i F
-l T —

tterf

¢c atiom

Summer Internship Report
on
Mixed Signal/Digital Simulation in eSim

Submitted by
Nameera Jabi
B.Tech
Electronics and Communication Engineering
Jamia Millia Islamia,New Delhi.

Under the guidance of
Prof. Kannan M. Moudgalaya
Chemical Engineering Department
II'T Bombay

June 7, 2024

Acknowledgement

I am thankful to the FOSSEE team for providing me with an incredible
and educational opportunity. Their support and guidance have made a sig-
nificant impact on my learning journey. I am grateful for the valuable expe-
rience they have given me. I am deeply grateful to the FOSSEE Team at II'T
Bombay for entrusting me with this project and believing in my capabilities.
This opportunity has been invaluable to my growth and development, and I
sincerely appreciate their support.

I would like to express my gratitude to Prof. Kannan M. Moudgalaya for
his valuable and constructive guidance throughout this FOSSEE fellowship
program.

I would like to express my heartfelt appreciation to my mentors, Mr.
Sumanto Kar, Mr. Rahul Paknikar, Mrs. Madhuri Kadam, Prof. Inderjit
Singh Dhanjal, Mrs. Usha Vishwanathan, and the entire team. Their unwa-
vering support and invaluable guidance throughout my internship have been
instrumental in my growth. I am truly grateful for their wealth of knowl-
edge and constructive suggestions that have greatly enhanced my learning
experiences.

I am committed to utilizing everything I have gained here for my personal
and professional growth, as well as for the advancement of our society.

Contents

1

Introduction 5
1.1 FOSSEE 5
1.2 eSim 5
1.3 NGHDL 5
1.4 Makerchipo 6
1.5 Ngspice 7
Features of eSim 8
Problem Statement 9
3.1 Approach 9
Adder 10
4.1 About 10
4.2 Verilog Code 10
4.3 Schematic Diagram 11
4-bit Counter 12
5.1 About 12
5.2 Verilog Code 12
5.3 Schematic- Diagram 13
Barrel Shifter 14
6.1 About 14
6.2 Verilog Code 14
6.3 Schematic Diagram 15
D Flip Flop 16
7.1 About 16
7.2 Verilog Code 16
7.3 Schematic Diagram 16
Multiplexer 2x1 17
81 About 17
8.2 Verilog Code 17
8.3 Schematic Diagram 18

9 BCD to seven segment converter 19

9.1 About 19
9.2 Verilog Code 19
9.3 Schematic Diagram 20
10 References 21

1 Introduction

1.1 FOSSEE

FOSSEE (Free/Libre and Open Source Software for Education) is a project
part of the National Mission on Education through Information and Com-
munication Tech- nology (ICT), Ministry of Human Resource Development
(MHRD), Government of India. FOSSEE has developed various open source
tools and promotes the use of these tools in improving the quality of ed-
ucation and helping every individual avail these sources free of cost. The
softwares is being developed in such a way that it can stay relevant with
respect to the commercial softwares.

1.2 eSim

eSim is a free/libre and open source Electronic Design Automation (EDA)
tool developed by FOSSEE (Free and Open Source Software for Education)
at IIT Bombay. It provides a comprehensive platform for circuit design,
simulation, analysis, and PCB (Printed Circuit Board) design. eSim is built
using various free/libre and open source software components, including:

1. KiCad: A popular EDA suite that offers schematic capture and PCB
layout tools.

2. Ngspice: A mixed-level /mixed-signal circuit simulator that can perform
analog, digital, and mixed-signal simulations.

3. NGHDL: An open source VHDL simulator that enables simulation and
analysis of digital circuits.

4. GHDL: Another open source VHDL simulator that supports the IEEE
1076 VHDL standard.

1.3 NGHDL

NGHDL is a mixed mode circuit simulator developed by FOSSEE, using
NgSpice and GHDL. The NGHDL feature makes it easier to create models
for eSims simulation of mixed-signal circuits defined by users. In NGHDL,
the analog and digital components communicate through sockets and NgSpice
is used to simulate the analog components and GHDL to simulate the digital
components. This feature was added to eSim so that a user who is familiar
with designing circuits in Verilog can do so with eSim. In order to write

Verilog code for a digital model and install it as a model in Ngspice, NGHDL
users an interface.

1.4 Makerchip

Makerchip is a browser-based IDE (Integrated Development Environment)
that allows users to simulate Verilog, System Verilog, and TL-Verilog. It is
developed using Verilator, which converts Verilog into C++ objects. Before
using NgVeri in eSim, the design can be simulated in Makerchip with random
inputs to ensure that it produces the desired and consistent results. Once
the design is successfully simulated, it can be used in mixed-signal designs.
These models can be used in digital/mixed signal simulations. Here are some
key features of Makerchip:

1. Browser-Based Environment: Makerchip allows users to perform Verilog
design tasks directly from their web browser. This eliminates the need for
local installations and provides flexibility in accessing the tools from any de-
vice with internet access.

2. Code, Compile, Simulate, and Debug: Users can write Verilog code, com-
pile it into a circuit representation, simulate the behavior of the design, and
debug any issues directly within the Makerchip environment. This integrated
workflow streamlines the design process, reducing the need for switching be-
tween different tools.

3. Seamless Integration: Makerchip offers tight integration between code,
block diagrams, waveforms, and novel visualization capabilities. This inte-
gration enhances the design experience by providing a cohesive and intuitive
interface for designing, visualizing, and analyzing circuits.

4. Advanced Verilog Design Capabilities: Makerchip introduces innovative
features and capabilities for advanced Verilog design. It incorporates ground-
breaking functionalities that facilitate complex digital circuit design tasks.
These capabilities empower users to tackle sophisticated design challenges
effectively.

5. User-Friendly Design Experience: Makerchip aims to make circuit design
easy and enjoyable for users of all skill levels. The platform provides a user-
friendly interface, intuitive workflows, and a range of helpful features that
simplify the design process and enhance the overall user experience.

1.5 Ngspice

ngspice is an open-source simulation program for electric and electronic cir-
cuits based on the SPICE (Simulation Program with Integrated Circuit Em-
phasis) simulation engine. It provides a powerful platform for simulating a
wide range of circuits, including analog, digital, and mixedsignal circuits.
Some key features and capabilities of ngspice:

1. Component Support: ngspice supports a variety of components and de-
vices, including JFETS, bipolar and MOS transistors, passive elements such
as resistors (R), inductors (L), and capacitors (C), diodes, transmission lines,
and more. These elements can be interconnected in a circuit using a netlist.
2. Mixed-Signal Simulation: ngspice allows you to simulate mixed-signal
circuits, which combine both analog and digital components. This enables
the analysis of complex systems that involve both continuous and discrete
signals.

3. Comprehensive Device Models: ngspice provides a wide range of device
models for active and passive components, covering both analog and digital
elements. These models are sourced from various collections, semiconductor
manufacturers, and semiconductor foundries. They include accurate descrip-
tions of device behavior and characteristics.

4. Graphical Outputs and Data Logging: The simulation results in ngspice
can be visualized through graphs showing currents, voltages, and other elec-
trical quantities. Additionally, the simulation data can be saved in a data
file for further analysis and processing.

5. Event-Driven Simulation: ngspice utilizes an event-driven simulation ap-
proach, which ensures efficient and fast simulation of digital circuits. It can
handle circuits ranging from simple gates to complex digital systems.

2 Features of eSim

1. Circuit Design and Schematic Capture: eSim provides a user-friendly in-
terface for designing electronic circuits. It offers a schematic capture tool
where users can create circuit diagrams by placing and connecting compo-
nents.

2. Component Libraries: eSim includes extensive libraries of electronic com-
ponents, such as resistors, capacitors, inductors, transistors, diodes, and in-
tegrated circuits (ICs). These libraries help users easily access and integrate
components into their designs.

3. Symbol and Footprint Creation: Users can create custom symbols and
footprints for components that are not available in the existing libraries.
This allows for the inclusion of specialized or unique components in circuit
designs.

4. Circuit Simulation: eSim integrates powerful simulation engines, such as
Ngspice, to simulate the behavior of electronic circuits. It supports analog,
digital, and mixed-signal simulations, enabling comprehensive analysis of cir-
cuit performance.

5. Waveform Viewer: The tool provides a waveform viewer that allows users
to visualize simulation results in the form of waveforms. This helps in ana-
lyzing and understanding circuit behavior, including voltage levels, currents,
and signal timing.

6. PCB Design and Layout: eSim seamlessly integrates with KiCad, a pop-
ular open-source PCB design tool. Users can transfer their circuit designs
from eSim to KiCad for further PCB layout and routing.

7. Interactive Simulation and Analysis: This feature facilitates real-time
monitoring and evaluation of circuit performance.

8. Open Source and Customization: eSim is built using free/libre and open-
source software, providing users with the freedom to modify and customize
the tool according to their specific requirements. It encourages collaboration
and community-driven development.

9. Educational Resources: eSim is developed with a focus on education. It
provides educational resources like tutorials, documentation, and example
circuits to help users learn and understand various aspects of circuit design
and simulation.

10. Cross-Platform Support: eSim is designed to work on multiple operating
systems, including Windows, Linux, and macOS, ensuring accessibility for
users across different platforms.

3 Problem Statement

Implementing open source microcontrollers/processors using NGHDL present
in eSim so that the user can simulate these processors in eSim by changing
the in- struction sets which can be changed from

le or by providing instruction through the input pins in KiCad.

3.1 Approach

The general approach which was implemented to the problem statement was
first searching for an open source processor on GitHub Project which has
open source licensing such as MIT license. Then the implementation process
is as follows:

The verilog code,each was tested in Vivado and then fed to Ngveri to see if
it converts correctly without throwing any error.

Then that individual block is simulated and the Ngspice waveform is gener-
ated to check the desired waveform.

After all the components are simulated the blocks are then simulated in mak-
erchip and a module is created to link the input instruction with that of the
processor top. Then the simulations and conversion takes place by adding
the other files as dependencies in ngveri.

The file is simulated in Ngspice to check the result of the processor instruc-
tion set.

4 Adder

4.1 About

The 4-bit adder circuit will incorporate a series of full adder subcircuits to
perform the addition operation. Each full adder will take in two bits from
A and B, as well as the carry generated from the previous stage. The full
adders will produce the corresponding sum bit and the carry bit for that
stage. The carry generated from the most significant stage (bit 3) will be the
final carry output of the 4-bit adder. The sum bits from each stage will be
combined to form the 4-bit sum output.

4.2 Verilog Code

module adder(PCINPUT,RESULT);
input [31:0] PCINPUT;

output [31:0] RESULT;

reg RESULT;

always@Q(PCINPUT)

begin

RESULT = PCINPUT+ 4;

end

endmodule

10

4.3 Schematic Diagram

Figure 1: 4-bit Adder

11

5 4-bit Counter

5.1 About

A 4-bit counter is a digital device that counts from 0 to 15 (in binary: 0000
to 1111) and then wraps around back to 0. It consists of four flip-flops, with
each flip-flop representing one bit. Counters can be implemented in various
ways, such as using synchronous or asynchronous designs.

5.2 Verilog Code

module counter(clk,reset,updown,load,data,count);
input clk,reset,load,updown;
input [3:0] data;

output reg [3:0] count;
always@(posedge clk)

begin

if(reset) //Set Counter to Zero
count <= 0;

else if(load)

count <= data;

else if(updown)

count <= count + 1;

else

count <= count — 1;
end

endmodule

12

5.3 Schematic Diagram

4
Ea

L gdc_bridge_f

SmE T Al

s N2 “out2

o 31 ins auts

: L auts

2 ins ouis

5 g ouTe

7 in7 aut7

B | ine oute

oo [+ for Jon | ot oo

plot_vl plot_viptot_jllat vl .

eSim_GND

Figure 2: 4-bit Counter

caunter

G

tesetd. - U7
loadl

Up_downd

data3

data2

aatal

data0

countd
count2
countl
countd

13

10

12

‘E ‘u "\’ ‘H

dac_bridge. b
1 ouTt
Nz ouT2
N3 U7 0uTs
ih4 ouTs

oo [t |un
L)
ut
e

plot.

lot_v1

lot_wl
plofvi B

6 Barrel Shifter

6.1 About

The barrel shifter is a digital circuit implemented using pure combinational
logic, which enables shifting a data word by a specified number of bits. It
climinates the need for sequential logic elements, making it a highly efficient
and fast solution for shifting operations. The circuit design employs a parallel
structure, allowing simultaneous shifting of multiple bits in parallel.
utilizing combinational logic elements, the barrel shifter achieves a high-speed
data shifting capability while maintaining simplicity in its architecture. This
circuit serves as a crucial component in digital systems and processors where

efficient data manipulation and rearrangement are required.

6.2 Verilog Code

module barrel_shifter_8bit (in, ctrl, out);
input [7:0] in;

input [2:0] ctrl;

output [7:0] out;

wire [7:0] x,y;

//4 bit shift right

mux2X1 ins17 (.in0(in[7]),.in1(1’b0),.sel(ctrl[2]),.out(x[7]));
mux2X1 ins16 (.in0(in[6]),.in1(1'b0),.sel(ctrl[2]),.out(x[6]));
mux2X1 ins15 (.in0(in[5]),.in1(1°b0),.sel(ctrl[2]),.out(x[5]));
mux2X1 ins14 (.in0(in[4]),.in1(1'b0),.sel(ctrl[2]),.out(x[4]));
mux2X1 ins13 (.in0(in[3]),.in1(in[7]),.sel(ctrl[2]),.out(x[3]));
mux2X1 ins12 (.in0(in[2]),.in1(in[6]),.sel(ctrl[2]),.out(x[2]));
mux2X1 ins11 (.inO(in[1]),.in1(in[5]),.sel(ctrl[2]),.out(x[1]));
mux2X1 ins10 (.in0(in[0]),.in1(in[4]),.sel(ctrl[2]),.out(x[0]));

//2 bit shift right

mux2X1 ins27 (.in0(x[7]),.in1(1'b0)..sel(ctrl[1]),.out(y[7]));
mux2X1 ins26 (.in0(x[6]),.in1(1'b0),.sel(ctrl[1]),.out(y[6]));
mux2X1 ins25 (.in0(x[5]),.in1(x[7]),.sel(ctrl[1]),.out(y[5]));
mux2X1 ins24 (.in0(x[4]),.in1(x[6]),.sel(ctrl[1]),.out(y[4]));
mux2X1 ins23 (.in0(x[3]),.in1(x[5]),.sel(ctrl[1]),.out(y[3]));
mux2X1 ins22 (.in0(x[2]),.in1(x[4]),.sel(ctrl[1]),.out(y[2]));
mux2X1 ins21 (.in0(x[1]),.in1(x[3]),.sel(ctrl[1]),.out(y[1]));

mux2X1 ins20 (.in0(x[0]),
//1 bit shift right

mux2X1 ins07 (.in0(y[7
mux2X1 ins06 (.in0(y|6
mux2X1 ins05
mux2X1 ins04
mux2X1 ins03
mux2X1 ins02
mux2X1 ins01 (.inO(y|1
mux2X1 ins00 (.in0(y|0

inl1(x[2]),.sel(ctrl[1]),.out(y[0]));

endmodule

6.3 Schematic Diagram

1
T e s ok
3 " L —Z 1z ©outz
= 3 s ours

1 e adc_bridge_8

Ina |~

It

ﬂ

e~

e |4 [o | ot s e

3

|

“ 2 e ouTh
Lt outs
2 @ L £ e aute
INT Quir
it _ i 2| g oute
N
Pl =

= b
=)

BSIm_GND

Figure 3: 8-bit Barrel Shifter

7 D Flip Flop

7.1 About

D flip-flop is the most important flip-flop in digitial circuit.D flip-flop is also
known as delay type flip-flop because output of d flip-flop is 1 clock pulse
delay of the input appled to the D flip-flop. When there is negative edge
trigger clock, it stores the previous input applied to the flip-flop. In positive
edge trigger of clock, input of the D flip-flop is stored.

7.2 Verilog Code

module dff(clk,reset,d,q);
input clk,reset,d;

output reg q;

always @ (posedge clk)begin

if(reset)
q<=0;
else

q <=d;
end
endmodule

7.3 Schematic Diagram

plot_v]

-
@fz'n.
S
2 1 adc_hridge_3 dff dac_bridge_1
L 1inNg 7 AL & L {cka q0 -2 L fing yq ot
2 N3 “aur 2 2 | peett - U?
J7 3 N3 qurs -2 3 a0

eSim_GND

Figure 4: D Flip Flop

16

(%]
plot_vl

8 Multiplexer 2x1

8.1 About

The 2x1 is a fundamental circuit which is also known 2-to-1 multiplexer that
are used to choose one signal from two inputs and transmits it to the output.
The 2x1 mux has two input lines, one output line, and a single selection line.
It has various applications in digital systems such as in microprocessor it is
used to select between two different data sources or between two different
instructions.

8.2 Verilog Code

module mux2_1(in0,in1,sel,out);
input sel;

input [7:0] in0;

input [7:0] inl;
output [7:0] out;

reg out;

always @Q(in0,inl,sel)
begin

if(sel==1"b1) begin
out =in0;

end

else

begin

out =inl;

end

endmodule

17

8.3 Schematic Diagram

{@ u_?_}- CI
i

plot_vl [plet_ vl plat v

nde_hridge % mus_ Lhit
Lt L o Bl

P
&1 o “
Bl ‘(nj)ﬁl.\. I[ﬂjj l

fow b |
=
¥

Figure 5: 2x1 Multiplexer

18

9 BCD to seven segment converter

9.1 About

BCD (Binary Coded Decimal) is an encoding scheme which represents each
of the decimal numbers by its equivalent 4-bit binary pattern. Seven seg-
ment displays comprise of seven individual segments formed by either Light
Emitting Diodes (LEDs) or Liquid Crystal Displays (LCDs) arranged in a
definite pattern.For the display to work, these segments are to be driven by
the certain logic level at their input.

9.2 Verilog Code

‘timescale 1ns / 1ps

module bed2sevenseg(input [3:0] bed, output reg [6:0] seg);
always @(bed)

begin

case (bed)

: seg <= 7'b1111110;

: seg <= 7'b0110000;
: seg <= 7'b1101101;
: seg <= 7'b1111001;
: seg <= T'b0110011;
: seg <= 7'b1011011;
:seg <= 7'b1011111;
: seg <= T7'b1110000;
:seg <= T'b1111111;
9:seg <= 7b1111011;
10 : seg <= 7'b1110111;
11: seg <= 7'00011111;
12 : seg <= 7'01001110;
13 : seg <= 7'00111101;

coO N O Ot Bk~ W NN = O

19

14 : seg <= 7'b1001111;
15 : seg <= 7'b1000111;
de fault : seg <= 7'b0000000;

endcase
end
endmodule

9.3 Schematic Diagram

524
i .
= s
r’%\\ [edc_bridge 4| . _ . . bcdZsevenseg. | _. dac_biidge_7,
ol v ouL —— b vigs - ——{ihL LT
- —Llie ooz 8 bz L7 aepd 2 Mo
AT J{ind = alnE T S ke L tegi |2 o L ours A
— P A oo B A poan vig3 - = ot =
e aeg? |2 ks o -
I cegl |20 o oiit L3
= @:} 1 vego (AL T i ours (L&
e
gt

eEam_GHD

Figure 6: BCD to Seven Segment Converter

20

10

https
https
https

https

References

./ Jwww.chipverify.com/verilog/verilog — 4 — bit — counter
./ [circuit fever.com/d — flip — flop — in — verilog
./ Jwww.electricaldu.com/bed — to — seven — segment — decoder/

. //github.com/TheSUPERC D /8bit_MicroComputer_V erilog/blob/master /V erilog M odui

21

