the individual 3D models of the components are fused together using boolean

operations to create the final integrated structure.

Python Code

The Python script is shown below. Each section is commented for clarity.

Listing 4.1: class BackToBackAnglesWithGussetsSameSide

1 %--------------------begin code -------------

2 class BackToBackAnglesWithGussetsSameSide:

3 def __init__(self , L, A, B, T, R1 , R2 , gusset_L , gusset_H , gusset_T

, gusset_degree , spacing =2):

30

4 """

5 Creates back -to -back angles with gusset plates automatically

positioned at the ends

6 Args:

7 L: Length of the angle

8 A: Vertical leg length

9 B: Horizontal leg length

10 T: Thickness

11 R1, R2: Corner radii

12 gusset_L: Length of gusset plate

13 gusset_H: Height of gusset plate

14 gusset_T: Thickness of gusset plate

15 gusset_degree: Angle of gusset plate

16 spacing: Gap between angles

17 """

18 self.angle1 = Angle(L, A, B, T, R1 , R2)

19 self.angle2 = Angle(L, B, A, T, R1 , R2)

20 self.gusset1 = GassetPlate(gusset_L , gusset_H , gusset_T ,

gusset_degree)

21 self.gusset2 = GassetPlate(gusset_L , gusset_H , gusset_T ,

gusset_degree)

22 self.spacing = spacing

23

24 # Store dimensions for later use

25 self.L = L

26 self.A = A # Vertical leg length

27 self.B = B # Horizontal leg length

28 self.T = T # Angle thickness

29 self.gusset_L = gusset_L

30 self.gusset_H = gusset_H

31 self.gusset_T = gusset_T

32

33 # Calculate Z-offsets based on angle length

34 # Position plates at the ends with a small margin

35 margin = gusset_L /2 # Adjust this value to fine -tune the end

position

36 self.gusset1_offsets = numpy.array([0, 0, margin]) # At the

start

37 self.gusset2_offsets = numpy.array([0, 0, L - margin]) # At

31

the end

38

39 # Base origin and directions

40 self.sec_origin = numpy.array([0, 0, 0])

41 self.uDir = numpy.array ([1.0, 0, 0])

42 self.wDir = numpy.array ([0.0, 0, 1.0])

43 self.vDir = numpy.cross(self.wDir , self.uDir)

44

45 def place(self , sec_origin , uDir , wDir):

46 """ Places the angles and gusset plates with automatic end

positioning """

47 self.sec_origin = sec_origin

48 self.uDir = uDir

49 self.wDir = wDir

50 self.vDir = numpy.cross(self.wDir , self.uDir)

51

52 self.sec_origin = sec_origin

53 self.uDir = uDir

54 self.wDir = wDir

55 self.vDir = numpy.cross(self.wDir , self.uDir)

56

57 # Place first angle with offset to center on gusset

58 angle1_origin = self.sec_origin

59 rotated_uDir_angle1 = -self.vDir # Point the horizontal leg

towards negative y

60 rotated_vDir_angle1 = -self.uDir # Adjust vertical direction

accordingly

61 self.angle1.place(angle1_origin , rotated_uDir_angle1 , self.wDir

)

62

63 # Place second angle with spacing

64 angle2_origin = angle1_origin + self.spacing * self.vDir

65 rotated_uDir = self.uDir

66 rotated_vDir = -self.vDir

67 self.angle2.place(angle2_origin , rotated_uDir , self.wDir)

68

69 # Calculate center point between angles

70 center_point = self.sec_origin + (self.spacing / 2) * self.vDir

71

32

72 # Place first gusset plate at the start

73 gusset1_origin = (

74 center_point

75 + self.gusset1_offsets [0] * self.uDir # X offset (0)

76 + self.gusset1_offsets [1] * self.vDir # Y offset (0)

77 + self.gusset1_offsets [2] * self.wDir # Z offset (start

position)

78)

79 gusset1_uDir = numpy.array([0, 0, 1.0])

80 gusset1_wDir = numpy.array([0, -1.0, 0])

81 self.gusset1.place(gusset1_origin , gusset1_uDir , gusset1_wDir)

82

83 # Place second gusset plate at the end

84 gusset2_origin = (

85 center_point

86 + self.gusset2_offsets [0] * self.uDir # X offset (0)

87 + self.gusset2_offsets [1] * self.vDir # Y offset (0)

88 + self.gusset2_offsets [2] * self.wDir # Z offset (end

position)

89)

90 gusset2_uDir = numpy.array([0, 0, -1.0])

91 gusset2_wDir = numpy.array([0, 1.0, 0])

92 self.gusset2.place(gusset2_origin , gusset2_uDir , gusset2_wDir)

93

94

95

96 def create_model(self):

97 """ Creates the 3D model of back -to -back angles with gusset

plates """

98 # Create models

99 angle1_prism = self.angle1.create_model ()

100 angle2_prism = self.angle2.create_model ()

101 gusset1_prism = self.gusset1.create_model ()

102 gusset2_prism = self.gusset2.create_model ()

103

104 # Combine all shapes

105 combined_angles = BRepAlgoAPI_Fuse(angle1_prism , angle2_prism).

Shape()

106 combined_with_gusset1 = BRepAlgoAPI_Fuse(combined_angles ,

33

gusset1_prism).Shape ()

107 final_shape = BRepAlgoAPI_Fuse(combined_with_gusset1 ,

gusset2_prism).Shape ()

108

109 return final_shape

110 %-------------------- end code ---------------

Explanation of the Code

Explanation of the init Function

• Lines 18–22: Instantiates and stores geometric subcomponents (two angles and two

gusset plates) using input parameters for lengths, thicknesses, radii, and gusset

specifications.

• Lines 25–31: Saves key dimensions as object attributes to be used later in po-

sitioning, ensuring design parameters remain accessible throughout the assembly

process.

• Lines 35–38: Calculates offsets for gusset plates based on the overall angle length

and a margin, establishing where the gusset plates should be placed at the ends.

• Lines 39–43: Defines a base coordinate system by setting an origin and unit vectors,

and computes a cross-product vector to support consistent spatial orientation.

Explanation of the place Function

• Lines 47–55: Updates the local coordinate system of the component by setting the

origin and unit vectors for the directions, ensuring all subsequent placements follow

the same orientation framework.

• Lines 57–61: Places the first angle by translating it to the base origin and applying

a specific rotation so that its horizontal leg faces the designated direction.

• Lines 64–67: Positions the second angle at a calculated offset from the first angle

using a defined spacing, ensuring both angles are arranged back-to-back.

• Lines 70–92: Computes a central reference point between the angles, then places

the first and second gusset plates at the start and end positions respectively, using

their predefined offset vectors and assigned rotation directions.

34

Explanation of the create model Function

• Lines 99–102: Generates individual 3D models of the two angles and two gusset

plates by invoking their respective model creation methods.

• Line 105: Combines the two angle models using a fusion (boolean union) operation,

ensuring they form a single connected shape.

• Lines 106-107: Sequentially fuses the gusset plate models with the combined angle

structure to integrate all the components.

• Return: Outputs the final unified 3D model, representing the complete assembly of

back-to-back angles coupled with gusset plates.

4.3.2 class BackToBackAnglesWithGussetsOppSide in osdag/-

cad/items/double angles.py

The code defines a class that builds back-to-back angles with gusset plates positioned on

opposite sides, ensuring perfect centering along both axes.

The constructor (init) instantiates the angle and gusset objects, stores key design dimen-

sions, and computes offsets based on the gusset and angle parameters.

The place method positions the angles and gusset plates relative to a given coordinate

system, applying offsets to center the components correctly.

The create model method generates the individual 3D models and fuses them using

boolean operations to produce the final integrated assembly.

Python Code

The Python script is shown below. Each section is commented for clarity.

Listing 4.2: class BackToBackAnglesWithGussetsSameSide

1 %--------------------begin code -------------

2 class BackToBackAnglesWithGussetsOppSide:

3 def __init__(self , L, A, B, T, R1 , R2 , gusset_L , gusset_H , gusset_T

, gusset_degree , spacing =2):

4 """

5 Creates back -to -back angles with gusset plates automatically

positioned at the ends and perfectly centered

35

6 Args:

7 L: Length of the angle

8 A: Vertical leg length

9 B: Horizontal leg length

10 T: Thickness

11 R1, R2: Corner radii

12 gusset_L: Length of gusset plate

13 gusset_H: Height of gusset plate (width of the shorter end)

14 gusset_T: Thickness of gusset plate

15 gusset_degree: Angle of gusset plate

16 spacing: Gap between angles (including both angle

thicknesses)

17 """

18 self.angle1 = Angle(L, A, B, T, R1 , R2)

19 self.angle2 = Angle(L, B, A, T, R1 , R2)

20 self.gusset1 = GassetPlate(gusset_L , gusset_H , gusset_T ,

gusset_degree)

21 self.gusset2 = GassetPlate(gusset_L , gusset_H , gusset_T ,

gusset_degree)

22 self.spacing = spacing

23

24 # Store dimensions for later use

25 self.L = L

26 self.A = A # Vertical leg length

27 self.B = B # Horizontal leg length

28 self.T = T # Angle thickness

29 self.gusset_L = gusset_L

30 self.gusset_H = gusset_H

31 self.gusset_T = gusset_T

32

33 # Calculate Z-offsets based on angle length

34 margin = gusset_L /2

35

36 # Calculate X offset to center the double angle on gusset plate

width

37 x_offset = gusset_H /2 # Center of gusset plate width

38

39 # Calculate Y offset for gusset plates

40 # For gusset1 , we need to account for its forward growth by

36

adding half its thickness

41 gusset1_y_offset = spacing /2 + gusset_T /2.0

42 # For gusset2 , we can use the center point since it grows

backwards

43 gusset2_y_offset = spacing /2 - gusset_T /2.0

44

45 self.gusset1_offsets = numpy.array([x_offset , gusset1_y_offset ,

margin])

46 self.gusset2_offsets = numpy.array([x_offset , gusset2_y_offset ,

L - margin])

47

48 # Base origin and directions

49 self.sec_origin = numpy.array([0, 0, 0])

50 self.uDir = numpy.array ([1.0, 0, 0])

51 self.wDir = numpy.array ([0.0, 0, 1.0])

52 self.vDir = numpy.cross(self.wDir , self.uDir)

53

54 def place(self , sec_origin , uDir , wDir):

55 """ Places the angles and gusset plates with perfect centering

on both axes """

56 self.sec_origin = sec_origin

57 self.uDir = uDir

58 self.wDir = wDir

59 self.vDir = numpy.cross(self.wDir , self.uDir)

60

61 # Calculate the offset needed to center angles on gusset plate

62 x_center_offset = (self.gusset_H - self.A)/2

63

64 # Place first angle with offset to center on gusset

65 angle1_origin = self.sec_origin + x_center_offset * self.uDir

66 rotated_uDir_angle1 = -self.vDir # Point the horizontal leg

towards negative y

67 rotated_vDir_angle1 = -self.uDir # Adjust vertical direction

accordingly

68 self.angle1.place(angle1_origin , rotated_uDir_angle1 , self.wDir

)

69

70 # Place second angle with spacing

71 angle2_origin = angle1_origin + self.spacing * self.vDir

37

72 rotated_uDir = self.uDir

73 rotated_vDir = -self.vDir

74 self.angle2.place(angle2_origin , rotated_uDir , self.wDir)

75

76 # Place first gusset plate

77 gusset1_origin = (

78 self.sec_origin

79 + self.gusset1_offsets [0] * self.uDir # X offset (centered

)

80 + self.gusset1_offsets [1] * self.vDir # Y offset (adjusted

for forward growth)

81 + self.gusset1_offsets [2] * self.wDir # Z offset (start

position)

82)

83 gusset1_uDir = numpy.array([0, 0, 1.0])

84 gusset1_wDir = numpy.array ([1.0, 0, 0])

85 self.gusset1.place(gusset1_origin , gusset1_uDir , gusset1_wDir)

86

87 # Place second gusset plate

88 gusset2_origin = (

89 self.sec_origin

90 + self.gusset2_offsets [0] * self.uDir # X offset (centered

)

91 + self.gusset2_offsets [1] * self.vDir # Y offset (at

center point)

92 + self.gusset2_offsets [2] * self.wDir # Z offset (end

position)

93)

94 gusset2_uDir = numpy.array([0, 0, -1.0])

95 gusset2_wDir = numpy.array ([1.0, 0, 0])

96 self.gusset2.place(gusset2_origin , gusset2_uDir , gusset2_wDir)

97

98 def create_model(self):

99 """ Creates the 3D model of back -to -back angles with gusset

plates """

100 # Create models

101 angle1_prism = self.angle1.create_model ()

102 angle2_prism = self.angle2.create_model ()

103 gusset1_prism = self.gusset1.create_model ()

38

104 gusset2_prism = self.gusset2.create_model ()

105

106 # Combine all shapes

107 angle1_with_gusset = BRepAlgoAPI_Fuse(angle1_prism ,

gusset1_prism).Shape ()

108 angle2_with_gusset = BRepAlgoAPI_Fuse(angle2_prism ,

gusset2_prism).Shape ()

109 final_shape = BRepAlgoAPI_Fuse(angle1_with_gusset ,

angle2_with_gusset).Shape ()

110

111 return final_shape

112 %-------------------- end code ---------------

Explanation of the Code

Explanation of the init Function

• Lines 18–22: Instantiates two angle objects and two gusset plate objects with pro-

vided dimensions and design parameters.

• Lines 25–31: Stores key geometric dimensions (such as lengths, leg dimensions, and

thicknesses) for later reference in positioning.

• Lines 33–46: Calculates offsets, including a margin based on gusset plate length

and offsets in the X and Y directions, to ensure gussets are centered relative to the

double angle configuration.

• Lines 49–52: Establishes the base coordinate system by defining an origin and unit

vectors for the directions, and computes the cross-product vector for consistent

spatial orientation.

Explanation of the place Function

• Lines 56–59: Updates the component’s local coordinate system by setting a new

origin and orientation vectors to guide the placement.

• Lines 61–68: Determines an additional X offset to center the angles relative to the

gusset plate width, and directly applies this offset to the first angle’s placement.

39

• Lines 71–74: Positions the second angle at a defined spacing from the first angle by

translating along the computed cross-product vector.

• Lines 77–96: Places the gusset plates at the start and end positions using the

precomputed gusset offsets, while assigning proper orientation vectors to ensure

correct alignment.

Explanation of the create model Function

• Lines 101–104: Generates the individual 3D models from the two angles and the

two gusset plates by invoking their respective model creation methods.

• Lines 107–108: Fuses the model of the first angle with its corresponding gusset

plate and similarly for the second angle, ensuring that each pairing forms a unified

subassembly.

• Line 109: Combines the two subassemblies into a final unified shape using a further

fusion operation.

• Return: Outputs the final 3D integrated model, representing the complete assembly

of back-to-back angles with oppositely centered gusset plates.

4.3.3 createStrutsInTrusses() in osdag/cad/common logic.py

The function ”createStrutsInTrusses” determines the type of strut profile to construct

based on the provided section profile stored in Col.sec profile.

For a simple ”Angles” profile, it computes key dimensions for a single angle and creates

a 3D model using the Angle class.

It prints numerical values such as length, leg dimensions, thickness, and radii. For profiles

labeled ”Back to Back Angles – Same side of gusset,” it computes design parameters and

uses the BackToBackAnglesWithGussetsSameSide class.

The function sets a fixed spacing value and example gusset plate dimensions, prints gusset

thickness, and selects leg assignments based on location.

It then positions the assembly by setting origin and direction vectors. For profiles labeled

”Back to Back Angles – Opposite side of gusset,” it similarly computes dimensions and

uses the BackToBackAnglesWithGussetsOppSide class.

40

The spacing for this case is set to the plate thickness, and dimensions are selected based

on the ”Long Leg” or ”Short Leg” designation.

After creating the appropriate assembly using one of the previous two classes, the function

places the assembly in 3D space.

Finally, it calls create model on the assembly to generate and return the final fused 3D

shape.

Python Code

The Python script is shown below. Each section is commented for clarity.

Listing 4.3: createStrutsInTrusses()

1 %--------------------begin code -------------

2 def createStrutsInTrusses(self):

3 Col = self.module_class

4 Col.section_property = AngleComponent(designation = Col.

result_designation , material_grade = Col.material)

5 if Col.sec_profile =="Angles":

6

7 L = float(Col.length)

8 A = float(Col.section_property.max_leg)

9 B = float(Col.section_property.min_leg)

10 T = float(Col.section_property.thickness)

11 R1 = float(Col.section_property.root_radius)

12 R2 = float(Col.section_property.toe_radius)

13 print("Length (L):", L)

14 print("Max Leg (A):", A)

15 print("Min Leg (B):", B)

16 print("Thickness (T):", T)

17 print("Root Radius (R1):", R1)

18 print("Toe Radius (R2):", R2)

19

20 origin = numpy.array ([0. ,0. ,0.])

21 uDir = numpy.array ([1. ,0. ,0.])

22 wDir = numpy.array ([0. ,1. ,0.])

23

24 angle = Angle(L, A, B, T, R1, R2)

25 _place = angle.place(origin , uDir , wDir)

41

26 point = angle.computeParams ()

27 prism = angle.create_model ()

28

29 return prism

30 elif Col.sec_profile =="Back to Back Angles - Same side of

gusset":

31

32 L = float(Col.length)

33 T = float(Col.section_property.thickness)

34 R1 = float(Col.section_property.root_radius)

35 R2 = float(Col.section_property.toe_radius)

36 spacing = 6.0 # Gap between angles

37 print("Length (L):", L)

38 print("Thickness (T):", T)

39 print("Root Radius (R1):", R1)

40 print("Toe Radius (R2):", R2)

41

42 # Example dimensions for gusset plates

43 gusset_L = 100 # Length

44 gusset_H = 100 # Height

45 gusset_T = float(Col.plate_thickness) # Thickness

46 print("Gusset Thickness : ", Col.plate_thickness)

47 gusset_degree = 30 # Angle in degrees

48

49 # Create and display the assembly

50 origin = numpy.array ([0., 0., 0.])

51 uDir = numpy.array ([1., 0., 0.])

52 wDir = numpy.array ([0., 0., 1.])

53 if Col.loc == "Long Leg":

54 B = float(Col.section_property.max_leg)

55 A = float(Col.section_property.min_leg)

56 elif Col.loc == "Short Leg":

57 A = float(Col.section_property.max_leg)

58 B = float(Col.section_property.min_leg)

59 print("Vertical Leg :", A)

60 print("Horizontal Leg :", B)

61 assembly = BackToBackAnglesWithGussetsSameSide(L, A, B, T,

R1 , R2 , gusset_L , gusset_H , gusset_T , gusset_degree ,

spacing)

42

62 assembly.place(origin , uDir , wDir)

63 shape = assembly.create_model ()

64

65 return shape

66

67 elif Col.sec_profile =="Back to Back Angles - Opposite side of

gusset":

68

69 L = float(Col.length)

70 T = float(Col.section_property.thickness)

71 R1 = float(Col.section_property.root_radius)

72 R2 = float(Col.section_property.toe_radius)

73 spacing = float(Col.plate_thickness) # Gap between angles

74 print("Length (L):", L)

75 print("Thickness (T):", T)

76 print("Root Radius (R1):", R1)

77 print("Toe Radius (R2):", R2)

78

79

80 # Example dimensions for gusset plates

81 gusset_L = 100 # Length

82 gusset_H = 100 # Height

83 gusset_T = float(Col.plate_thickness) # Thickness

84 print("Gusset Thickness : ", Col.plate_thickness)

85 gusset_degree = 30 # Angle in degrees

86

87 # Create and display the assembly

88 origin = numpy.array ([0., 0., 0.])

89 uDir = numpy.array ([1., 0., 0.])

90 wDir = numpy.array ([0., 0., 1.])

91 if Col.loc == "Long Leg":

92 A = float(Col.section_property.max_leg)

93 B = float(Col.section_property.min_leg)

94 elif Col.loc == "Short Leg":

95 B = float(Col.section_property.max_leg)

96 A = float(Col.section_property.min_leg)

97 print("Vertical Leg :", A)

98 print("Horizontal Leg :", B)

99 assembly = BackToBackAnglesWithGussetsOppSide(L, A, B, T,

43

R1 , R2 , gusset_L , gusset_H , gusset_T , gusset_degree ,

spacing)

100 assembly.place(origin , uDir , wDir)

101 shape = assembly.create_model ()

102

103 return shape

104 %-------------------- end code ---------------

Explanation of the Code

• Lines 1–5: The function begins by retrieving the module’s column properties and

setting the section properties using an AngleComponent object if the strut is a sim-

ple angle. It prints out the primary dimensions (such as length, leg sizes, thickness,

and radii) for debugging and verification.

• Branch for ”Angles”: For a basic angle profile, the code instantiates an Angle object

with the computed dimensions. It then calls methods to position the angle, compute

any additional parameters, and generate its 3D model, returning the resulting prism.

• Branch for ”Back to Back Angles – Same side of gusset”: If the section profile

matches this type, the function establishes specific gusset plate dimensions and spac-

ing. It prints relevant parameters, adjusts the vertical and horizontal leg dimensions

based on location, and then utilizes the previously defined BackToBackAnglesWith-

GussetsSameSide class. The assembly is positioned using a common origin and unit

vectors before its 3D model is created and returned.

• Branch for ”Back to Back Angles – Opposite side of gusset”: In this case, a slightly

different spacing is used (equal to the plate thickness), and the leg dimensions

are adjusted accordingly. The assembly is constructed with the BackToBackAn-

glesWithGussetsOppSide class. After setting its placement with the specified origin

and directions, the final shape is generated by fusing the constituent components

and then returned.

44

Chapter 5

Internship Task 3: Creating CADs

for Flexural Members

5.1 Task 3: Problem Statement

Display columns oriented horizontally in the CAD window. For now, both the Simply

Supported Beam and Cantilever Beam submodules display the same CAD.

5.2 Task 3: Tasks Done

The column geometry should be changed to place the columns horizontally. Separate

functions should be made for both the submodules. The functions should use the class

given in ISection.py.

5.2.1 Methodology Behind the Creation of the CAD Model

1. Geometric Definition: We start by defining the cross-sectional geometry of the

component using a set of points. These points are used to create edges, which

are then combined into a closed wire and converted into a face representing the

cross-section.

2. Extrusion for 3D Solid: Extrude the cross-sectional face along a specified di-

rection and length to create a 3D solid model of the component. This step adds

volume to the 2D geometry, forming the primary structure.

45

3. Feature Integration: If additional features (e.g., notches) are required, calculate

their precise placement relative to the main geometry using vector transformations.

Create the feature as a separate model and subtract it from the primary solid using

Boolean operations, modifying the geometry as needed.

4. Coordinate System and Orientation Setup: Establish a local coordinate sys-

tem with defined origin and directional vectors (e.g., x-axis for horizontal align-

ment). This ensures that all subsequent operations are performed in a consistent

spatial framework.

5. Placement and Alignment: Position the component in 3D space by aligning

it with the desired orientation (e.g., horizontal along the x-axis). Use calculated

vectors to ensure proper alignment relative to other structural elements.

6. Model Assembly: Combine all components and features into a unified CAD

model. Ensure that all transformations, placements, and orientations are applied

consistently to create an accurate representation of the final structure.

7. Final Output: Generate and return the completed 3D model.

5.3 Task 3: Python Codes

5.3.1 create model() in osdag/cad/items/ISection.py

This function takes a set of defined points and transforms them into a 3D solid model. It

starts by generating edges, assembling them into a wire, and then constructing a face from

that wire. The face is extruded along a specified direction to create a prism. If a notch

feature is provided, it positions and integrates the notch by subtracting its geometry from

the solid using a boolean cut.

Python Code

The Python script is shown below. Each section is commented for clarity.

Listing 5.1: create model()

1 %--------------------begin code -------------

2 def create_model(self):

46

3

4 edges = makeEdgesFromPoints(self.points)

5 wire = makeWireFromEdges(edges)

6 aFace = makeFaceFromWire(wire)

7 extrudeDir = self.length * self.wDir # extrudeDir is a numpy

array

8 prism = makePrismFromFace(aFace , extrudeDir)

9

10 if self.notchObj is not None:

11 uDir = numpy.array ([-1.0, 0.0, 0])

12 wDir = numpy.array ([0.0, 1.0, 0.0])

13 shiftOri = self.D / 2.0 * self.vDir + self.notchObj.width /

2.0 * self.wDir + self.B / 2.0 * -self.uDir # + self.

notchObj.width* self.wDir + self.T/2.0 * -self.uDir

14 origin2 = self.sec_origin + shiftOri

15

16 self.notchObj.place(origin2 , uDir , wDir)

17

18 notchModel = self.notchObj.create_model ()

19 prism = BRepAlgoAPI_Cut(prism , notchModel).Shape ()

20

21 return prism

22 %-------------------- end code ---------------

Explanation of the Code

• Lines 2-6: Transforms a set of points into basic geometric elements by creating

edges, linking them into a continuous wire, and forming a face that represents the

cross-sectional profile.

• Lines 7-8: Extrudes the face along a specified direction (scaled by the structural

member’s length) to form a solid prism.

• Lines 10-18: If a notch feature is defined, computes its precise position using vector

operations, positions the notch accordingly, creates the notch model, and removes

the corresponding material from the prism through a boolean cut.

• Return: Provides the final 3D model with integrated features (if any notch is

47

present).

5.3.2 createcolumnFlexGeometry() in osdag/cad/CompressionMem-

bers/column.py

The function ensures that the column is reoriented so that its main axis aligns horizontally

along the x-axis.

It establishes a new local coordinate system by setting the origin and defining unit vectors

along the x-axis (u-direction) and y-axis (w-direction).

The cross-sectional geometry is then placed into this coordinate system, and a 3D model

of the column is generated.

The resulting model is stored for further processing or visualization.

Python Code

The Python script is shown below. Each section is commented for clarity.

Listing 5.2: createcolumnFlexGeometry()

1 %--------------------begin code -------------

2 def createcolumnFlexGeometry(self):

3 """

4 Ensures the column is always horizontal along the x-axis.

5

6 :return: Geometric orientation of this component

7 """

8 # The origin of the column

9 columnOriginL = numpy.array ([0.0 , 0.0, 0.0])

10

11 # Set the column ’s local u-direction and w-direction

12

13 uDir = numpy.array ([1.0, 0.0, 0.0]) # Along x-axis

14 wDir = numpy.array ([0.0, 1.0, 0.0]) # Along y-axis (horizontal

)

15

16 # Place the section at the specified origin with the new

orientation

17 self.sec.place(columnOriginL , uDir , wDir)

18

48

19 # Create the column model based on the section and orientation

20 self.columnModel = self.sec.create_model ()

21 %-------------------- end code ---------------

Explanation of the Code

• Lines 8–14: Defines the base origin and establishes a new local coordinate system

by assigning unit vectors for the horizontal (x-axis) and vertical (y-axis) directions.

• Lines 16–17: Positions the existing cross-sectional geometry within this coordinate

system using the specified origin and directional vectors, ensuring consistent orien-

tation.

• Final Step: Stores the created model.

5.3.3 createSimplySupportedBeam() in osdag/cad/common logic.py

The code constructs a simply supported beam model by retrieving the optimum section

properties.

It converts these section parameters into a profile using an ISection object and sets the

beam’s effective length.

The beam is then positioned in a defined coordinate system, and a compression member

CAD model is created using these inputs.

Finally, it generates a 3D model for the simply supported beam for further analysis or

visualization. The same code is used in createCantileverBeam() function.

Python Code

The Python script is shown below. Each section is commented for clarity.

Listing 5.3: createSimplySupportedBeam()

1 %--------------------begin code -------------

2 def createSimplySupportedBeam(self):

3

4 Flex = self.module_class

5

6 print(f"Flex.support {Flex.support}")

49

7

8 Flex.section_property = Flex.section_connect_database(Flex ,

Flex.result_designation)

9 column_tw = float(Flex.section_property.web_thickness)

10 print(f"Flex.section_property.web_thickness : {Flex.

section_property.web_thickness}")

11 column_T = float(Flex.section_property.flange_thickness)

12 print(f"Flex.section_property.flange_thickness : {Flex.

section_property.flange_thickness}")

13 column_d = float(Flex.section_property.depth)

14 print(f"Flex.section_property.depth : {Flex.section_property.

depth}")

15 column_B = float(Flex.section_property.flange_width)

16 print(f"Flex.section_property.flange_width : {Flex.

section_property.flange_width}")

17 column_R1 = float(Flex.section_property.root_radius)

18 print(f"Flex.section_property.root_radius : {Flex.

section_property.root_radius}")

19 column_R2 = float(Flex.section_property.toe_radius)

20 print(f"Flex.section_property.toe_radius : {Flex.

section_property.toe_radius}")

21 column_alpha = 94 # Todo: connect this. Waiting for danish to

give variable

22 column_length = float(Flex.result_eff_len)*1000

23

24 sec = ISection(B=column_B , T=column_T , D=column_d , t=column_tw ,

R1=column_R1 , R2=column_R2 ,

25 alpha=column_alpha , length=column_length ,

notchObj=None)

26 _place=sec.place(numpy.array ([0. ,0. ,0.]),numpy.array

([1. ,0. ,0.]),numpy.array ([0. ,1. ,0.]))

27 col = CompressionMemberCAD(sec)

28

29 sec=sec.create_model ()

30 col.create_Flex3DModel ()

31

32 return sec

33 %-------------------- end code ---------------

50

5.3.4 Explanation of the Code

• Lines 4-8: The function starts by accessing the support type and retrieving section

properties — such as web thickness, flange thickness, depth, flange width, and the

root and toe radii.

• Lines 9-20: These parameters are printed for debugging and converted to appropri-

ate numerical types, and the effective beam length is computed and scaled.

• Line 24: An ISection object is instantiated using the extracted parameters, creating

the cross-sectional profile for the simply supported beam.

• Line 26: The cross-sectional geometry is positioned in a predefined coordinate sys-

tem with set origin and unit vectors.

• Line 27: A CompressionMemberCAD object is created based on the ISection, en-

suring that the model adheres to the specified placement.

• Line 29: The 3D model of the simply supported beam is generated by invoking the

creation routines on the ISection and the CompressionMemberCAD objects.

• Line 30: Finally, the complete model is returned, making it ready for further pro-

cessing, analysis, or visualization.

51

Chapter 6

CAD Manual

A manual to get started on working on CADs in Osdag has been made. It contains the

flow of logic in frontend and backend, accompanied by flowcharts and diagrams. New

interns may use the manual to understand the structure of the code and get started on

modifying the existing CADs and creating new ones. It is beginner-friendly and only

requires rudimentary knowledge of python and basic steel structures.

52

Chapter 7

Conclusions

7.1 Tasks Accomplished

7.1.1 Task 1: CAD for Columns with known support conditions

The geometry is constructed by defining points, creating edges, and forming a cross-

sectional face. This face is extruded along a specific direction to create a 3D solid.

Optional features like notches are integrated using boolean operations. A local coordinate

system ensures consistent orientation, and the cross-section is placed at a defined origin

with proper alignment for accurate 3D positioning.

7.1.2 Task 2: Creating CADs for Struts in Trusses

Individual components are created, including two angles and two gusset plates, each de-

fined with specific design parameters. A modular approach ensures these elements are

instantiated separately before integration. Strategic placement is achieved by calculating

orientation vectors and offsets, determining a central reference point, and arranging the

angles back-to-back with defined spacing while positioning gussets precisely at the ends.

Consistent coordinate systems and orientations are maintained to ensure proper align-

ment of all parts within the assembly. Finally, Boolean fusion operations are employed

to combine the individual models into a unified structure, consolidating all components

into a single, cohesive 3D model.

53

7.1.3 Task 3: Creating CADs for Flexural Members

Again, the process begins with defining the cross-sectional geometry using points, which

are converted into edges, wires, and a face. This face is extruded along a specified

direction to form a 3D solid, creating the primary structure. Additional features like

notches are integrated by calculating their positions and using boolean operations to

modify the geometry. A local coordinate system is established with defined origin and

directional vectors to ensure consistent alignment. The component is positioned in 3D

space with precise orientation relative to other elements. All components and features are

then combined into a unified CAD model, which is finalized and returned as the complete

3D representation.

7.2 Skills Developed

Technical Skills Gained

1. Parametric CAD Modeling

• Learned to create parametric 3D models using PythonOCC, including defin-

ing points, edges, wires, faces, and extruding them to construct structural

components.

2. Boolean Operations

• Gained expertise in integrating features like notches into models using precise

placements and Boolean operations (e.g., fusion and subtraction).

3. Coordinate Systems and Spatial Orientation

• Developed skills in defining local coordinate systems with origin points and

directional vectors for accurate placement and alignment of components in 3D

space.

4. Modular Design and Assembly

• Improved the ability to design modular components (e.g., angles, gusset plates)

and assemble them into complex structures using calculated offsets and orien-

tations.

54

5. Integration of Structural Profiles

• Enhanced knowledge of working with structural profiles like I-sections and

back-to-back angles, including extracting parameters from databases for accu-

rate modeling.

6. PythonOCC Workflow Optimization

• Learned to streamline CAD workflows in PythonOCC by breaking down mod-

eling tasks into logical steps such as geometry creation, extrusion, feature

integration, placement, and assembly.

Professional Skills Gained

1. Team Collaboration

• Improved teamwork by collaborating effectively with individuals from different

disciplines, ensuring smooth integration of ideas and workflows.

2. Effective Communication

• Practiced clear and concise communication of technical concepts to team mem-

bers through structured explanations and discussions.

3. Report Writing and Documentation

• Enhanced skills in documenting methodologies, creating detailed reports, and

presenting processes in a logical format for better understanding by diverse

audiences.

4. Cross-Disciplinary Coordination

• Learned to work with professionals from various disciplines, aligning technical

details with broader project requirements to achieve cohesive results.

These technical and professional skills collectively strengthen capabilities in compu-

tational geometry, CAD modeling, teamwork, and effective communication within engi-

neering projects.

55

Chapter A

Appendix

A.1 Work Reports

56

Name: Aryan Gupta
Project: Osdag

Date Day Task Hours worked
12-Nov-24 Tuesday Joining|Installed Osdag| Went through Osdag spoken tutorials 2
13-Nov-24 Wednesday Studied basics of compression and flexural members | Menu driven program which asks the user to selectbbetween a cylindrical and cuboidal compression member and enter fillet radius for filleted edges 3
14-Nov-24 Thursday Created custom installer for using Compression and Flexural member in Osdag 4
15-Nov-24 Friday Developed code to create and visualize an i-section beam using pythonocc, taking user parameters 4

16-Nov-24 Saturday Converting codebase to use pythonocc version 0.18 from version 0.8 to run osdag home page 4

17 to 30-Nov-24 END SEMESTER EXAMINATIONS AND TRAVEL

1-Dec-24 Sunday Installing and configuring Osdag using conda 2
2-Dec-24 Monday Checking 28 osi files using Osdag to see accuracy 3
3-Dec-24 Tuesday Isolated files required for creation of fin plate. Edited so that they can work independently from the Osdag main page without using conda package. Created a tracer wrapper script to track which function is being called from the osdag main page dynamically and store in a txt file.4
4-Dec-24 Wednesday Understanding nut.py,bolt.py,ModelUtils.py and ISection.py and their call order to see creation of fin plate. Replicated trace wrapper for Flexural member. 4
5-Dec-24 Thursday Understanding _init_.py under utilities, notch.py, beamWebBeamWebConnectivity.py, colWebBeamWebConnectivity.py 3
6-Dec-24 Friday Understand flexure.py and common_logic.py 4
7-Dec-24 Saturday Created trace_wrapper.py to see the flow of code in creating the CAD. 4
8-Dec-24 Sunday Understood the flow of logic in creating CADs for Columns with known support conditions. Rectified error in object type of Topo_DS_Shape . 3
9-Dec-24 Monday Displayed RHS/SHS and CHS column CADs with user input. 4

10-Dec-24 Tuesday Understood theory behind back to back angles 4
11-Dec-24 Wednesday Dispalyed individual angle for Angle section profile. 4
12-Dec-24 Thursday Understood theory behind Gusset plates. 4
13-Dec-24 Friday Created separate class for Back to back angles on same side of gusset plate. 3
14-Dec-24 Saturday Modified CAD for double angles to include optimim space in between. 4
15-Dec-24 Sunday BREAK
16-Dec-24 Monday Created separate class for Back to back angles on opposite side of gusset plate. 3
17-Dec-24 Tuesday Meeting with mentors for problems with CAD display 4
18-Dec-24 Wednesday Fixed discussed issues with Back to Back angles 4
19-Dec-24 Thursday Fixed dimensions of gusset plates after feedback from mentors 4
20-Dec-24 Friday Looked into the sqlite database for correct values of CADs with different result designations 3
21-Dec-24 Saturday Corrected dimensions being taken from user for back to back angles 4
22-Dec-24 Sunday Meeting to discuss problems with report generation 4
23-Dec-24 Monday Fixed dimensions being different in CAD and result designation 3
24-Dec-24 Tuesday Created common CAD for Cantlever Beam and Simply Supported Beam 3
25-Dec-24 Wednesday Fixed column orientation in Flexural Members 3
26-Dec-24 Thursday Created separate functions for cantilever beam and simply supported beam 3
27-Dec-24 Friday Explaored different options for adding black edges to the final CAD to prevent slowdown 4
28-Dec-24 Saturday Started with documentation for CAD manual 4
29-Dec-24 Sunday Added workflows for all CADs using trace_wrapper.py 4
30-Dec-24 Monday Started documentation for final internship report 3
31-Dec-24 Tuesday Attended meeting with mentors for report content and format

1-Jan-25 Wednesday BREAK

Bibliography

[1] Siddhartha Ghosh, Danish Ansari, Ajmal Babu Mahasrankintakam, Dharma Teja

Nuli, Reshma Konjari, M. Swathi, and Subhrajit Dutta. Osdag: A Software for

Structural Steel Design Using IS 800:2007. In Sondipon Adhikari, Anjan Dutta, and

Satyabrata Choudhury, editors, Advances in Structural Technologies, volume 81 of

Lecture Notes in Civil Engineering, pages 219–231, Singapore, 2021. Springer Singa-

pore.

[2] FOSSEE Project. FOSSEE News - January 2018, vol 1 issue 3. Accessed: 2024-12-05.

[3] FOSSEE Project. Osdag website. Accessed: 2024-12-05.

58

	Introduction
	National Mission in Education through ICT
	ICT Initiatives of MoE

	FOSSEE Project
	Projects and Activities
	Fellowships

	Osdag Software
	Osdag GUI
	Features

	Screening Task
	Problem Statement
	Tasks Done
	Calculations and Formulas

	Internship Task 1: CAD for Columns with known support conditions
	Task 1: Problem Statement
	Task 1: Tasks Done
	Task 1: Python Codes
	create_model() in osdag/cad/items/ISection.py
	createColumnGeometry() in osdag/cad/CompressionMembers/column.py
	createColumnInFrameCAD() in osdag/cad/common_logic.py

	Internship Task 2: Creating CADs for Struts in Trusses
	Task 2: Problem Statement
	Task 2: Tasks Done
	Methodology

	Task 2: Python Codes
	class BackToBackAnglesWithGussetsSameSide in osdag/cad/items/double_angles.py
	class BackToBackAnglesWithGussetsOppSide in osdag/cad/items/double_angles.py
	createStrutsInTrusses() in osdag/cad/common_logic.py

	Internship Task 3: Creating CADs for Flexural Members
	Task 3: Problem Statement
	Task 3: Tasks Done
	Methodology Behind the Creation of the CAD Model

	Task 3: Python Codes
	create_model() in osdag/cad/items/ISection.py
	createcolumnFlexGeometry() in osdag/cad/CompressionMem- bers/column.py
	createSimplySupportedBeam() in osdag/cad/common_logic.py
	Explanation of the Code

	CAD Manual
	Conclusions
	Tasks Accomplished
	Task 1: CAD for Columns with known support conditions
	Task 2: Creating CADs for Struts in Trusses
	Task 3: Creating CADs for Flexural Members

	Skills Developed

	Appendix
	Work Reports

	Bibliography

