
FOSSEE Winter Internship Report
On

Development of New Installer method and Working

on Report Generation of new modules for Osdag

Submitted by

Anuranjani

2nd Year B.Tech Student, Department of Electrical Engineering

Indian Institute of Technology

Jodhpur

Under the Guidance of

Prof. Siddhartha Ghosh

Department of Civil Engineering

Indian Institute of Technology Bombay

Mentors:

Ajmal Babu M S

Parth Karia

Ajinkya Dahale

January 8, 2025

Acknowledgments

• I would like to express my profound gratitude to all those who have supported and

guided me throughout this enriching journey. This project has been a significant

learning experience, made possible by the collective support of many individuals

and institutions.

• My sincere thanks go to the Project staff at the Osdag team - Ajmal Babu M. S.,

Ajinkya Dahale, and Parth Karia - for their constant support, technical expertise,

and willingness to share their knowledge. Their mentorship has been invaluable in

helping me overcome challenges and grow professionally.

• I am deeply grateful to Prof. Siddhartha Ghosh, Principal Investigator (PI) of

the Osdag project at the Department of Civil Engineering, IIT Bombay, for his

invaluable guidance and vision. His leadership has been instrumental in shaping

this project and my understanding of the field.

• I extend my heartfelt appreciation to Prof. Kannan M. Moudgalya, FOSSEE PI

from the Department of Chemical Engineering, IIT Bombay, for his oversight and

direction.

• The FOSSEE managers, Usha Viswanathan and Vineeta Parmar, along with their

entire team, have provided exceptional support and created an environment con-

ducive to learning and growth.

• This project would not have been possible without the support of the National

Mission on Education through Information and Communication Technology (ICT),

Ministry of Education (MoE), Government of India. Their commitment to advanc-

ing educational technology has made this opportunity possible.

1

• I am particularly thankful to my co-interns, whose collaboration and friendship

made this journey both enjoyable and intellectually stimulating. The daily interac-

tions, shared challenges, and mutual support have contributed significantly to my

professional development.

2

Contents

1 Introduction 5

1.1 National Mission in Education through ICT 5

1.1.1 ICT Initiatives of MoE . 6

1.2 FOSSEE Project . 7

1.2.1 Projects and Activities . 7

1.2.2 Fellowships . 7

1.3 Osdag Software . 8

1.3.1 Osdag GUI . 9

1.3.2 Features . 9

2 Screening Task 10

2.1 Problem Statement . 10

2.2 Tasks Done . 10

3 Internship Task 1: Resolve Import Path Issues and Float Error for

Mac UI Template 17

3.1 Task 1: Problem Statement . 17

3.2 Task 1: Tasks Done . 17

3.3 Task 1: Python Code . 18

4 Internship Task 2 Title: Resolve LaTeX Report Issues for Compres-

sion Members 21

4.1 Task 2: Problem Statement . 21

4.2 Task 2: Tasks Done . 21

4.3 Task 2: Python Code . 22

4.3.1 Report functions.py . 22

4.3.2 reportGenerator latex.py . 28

4.3.3 Column.py . 29

4.3.4 compression.py . 43

5 Internship Task 3 Title: Miscellaneous 54

3

5.1 Task 3: Problem Statement . 54

5.2 Task 3: Tasks Done . 54

5.3 Task 3: Python Code . 55

5.3.1 For fixing Output Dock Designation and Selected Member Data . 55

5.3.2 For fixing Input and Output Dock Images and Sketch 56

6 Internship Task 4 Title: Documentation of Report Generation and

the New Installer Method 59

6.1 Task 3: Problem Statement . 59

6.2 Task 3: Tasks Done . 59

6.3 Task 3: Documentation . 60

7 Conclusions 61

7.1 Tasks Accomplished . 61

7.2 Skills Developed . 61

A Appendix 63

A.1 Work Reports . 63

Bibliography 65

4

Chapter 1

Introduction

1.1 National Mission in Education through ICT

The National Mission on Education through ICT (NMEICT) is a scheme under the

Department of Higher Education, Ministry of Education, Government of India. It aims

to leverage the potential of ICT to enhance teaching and learning in Higher Education

Institutions in an anytime-anywhere mode.

The mission aligns with the three cardinal principles of the Education Policy—access,

equity, and quality—by:

• Providing connectivity and affordable access devices for learners and institutions.

• Generating high-quality e-content free of cost.

NMEICT seeks to bridge the digital divide by empowering learners and teachers in

urban and rural areas, fostering inclusivity in the knowledge economy. Key focus areas

include:

• Development of e-learning pedagogies and virtual laboratories.

• Online testing, certification, and mentorship through accessible platforms like EduSAT

and DTH.

• Training and empowering teachers to adopt ICT-based teaching methods.

For further details, visit the official website: www.nmeict.ac.in.

5

https://www.nmeict.ac.in
https://www.nmeict.ac.in

1.1.1 ICT Initiatives of MoE

The Ministry of Education (MoE) has launched several ICT initiatives aimed at students,

researchers, and institutions. The table below summarizes the key details:

No. Resource For Students/Researchers For Institutions

Audio-Video e-content

1 SWAYAM Earn credit via online courses Develop and host courses; accept
credits

2 SWAYAMPRABHA Access 24x7 TV programs Enable SWAYAMPRABHA
viewing facilities

Digital Content Access

3 National Digital Li-
brary

Access e-content in multiple dis-
ciplines

List e-content; form NDL Clubs

4 e-PG Pathshala Access free books and e-content Host e-books

5 Shodhganga Access Indian research theses List institutional theses

6 e-ShodhSindhu Access full-text e-resources Access e-resources for institu-
tions

Hands-on Learning

7 e-Yantra Hands-on embedded systems
training

Create e-Yantra labs with IIT
Bombay

8 FOSSEE Volunteer for open-source soft-
ware

Run labs with open-source soft-
ware

9 Spoken Tutorial Learn IT skills via tutorials Provide self-learning IT content

10 Virtual Labs Perform online experiments Develop curriculum-based exper-
iments

E-Governance

11 SAMARTH ERP Manage student lifecycle digi-
tally

Enable institutional e-
governance

Tracking and Research Tools

12 VIDWAN Register and access experts Monitor faculty research out-
comes

13 Shodh Shuddhi Ensure plagiarism-free work Improve research quality and
reputation

14 Academic Bank of
Credits

Store and transfer credits Facilitate credit redemption

Table 1.1: Summary of ICT Initiatives by the Ministry of Education

6

1.2 FOSSEE Project

The FOSSEE (Free/Libre and Open Source Software for Education) project promotes

the use of FLOSS tools in academia and research. It is part of the National Mission on

Education through Information and Communication Technology (NMEICT), Ministry of

Education (MoE), Government of India.

1.2.1 Projects and Activities

The FOSSEE Project supports the use of various FLOSS tools to enhance education and

research. Key activities include:

• Textbook Companion: Porting solved examples from textbooks using FLOSS.

• Lab Migration: Facilitating the migration of proprietary labs to FLOSS alterna-

tives.

• Niche Software Activities: Specialized activities to promote niche software tools.

• Forums: Providing a collaborative space for users.

• Workshops and Conferences: Organizing events to train and inform users.

1.2.2 Fellowships

FOSSEE offers various internship and fellowship opportunities for students:

• Winter Internship

• Summer Fellowship

• Semester-Long Internship

Students from any degree and academic stage can apply for these internships. Se-

lection is based on the completion of screening tasks involving programming, scientific

computing, or data collection that benefit the FLOSS community. These tasks are de-

signed to be completed within a week.

For more details, visit the official FOSSEE website.

7

https://fossee.in
https://fossee.in

Figure 1.1: FOSSEE Projects and Activities

1.3 Osdag Software

Osdag (Open steel design and graphics) is a cross-platform, free/libre and open-source

software designed for the detailing and design of steel structures based on the Indian

Standard IS 800:2007. It allows users to design steel connections, members, and systems

through an interactive graphical user interface (GUI) and provides 3D visualizations of

designed components. The software enables easy export of CAD models to drafting

tools for construction/fabrication drawings, with optimized designs following industry

best practices [1, 2, 3]. Built on Python and several Python-based FLOSS tools (e.g.,

PyQt and PythonOCC), Osdag is licensed under the GNU Lesser General Public License

(LGPL) Version 3.

8

1.3.1 Osdag GUI

The Osdag GUI is designed to be user-friendly and interactive. It consists of

• Input Dock: Collects and validates user inputs.

• Output Dock: Displays design results after validation.

• CAD Window: Displays the 3D CAD model, where users can pan, zoom, and

rotate the design.

• Message Log: Shows errors, warnings, and suggestions based on design checks.

Figure 1.2: Osdag GUI

1.3.2 Features

• CAD Model: The 3D CAD model is color-coded and can be saved in multiple

formats such as IGS, STL, and STEP.

• Design Preferences: Customizes the design process, with advanced users able to

set preferences for bolts, welds, and detailing.

• Design Report: Creates a detailed report in PDF format, summarizing all checks,

calculations, and design details, including any discrepancies.

For more details, visit the official Osdag website.

9

https://osdag.fossee.in

Chapter 2

Screening Task

2.1 Problem Statement

We were provided with a 3D Prism Viewer application that needs to be tested, packaged,

and documented. The task is divided into the following key areas:

1. Unit Testing: Develop comprehensive unit tests to validate the application’s func-

tionality, specifically focusing on the accuracy of surface area and volume calcula-

tions. The tests should adhere to Python’s best practices for unit testing.

2. Packaging: Package the application using Conda, ensuring proper environment

specifications and dependency management.

3. Documentation: Prepare and submit a detailed report in MS Word or LaTeX for-

mat. The report should document the testing methodology adopted and, packaging

steps during the task.

2.2 Tasks Done

Below is a summary of the tasks performed as part of the screening process:

1. Developed and executed unit tests to verify the accuracy of surface area and volume

calculations, ensuring the application adheres to its functional requirements.

10

Listing 2.1: Unit Tests File for the Prism Viewer

1 import unittest

2 import sqlite3

3 import sys

4 from PyQt5.QtWidgets import QApplication

5 from prism_viewer.main import PrismViewer

6 from prism_viewer.prism_calculator import PrismCalculator

7

8 class TestPrismViewerApp(unittest.TestCase):

9 @classmethod

10 def setUpClass(cls):

11 # Initialize the test database.

12 cls.conn = sqlite3.connect(’prisms.db’)

13 cls.cursor = cls.conn.cursor ()

14

15 # Create the application instance.

16 cls.app = QApplication(sys.argv)

17 cls.viewer = PrismViewer ()

18

19 def setUp(self):

20 # Reset the application state before each test.

21 self.viewer.designation_dropdown.setCurrentIndex (0)

22

23 def test_program_initialization(self):

24 self.assertEqual(self.viewer.windowTitle (), "Rectangular

Prism Viewer")

25

26 # Verify essential UI components.

27 self.assertIsNotNone(self.viewer.designation_dropdown)

28 self.assertIsNotNone(self.viewer.surface_area_label)

29 self.assertIsNotNone(self.viewer.volume_label)

30 self.assertIsNotNone(self.viewer.display_button)

31

32 # Check the database connections.

33 self.assertIsNotNone(self.viewer.conn)

34 self.assertIsNotNone(self.viewer.cursor)

35

36 # Check if the viewer has been created or not.

11

37 self.assertTrue(self.viewer.isHidden ())

38

39 @classmethod

40 def tearDownClass(cls):

41 cls.conn.close()

42

43 class TestPrismCalculator(unittest.TestCase):

44

45 def test_surface_area_calculation(self):

46 test_cases = [

47 # (length , width , height , expected_area = 2 * (length *

width + width * height + height * length))

48 (10, 5, 2, 2 * (10 * 5 + 5 * 2 + 2 * 10)), # Standard

case

49 (1, 1, 1, 6), # Unit

cube

50 (10, 10, 10, 600), # Equal

dimensions

51]

52

53 for length , width , height , expected in test_cases:

54 with self.subTest(f"Testing surface area with L={ length

}, W={ width}, H={ height}"):

55 result = PrismCalculator.surface_area(length , width

, height)

56 self.assertEqual(result , expected)

57

58 def test_volume_calculation(self):

59 test_cases = [

60 # (length , width , height , expected_volume = length *

width * height)

61 (10, 5, 2, 10*5*2) , # Standard case

62 (1, 1, 1, 1), # Unit cube

63 (10, 10, 10, 1000), # Equal dimensions

64]

65

66 for length , width , height , expected in test_cases:

67 with self.subTest(f"Testing volume with L={ length}, W={

width}, H={ height}"):

12

68 result = PrismCalculator.volume(length , width ,

height)

69 self.assertEqual(result , expected)

70

71 def test_zero_value_calculation(self):

72 # To check if zero is returned for zero dimensions.

73 # Surface area tests

74 self.assertEqual(PrismCalculator.surface_area (0, 0, 0), 0)

75 self.assertEqual(PrismCalculator.surface_area (5, 0, 0), 0)

76 self.assertEqual(PrismCalculator.surface_area (0, 5, 0), 0)

77 self.assertEqual(PrismCalculator.surface_area (0, 0, 5), 0)

78

79 # Volume tests

80 self.assertEqual(PrismCalculator.volume(0, 0, 0), 0)

81 self.assertEqual(PrismCalculator.volume(0, 5, 2), 0)

82 self.assertEqual(PrismCalculator.volume(5, 0, 2), 0)

83 self.assertEqual(PrismCalculator.volume(5, 2, 0), 0)

84

85 def test_negative_value_calculation(self):

86 # To ensure handling of errors for negative values.

87 negative_cases = [

88 (-10, 5, 2),

89 (10, -5, 2),

90 (10, 5, -2),

91 (-1, -1, -1)

92]

93

94 for length , width , height in negative_cases:

95 with self.subTest(f"Testing negative values L={ length},

W={width}, H={ height}"):

96 with self.assertRaises(ValueError):

97 PrismCalculator.surface_area(length , width ,

height)

98 with self.assertRaises(ValueError):

99 PrismCalculator.volume(length , width , height)

100

101 if __name__ == ’__main__ ’:

102 unittest.main()

13

2. Packaged the Prism Viewer application using Conda, creating a well-defined envi-

ronment with all dependencies managed effectively.

Listing 2.2: Conda-Recipe for the application

1 {% set name = "prism_viewer" %}

2 {% set version = "0.1.1" %}

3

4 package:

5 name: {{ name|lower }}

6 version: {{ version }}

7

8 source:

9 path: ..

10

11 build:

12 number: 0

13 script: "{{ PYTHON }} -m pip install . -vv"

14 entry_points:

15 - prism_viewer = prism_viewer.main:main

16 skip: true # [py <311]

17

18 requirements:

19 build:

20 - python =3.11

21 - {{ compiler(’cxx’) }}

22 host:

23 - python =3.11

24 - pip

25 - setuptools =75.3.0

26 - numpy =1.26.4

27 - swig

28 - pythonocc -core =7.8.1

29 - pyqt =5.15.9

30 run:

31 - python =3.11

32 - {{ pin_compatible(’numpy’) }}

33 - pyqt =5.15.9

34 - pythonocc -core =7.8.1

35 - sqlite

14

36 - occt =7.8.1

37 - six =1.16.0

38 - svgwrite

39 - qt =5.15.9

40

41 test:

42 imports:

43 - prism_viewer

44 - OCC

45 - PyQt5

46 requires:

47 - unittest -xml -reporting

48 commands:

49 - python -m unittest discover -s prism_viewer/tests/

50 source_files:

51 - prism_viewer/tests/

52

53 about:

54 home: "https :// github.com/anuranjani23/fossee -3D-rectangular -

prism -viewer.git"

55 license: MIT

56 license_family: MIT

57 license_file: LICENSE

58 summary: "A PyQt5 and PythonOCC -based 3D rectangular prism viewer

application"

59 description: |

60 A 3D viewer application for rectangular prisms built using

PyQt5 and PythonOCC.

61 Features include surface area and volume calculations ,

interactive 3D visualization ,

62 and SQLite database storage.

63 doc_url: https :// github.com/anuranjani23/fossee -3D-rectangular -

prism -viewer/blob/main/README.md

64 dev_url: https :// github.com/anuranjani23/fossee -3D-rectangular -

prism -viewer

65

66 extra:

67 recipe -maintainers:

68 - anuranjani23

15

69 platforms:

70 - linux

71 - osx

72 - win -64

Listing 2.3: Enviornment YML file

1 name: prism_viewer_env

2 channels:

3 - conda -forge

4 dependencies:

5 - python =3.11

6 - pyqt =5.15.9

7 - numpy =1.26.4

8 - pythonocc -core =7.8.1

9 - swig

10 - sqlite

11 - occt =7.8.1

12 - six =1.16.0

13 - svgwrite

14 - qt =5.15.9

15 - pip

3. Documented the entire process, including testing approaches, packaging methods,

and the rationale behind critical decisions, in a structured report prepared using

LaTeX. The report can be found here.

4. Demonstrated proficiency in Python programming, focusing on Object-Oriented

Programming (OOP) principles, unit testing, and industry-standard packaging prac-

tices with Conda and PIP building and packaging.

16

https://www.overleaf.com/read/qzfjbqxybhmy#2b4fa5

Chapter 3

Internship Task 1: Resolve Import

Path Issues and Float Error for Mac

UI Template

3.1 Task 1: Problem Statement

The task involved resolving critical issues in the Mac UI template concerning float han-

dling and import paths. The primary challenges involved debugging and fixing float-

related errors that were affecting the UI rendering, along with restructuring the import

system.

3.2 Task 1: Tasks Done

My responsibilities included identifying and resolving float computation errors, removing

redundant imports that were cluttering the codebase, and standardizing the import paths

to use relative references for better maintainability. This optimization task aimed to

enhance the template’s reliability and maintain consistent coding standards across the

UI framework.

17

3.3 Task 1: Python Code

This section presents the changes made to the Python script for the UI template of Mac.

The figures below illustrate these changes:

18

19

20

Chapter 4

Internship Task 2 Title: Resolve La-

TeX Report Issues for Compression

Members

4.1 Task 2: Problem Statement

Fixing and completing the Report Generation for both modules of Compression Members,

”Columns with known support conditions” and ”Struts in Trusses”.

4.2 Task 2: Tasks Done

The task primarily focused on debugging the Python source files associated with both

modules to ensure the successful generation of the report. This involved addressing

errors in the code and ensuring all components worked seamlessly together. The next

step was to complete and refine the code responsible for generating the content of the

report, including integrating CAD-generated images into the appropriate sections of the

document.

To achieve this, several new functions were written, while existing functions were

carefully reviewed and fixed to address any issues. Additionally, meticulous attention

was given to verifying calculations, ensuring accurate results. The LaTeX formatting of

the report was also reviewed and corrected to maintain a cleaner appearance, including

proper alignment, spacing, and consistency. The integration of images into the report

21

was carefully managed to ensure they were placed in the correct order and contextually

aligned with the content. With this, addition of the failed design Report was also ensured,

i.e. if the CAD generation fails, the Report is able to generate still.

Another critical aspect of the task was fixing the design log. This involved resolving

issues with excessive or overflowing logger messages, which were being inappropriately

printed in the report. By implementing these fixes, the task aimed to ensure that the

report generation process was robust, accurate, and met all requirements.

4.3 Task 2: Python Code

The figures below describe the changes made, and the new functions that were added

accordingly:

4.3.1 Report functions.py

Firstly in the Report functions.py, the functions that were added are as follows: Both

the cl 3 7 2 section classification angle required function and the

cl 3 7 2 section classification angle provided function were responsible for the

Section Classification check in the ”Struts in Trusses” module. Then in the same mod-

ule, the cl 7 5 1 2 effective slenderness ratio function was added which is used to

print Slenderness Ration when load type is not ”Concentric Load”. Then after that,

calculate buckling class was added to calculate the Buckling Class curve for the

”Column with known support conditions” module, using this function, both the functions

comp column class section check required and comp column class section check provided

were responsible for the addition of Buckling Class - Compatibility check in the Design

Check of the Report of same module.

22

Figure 4.1: From Report functions.py

23

Figure 4.2: From Report functions.py

24

Figure 4.3: From Report functions.py

25

Figure 4.4: From Report functions.py

26

Figure 4.5: From Report functions.py

27

Figure 4.6: From Report functions.py

4.3.2 reportGenerator latex.py

Custom table formatting for Imperfection Factor Check in ”Column with known support

conditions” module.

28

Figure 4.7: From reportGenerator latex.py

4.3.3 Column.py

In the Column.py, section classification and save design functions were modified

and common result function was added, a failure dictionary was added as well to fall

back to for report generation when design status fails. The last 4 images were integrated

as well.

29

Figure 4.8: From Column.py

30

Figure 4.9: From Column.py

31

Figure 4.10: From Column.py

32

Figure 4.11: From Column.py

33

Figure 4.12: From Column.py

34

Figure 4.13: From Column.py

35

Figure 4.14: From Column.py

36

Figure 4.15: From Column.py

37

Figure 4.16: From Column.py

Figure 4.17: From Column.py

38

Figure 4.18: From Column.py

39

Figure 4.19: From Column.py

40

Figure 4.20: From Column.py

Figure 4.21: From Column.py

41

Figure 4.22: From Column.py

Figure 4.23: From Column.py

42

Figure 4.24: From Column.py

4.3.4 compression.py

In the compression.py, section classification and save design functions were mod-

ified, a failure dictionary was added as well to fall back to for report generation when

design status fails. The last 4 images were integrated as well similar to compression.py.

43

Figure 4.25: From compression.py

44

Figure 4.26: From compression.py

45

Figure 4.27: From compression.py

46

Figure 4.28: From compression.py

47

Figure 4.29: From compression.py

48

Figure 4.30: From compression.py

49

Figure 4.31: From compression.py

50

Figure 4.32: From compression.py

51

Figure 4.33: From compression.py

Figure 4.34: From compression.py

52

Figure 4.35: From compression.py

53

Chapter 5

Internship Task 3 Title: Miscellaneous

5.1 Task 3: Problem Statement

Several issues and errors were encountered across various functionalities and features, in-

cluding image rendering problems, unexpected float type errors, and ineffective input/out-

put docks. Specific challenges were noted in the BC-End Plate Typical Sketch and the

compression members’ output dock, which failed to perform as intended. Additionally,

discrepancies in selected member data and ineffective lengths for flexural members fur-

ther complicated the workflow, requiring corrections and updates to ensure accuracy and

functionality.

5.2 Task 3: Tasks Done

The image issues and float type errors were resolved by type-casting the problem causing

variables to int(). Adjustments were made to the input dock image paths by converting

them to absolute path instead of relative, ensuring seamless operation and addressing

any image-related discrepancies. The BC-End Plate Typical Sketch was causing an error

due to a similar float-type error in the ui template.py file and was rectified again by

type-casting the problem causing variables to int() to reflect the required design sketch

correctly. The output dock for compression members and the selected member data

functionality were fixed to provide accurate results of the most optimum section instead

of a random section from the input list as it was doing before. Effective lengths for

flexural member modules were fixed to show the lengths for the most optimum section

54

instead of a random section, which was varying each time to ensure compliance with

design standards. These fixes collectively enhanced the reliability and precision of the

system.

5.3 Task 3: Python Code

The bug-fixes for some of these miscellaneous tasks are described below:

5.3.1 For fixing Output Dock Designation and Selected Member

Data

Figure 5.1: From Column.py

55

Figure 5.2: From compression.py

5.3.2 For fixing Input and Output Dock Images and Sketch

These path changes were made to all the python source files for each module of the

Connection and Compression Members, wherever suitable.

56

Figure 5.3: From compression.py

57

Figure 5.4: From compression.py

58

Chapter 6

Internship Task 4 Title: Documen-

tation of Report Generation and the

New Installer Method

6.1 Task 3: Problem Statement

Effective documentation is required to support the ongoing development and maintenance

of Osdag, focusing on two critical areas: the report generation process and the new

installer method. For report generation, there is a need to document how reports are

created, including the commands, scripts, and files involved, to provide a clear reference

for new interns and project staff. Additionally, the philosophy and implementation of the

new installer method need to be articulated to ensure a comprehensive understanding of

its purpose and functionality, enabling seamless onboarding and troubleshooting.

6.2 Task 3: Tasks Done

The report generation process in Osdag has been meticulously documented, outlining

the sequence of steps, key files, and commands utilized. This includes details about the

specific scripts that control report formatting, how each data is processed, and output

generation, providing a practical guide for newcomers. For the new installer method, the

underlying philosophy and its implementation steps have been clearly articulated. This

documentation highlights the rationale behind the new approach, the changes made from

59

previous methods, and the specific functionalities added. Together, these efforts create a

robust resource to assist future contributors in understanding and improving these areas.

6.3 Task 3: Documentation

The links for documentation are as follows:

• For Report Generation: Click here.

• For New Installer Method: Click here.

60

https://www.overleaf.com/read/ypnsrtcyjynp#a8cf61
https://www.overleaf.com/read/xhqdndhxzqyw#e97f8a

Chapter 7

Conclusions

7.1 Tasks Accomplished

The issues related to the database, themes, and image paths have been successfully ad-

dressed for the new installer method. Additionally, report generation has been completed

for the ”Beams and Column” section profile in the ”Column with Known Support Con-

ditions” module, as well as for the ”Angles” section profile in the ”Struts in Trusses”

module. The issues regarding co-relation of CAD generated with the optimum section

results has been fixed, and the design log and output dock functionality have been fully

resolved for all section profiles across both modules. Comprehensive documentation has

been prepared detailing the report generation process and the new installer method.

7.2 Skills Developed

Throughout the internship, I strengthened my technical capabilities and collaborative

skillset. I gained more knowledge about GitHub’s advanced features for version control,

including branch management, pull request workflows, and merge conflict resolution. Us-

ing LaTeX, I created comprehensive technical documentation and reports while adhering

to professional formatting standards. I significantly expanded my Python programming

expertise by implementing the use of different libraries, and optimizing code performance.

In the area of software development practices, I gained hands-on experience with code re-

view methodologies, receiving constructive feedback from my mentors while maintaining

code quality standards. Through working with Conda, I developed proficiency in man-

61

aging virtual environments, handling package dependencies, and building distributable

applications. The collaborative nature of the internship enhanced my ability to work

effectively in cross-functional teams, communicate technical concepts clearly, and coordi-

nate multiple project timelines simultaneously.

62

Chapter A

Appendix

A.1 Work Reports

63

Sr. No. Date Day Task Hours Spent

1 12 November 2024 Tuesday
Joining | Install instructions for Osdag | Session with Ajinkya to discuss new intended process
and the current stage of the application. 2 to 3 hours.

2 13 November 2024 Wednesday Attempt to install on personal devices and record behaviour. 4 to 5 hours. (Kept running into issues.)
3 14 November 2024 Thursday Meeting with Ajinkya to finalize schedule. 1 hour.

4 15 November 2024 Friday Attempt installing using a Windows VM, and try on Mac again.
5 hours. (Found the correct process-flow
to follow and successfully installed.)

5 16 November 2024 Saturday Weekly Holiday | Successfully installed and got the application working on both the machines.
6 17 November 2024 Sunday Weekly Holiday
7 18 November 2024 Monday

Study break for examinations (Followed up with the progress of the team, tried debugging few
errors in the report generation.)

Spent the time according to the breaks in
between the exams.

8 19 November 2024 Tuesday
9 20 November 2024 Wednesday

10 21 November 2024 Thursday

11 22 November 2024 Friday
12 23 November 2024 Saturday
13 24 November 2024 Sunday
14 25 November 2024 Monday
15 26 November 2024 Tuesday

16 27 November 2024 Wednesday

Tested the working of the application after implementing the workarounds for database and
image issues in report generation | Review status of conda install and figure out schedule
related to NSIS.

3 hours. (+1 and half hour of the follow-up
meeting with Ajinkya and Nandagopal
regarding NSIS and review status of
conda install.)

17 28 November 2024 Thursday Resolve few path issues | See how temp image files (the last 4 images in the report generated)
are created, tried implementing the tempfile module.

4 hours.
18 29 November 2024 Friday 4 to 4 and a half hours.
19 30 November 2024 Saturday Weekly Holiday

20 1 December 2024 Sunday
Weekly Holiday | Read about NSIS to familirize myself | Tried tinkering with the existing
Windows Installer script.

21 2 December 2024 Monday
Tested all the modules of the application, resolved few unexpected float errors, and checked
the PyQt-GUI, rendering and report generation of these modules.

4 hours. (Took a bit of time in doing trial
and error for the input specifications of the
modules.)

22 3 December 2024 Tuesday Travel
23 4 December 2024 Wednesday Follow up with Parth regarding the latex report generation of Compression Members.
24 5 December 2024 Thursday

Worked on the Column with know support conditions LaTeX Report Generation and Integration
wth CAD.

Spent 6 to 7 hours as per work required.
25 6 December 2024 Friday Spent 6 to 7 hours as per work required.
26 7 December 2024 Saturday 3 to 4 hours.
27 8 December 2024 Sunday 3 to 4 hours.
28 9 December 2024 Monday Spent 6 to 7 hours as per work required.
29 10 December 2024 Tuesday Spent 6 to 7 hours as per work required.
30 11 December 2024 Wednesday Spent 6 to 7 hours as per work required.
31 12 December 2024 Thursday Spent 6 to 7 hours as per work required.
32 13 December 2024 Friday Spent 6 to 7 hours as per work required.
33 14 December 2024 Saturday

Worked on the Struts in Trusses LaTeX Report Generation and Integration with CAD. Also
spent time on working with the new installer method, and NSIS part.

3 to 4 hours.
34 15 December 2024 Sunday 3 to 4 hours.
35 16 December 2024 Monday Spent 4 to 5 hours as per work required.
36 17 December 2024 Tuesday Spent 4 to 5 hours as per work required.
37 18 December 2024 Wednesday Spent 4 to 5 hours as per work required.
38 19 December 2024 Thursday Spent 4 to 5 hours as per work required.
39 20 December 2024 Friday Fixed the image issues related to Input Dock and resolved conflicts with merging. 4 hours.
40 21 December 2024 Saturday Weekly Holiday
41 22 December 2024 Sunday Weekly Holiday | Work on Documentation for New Installer. 2 hours.
42 23 December 2024 Monday

Resolved Output Dock and Design Log for Compression Members.
4 hours.

43 24 December 2024 Tuesday 2 hours.
44 25 December 2024 Wednesday Fixed Effective Length Issue in Flexure Members. 3 hours.
45 26 December 2024 Thursday Fixed Selected Member Data Issue in Compression Members. 4 hours.
46 27 December 2024 Friday

Worked on Documentation for Report Generation and New Installer Method.
3 hours.

47 28 December 2024 Saturday 5 hours.

Bibliography

[1] Siddhartha Ghosh, Danish Ansari, Ajmal Babu Mahasrankintakam, Dharma Teja

Nuli, Reshma Konjari, M. Swathi, and Subhrajit Dutta. Osdag: A Software for

Structural Steel Design Using IS 800:2007. In Sondipon Adhikari, Anjan Dutta, and

Satyabrata Choudhury, editors, Advances in Structural Technologies, volume 81 of

Lecture Notes in Civil Engineering, pages 219–231, Singapore, 2021. Springer Singa-

pore.

[2] FOSSEE Project. FOSSEE News - January 2018, vol 1 issue 3. Accessed: 2024-12-05.

[3] FOSSEE Project. Osdag website. Accessed: 2024-12-05.

65

	Introduction
	National Mission in Education through ICT
	ICT Initiatives of MoE

	FOSSEE Project
	Projects and Activities
	Fellowships

	Osdag Software
	Osdag GUI
	Features

	Screening Task
	Problem Statement
	Tasks Done

	Internship Task 1: Resolve Import Path Issues and Float Error for Mac UI Template
	Task 1: Problem Statement
	Task 1: Tasks Done
	Task 1: Python Code

	Internship Task 2 Title: Resolve LaTeX Report Issues for Compression Members
	Task 2: Problem Statement
	Task 2: Tasks Done
	Task 2: Python Code
	Report_functions.py
	reportGenerator_latex.py
	Column.py
	compression.py

	Internship Task 3 Title: Miscellaneous
	Task 3: Problem Statement
	Task 3: Tasks Done
	Task 3: Python Code
	For fixing Output Dock Designation and Selected Member Data
	For fixing Input and Output Dock Images and Sketch

	Internship Task 4 Title: Documentation of Report Generation and the New Installer Method
	Task 3: Problem Statement
	Task 3: Tasks Done
	Task 3: Documentation

	Conclusions
	Tasks Accomplished
	Skills Developed

	Appendix
	Work Reports

	Bibliography

