
Semester Long Internship Report

On

Digital and Mixed Signal Circuits in eSim

Submitted by

Mir Mousam Ali

B.Tech(Electronics and Communication)

Aliah University Kolkata

Under the guidance of

Prof.Kannan M. Moudgalya

Chemical Engineering Department

IIT Bombay

June 27, 2024

Acknowledgment

I am deeply grateful to the FOSSEE team for providing me a opportunity to embark
on a semester-long internship journey. This experience has been a pivotal chapter
in my academic and professional development, and I am thankful to all those who
have played a role in making it enriching and fulfilling.

I extend my heartfelt appreciation to my mentors, Mr. Sumanto Kar, whose
mentorship and guidance have been invaluable throughout my internship. Their
unwavering support, insightful feedback, and encouragement have empowered me to
navigate challenges, explore new horizons, and grow both personally and profession-
ally. I would also like to express my gratitude to the entire FOSSEE Team at IIT
Bombay for their warm welcome and collaborative spirit. Their collective expertise,
diverse perspectives, and camaraderie have created an inspiring environment con-
ducive to learning and growth. I am indebted to each member of the team for their
willingness to share knowledge, offer guidance, and foster a culture of excellence.

Each task and challenge has provided me with valuable learning experiences and
has equipped me with skills and insights that will undoubtedly shape my future
endeavors.

Furthermore, I extend my gratitude to my academic institution for facilitat-
ing this internship opportunity and for their continued support and encouragement
throughout the semester.

In conclusion, I am grateful for the privilege to have been a part of FOSSEE team
as a Intern and to have had the chance to collaborate with talented professionals in
a dynamic and innovative environment. This internship has been a transformative
experience, and I am excited to carry forward the lessons learned and insights gained
into my future endeavors. Thank you to everyone who has contributed to making
my internship journey memorable and rewarding.

1

Contents

1 Introduction 4
1.0.1 eSim . 4
1.0.2 Ngspice . 4
1.0.3 NGHDL . 5
1.0.4 Makerchip-NgVeri . 5

2 Problem Statement 6
2.1 Approach . 6
2.2 Problem in Implementing Zilog Z80 Microprocessor using NgVeri . . . 6

3 Universal Gate 7
3.1 Circuit Details . 7
3.2 VHDL Code for NAND Gate . 7
3.3 VHDL Code for NOR Gate . 8
3.4 Schematic Diagram . 8
3.5 Ngspice Plots . 9

4 3-Bit Ripple Counter 11
4.1 Circuit Details . 11
4.2 Verilog Code . 11
4.3 Schematic Diagram . 12
4.4 Ngspice Plots . 12

5 8-bit ALU 13
5.1 Circuit Details . 13
5.2 Verilog Code . 13
5.3 Schematic Diagram . 14
5.4 Ngspice Plots . 15

6 BCD to Seven Segment Decoder 18
6.1 Circuit Details . 18
6.2 Verilog Code . 18
6.3 Schematic Diagram . 19
6.4 Ngspice Plots . 19

2

7 Realization of T Flip flop using JK flip flop 21
7.1 Circuit Details . 21
7.2 Verilog Code for JK Flip Flop . 21
7.3 Schematic Diagram . 22
7.4 Ngspice Plots . 22
7.5 Python Plots . 23

8 Binary to Gray-Code Converter 25
8.1 Circuit Details . 25
8.2 Verilog Code . 25
8.3 Schematic Diagram . 26
8.4 Ngspice Plots . 26

9 Single Port Memory 28
9.1 Circuit Details . 28
9.2 Verilog Code . 28
9.3 Test bench Code . 29
9.4 Schematic Diagram . 30
9.5 Ngspice Plots . 30

10 PID Controller 33
10.1 Circuit Details . 33
10.2 Verilog Code . 33
10.3 Schematic Diagram . 35
10.4 Ngspice Plots . 35

11 Single Stage Delta-Sigma Digital to Analog Converter 37
11.1 Circuit Details . 37
11.2 Verilog Code . 37
11.3 Schematic Diagram . 39
11.4 Ngspice Plots . 39

12 Digital Calculator 42
12.1 Circuit Details . 42
12.2 Verilog Code . 42
12.3 Schematic Diagram . 43
12.4 Ngspice Plots . 43

Bibliography 48

3

Chapter 1

Introduction

1.0.1 eSim

The eSim circuit simulation software, developed by the FOSSEE team at IIT Bom-
bay, revolutionizes the accessibility and functionality of electronics simulation. It
represents a collaborative effort to democratize access to circuit simulation tools and
bridge the gap between theory and practice in electronics. With its open-source na-
ture, eSim fosters a culture of collaboration and customization, empowering users to
tailor the software to their specific needs. Its intuitive interface and comprehensive
simulation capabilities make it suitable for students, educators, and professionals
alike. From simple analog circuits to complex mixed-signal and power electronics
circuits, eSim caters to a diverse range of applications. Through this internship
report, we delve into the transformative potential of eSim in engineering education
and research, showcasing its impact on learning, experimentation, and innovation
in electronics.

1.0.2 Ngspice

Ngspice is an open-source mixed-level/mixed-signal electronic circuit simulator. It
allows you to simulate electric and electronic circuits, which can include a combi-
nation of components such as JFETs, bipolar transistors, MOS transistors, passive
elements (like resistors, inductors, or capacitors), diodes, transmission lines, and
other devicesall interconnected in a netlist.

Here are some key points about Ngspice:
1. Circuit Simulation: Ngspice numerically solves equations describing electronic

circuits. It models time-varying currents, voltages, noise, and small-signal behavior.
2. Mixed-Level/Mixed-Signal: You can simulate both analog and digital circuits.

From single gates to complex circuits, Ngspice handles a wide range of designs.
3. Device Models: Ngspice provides a wealth of device models for active, passive,

analog, and digital elements. These models come from collections, semiconductor
manufacturers, or foundries.

4. Netlist-Based Input: Instead of providing a schematic entry interface, Ngspice
accepts input in the form of a netlist. Users describe their circuits using a text-based
format.

4

5. SPICE Compatibility: Ngspice is SPICE-compatible, meaning you can apply
PSPICE or LTSPICE device model parameters and netlists for simulating discrete
circuits. It can also read HSPICE device libraries from semiconductor foundry
Process Design Kits (PDKs) for simulating integrated circuits.

1.0.3 NGHDL

NGHDL, a cornerstone of digital design, provides engineers and researchers with
a powerful platform for simulation and verification. Developed as an open-source
project, NGHDL embodies collaboration and innovation, drawing upon collective
expertise to deliver a sophisticated simulation environment. Rooted in Hardware
Description Languages (HDLs), NGHDL offers a versatile framework for modeling
complex digital systems with precision. Its robust simulation engine and compre-
hensive verification features enable engineers to validate designs efficiently, reducing
risks and accelerating time-to-market. From basic combinational circuits to ad-
vanced processor architectures, NGHDL supports a wide range of digital designs.
Throughout this internship report, we explore NGHDL’s diverse applications in ed-
ucation, research, and industrial projects, highlighting its pivotal role in driving
innovation in digital circuit design. By elucidating NGHDL’s capabilities, we un-
derscore its significance in shaping the future of digital design and verification.

1.0.4 Makerchip-NgVeri

Makerchip is a browser-based IDE (Integrated Development Environment) that al-
lows users to simulate Verilog, System Verilog, and TL-Verilog files. It is developed
using Verilator, which converts Verilog files into C++ objects. Before using NgVeri
in eSim, the design can be simulated in Makerchip with random inputs to ensure
that it produces the desired and consistent results. Once the design is successfully
simulated, it can be used in mixed-signal designs. These models can be used in
digital/mixed signal simulations.

5

Chapter 2

Problem Statement

The aim of this internship is to deploy digital and mixed-signal circuits within eSim
by leveraging NgVeri, a utility designed to translate Verilog models into NgSpice
format.

2.1 Approach

The methodology I adopted to implement the mixed-signal and digital circuit for
this project can be outlined as follows:

• I began by simulating each Verilog file of the circuit design in ModelSim to
confirm its correct functionality. Following this, I utilized NgVeri to validate
the conversion of these Verilog files, ensuring that there were no errors in the
process.

• Then that individual file is simulated and the Ngspice waveform is generated
to check the desired waveform.

• then I proceeded to create the final circuit design, encompassing all the com-
ponents, to visualize the complete system architecture and ensure the seamless
integration of both digital and mixed-signal elements.

• Following the creation of the final circuit design, the entire system was simu-
lated using Ngspice to validate its functionality and performance. This step
ensured that the integrated digital and mixed-signal circuit operated as in-
tended and met the project requirements.

2.2 Problem in Implementing Zilog Z80 Micro-

processor using NgVeri

I try to implement the Zilog Z80 Microprocessor main programm using NgVeri along
with the ALU Programm, Regiter file programm , core CPU programm. When i
try to convert these programm to Verilog to NgSpice its shows some errors . Some
of the compiler directives are not supported in verilator. That maybe an issue with
z80.

6

Chapter 3

Universal Gate

3.1 Circuit Details

A universal gate refers to a logic gate that can perform all the basic logic operations,
including AND, OR, NAND, and NOR. The NAND gate and NOR gate are com-
monly considered universal gates because they can be used to implement any logical
function. By combining multiple instances of a universal gate, complex digital cir-
cuits can be constructed efficiently. Universal gates are fundamental components in
digital circuit design due to their versatility and ability to simplify circuitry. Here
i simulate the NAND and NOR gate using NGHDL ,then I proceeded to create the
final circuit design.

3.2 VHDL Code for NAND Gate

library ieee;

use ieee.std_logic_1164.all;

entity nand_gate is

port(a: in std_logic;

b: in std_logic;

c: out std_logic

);

end nand_gate;

architecture beh of nand_gate is

begin

process(a, b)

begin

if (a=’1’ and b=’1’) then

c <= ’0’;

else

c <= ’1’;

end if;

end process;

end beh;

7

3.3 VHDL Code for NOR Gate

library ieee;

use ieee.std_logic_1164.all;

entity nor_gate is

port (a : in std_logic;

b : in std_logic;

c : out std_logic);

end nor_gate;

architecture rtl of nor_gate is

begin

^^I^^Ic <= a nor b;

end rtl;

3.4 Schematic Diagram

Figure 3.1: NAND Gate

8

Figure 3.2: NOR Gate

3.5 Ngspice Plots

Figure 3.3: NAND Gate

9

Figure 3.4: NOR Gate

10

Chapter 4

3-Bit Ripple Counter

4.1 Circuit Details

A 3-bit ripple counter is a digital circuit made up of three T flip-flops connected in
series. The output of each flip-flop acts as the clock input to the next flip-flop in
the sequence. The first flip-flop is driven by an external clock signal. Each flip-flop
toggles its state on the falling or rising edge of the clock pulse, creating a binary
counting sequence from 000 to 111, hence achieving a modulo-8 count. The ripple
effect refers to the sequential propagation of clock pulses through the flip-flops,
introducing slight delays between changes in each flip-flop’s state.

4.2 Verilog Code

‘timescale 1ns/1ns

module ripple_counter(

input clk_in, reset_in,

output reg [2:0] Q_out);

always @(negedge clk_in)

begin

if (reset_in == 1)

begin

Q_out = 3’b000;

end

else

begin

Q_out = Q_out + 1;

end

end

endmodule

11

4.3 Schematic Diagram

Figure 4.1: 3-bit ripple counter

4.4 Ngspice Plots

Figure 4.2: NgSpice Plot

12

Chapter 5

8-bit ALU

5.1 Circuit Details

An 8-bit Arithmetic Logic Unit (ALU) is a critical digital circuit used in computer
processors and various digital systems to perform arithmetic and logical operations.
The ”8-bit” designation indicates that the ALU processes data and instructions that
are 8 bits wide.The ALU processes 8 bits of data at a time, meaning it can handle
numbers and binary operations on values ranging from 0 to 255 (unsigned) or -
128 to 127 (signed, using two’s complement representation). The provided Verilog
code defines an 8-bit ALU capable of performing various arithmetic and logical
operations based on a 4-bit select input. The carry output indicates the presence
of a carry-out from addition operations. The placeholders for multiplication and
division indicate that additional logic is needed for these operations. This ALU is a
fundamental component that can be used in processors, microcontrollers, and other
digital systems requiring arithmetic and logic functionalities.

5.2 Verilog Code

module ALU_8bit (

input [7:0] A, B,

input [3:0] select,

output [7:0] out,

output carry

);

reg [7:0] ALU_Result;

wire [8:0] tmp;

assign out = ALU_Result;

assign tmp = {1’b0, A} + {1’b0, B};

assign carry = tmp[8];

13

always @(*) begin

case(select)

4’b0000: ALU_Result = A + B;

4’b0001: ALU_Result = A - B;

// Replace with appropriate logic for 8-bit multiplication

4’b0010: ALU_Result = 8’d0; // Placeholder for multiplication

// Replace with appropriate logic for 8-bit division

4’b0011: ALU_Result = 8’d0; // Placeholder for division

4’b0100: ALU_Result = A << 1;

4’b0101: ALU_Result = A >> 1;

4’b0110: ALU_Result = {A[6:0], A[7]};

4’b0111: ALU_Result = {A[0], A[7:1]};

4’b1000: ALU_Result = A & B;

4’b1001: ALU_Result = A | B;

4’b1010: ALU_Result = A ^ B;

4’b1011: ALU_Result = ~(A | B);

4’b1100: ALU_Result = ~(A & B);

4’b1101: ALU_Result = ~(A ^ B);

4’b1110: ALU_Result = (A > B) ? 8’d1 : 8’d0;

4’b1111: ALU_Result = (A == B) ? 8’d1 : 8’d0;

default: ALU_Result = A + B;

endcase

end

endmodule

5.3 Schematic Diagram

Figure 5.1: 8-bit ALU

14

5.4 Ngspice Plots

Figure 5.2: INPUT-1

Figure 5.3: INPUT-2

15

Figure 5.4: CARRY OUT

Figure 5.5: SELECTION LINE

16

Figure 5.6: OUTPUT

17

Chapter 6

BCD to Seven Segment Decoder

6.1 Circuit Details

A BCD (Binary-Coded Decimal) to 7-Segment Decoder is a digital circuit that
converts a BCD input (representing digits 0-9) into signals that can drive a 7-
segment display. A 7-segment display consists of seven LEDs (labeled a through
g) arranged to form a digit 0-9. The decoder maps each 4-bit BCD input to the
appropriate combination of these seven segments to display the corresponding digit.
The BCD input consists of four binary digits (bits) that represent a decimal digit.
The range of BCD is from 0000 (0) to 1001 (9). The 7-segment output controls the
seven LEDs to display the corresponding decimal digit. Each segment is controlled
by a separate output.

6.2 Verilog Code

module BCD_to_7_Segment_decoder(

input [3:0] bcd, // 4-bit BCD input signal

output reg [6:0] seg // 7-segment display output signal

);

always @ (bcd) begin

case(bcd)

4’b0000: seg = 7’b1000000;

4’b0001: seg = 7’b1111001;

4’b0010: seg = 7’b0100100;

4’b0011: seg = 7’b0110000;

4’b0100: seg = 7’b0011001;

4’b0101: seg = 7’b0010010;

4’b0110: seg = 7’b0000010;

4’b0111: seg = 7’b1111000;

4’b1000: seg = 7’b0000000;

4’b1001: seg = 7’b0010000;

default: seg = 7’b1111111;

18

endcase

end

endmodule

6.3 Schematic Diagram

Figure 6.1: BCD to Seven Segment Decoder

6.4 Ngspice Plots

Figure 6.2: BCD INPUT

19

Figure 6.3: SEGMENT OUTPUT

20

Chapter 7

Realization of T Flip flop using JK
flip flop

7.1 Circuit Details

A T flip-flop can be realized using a JK flip-flop by appropriately connecting the
J and K inputs of the JK flip-flop. The T flip-flop toggles its state when its input
(T) is high (1) and maintains its state when the input is low (0). This behavior can
be achieved by tying the J and K inputs together and connecting them to the T
input. Connect the J and K inputs of the JK flip-flop together. Use this common
connection as the T input of the T flip-flop. When T = 0, both J and K inputs are
0. The JK flip-flop does not change its state. When T = 1, both J and K inputs
are 1. The JK flip-flop toggles its state.

7.2 Verilog Code for JK Flip Flop

module JK_FlipFlop (

input J, K, Clk,

output reg Q,

output reg Qbar

);

always @(posedge Clk) begin

case ({J, K})

2’b00: Q <= Q;

2’b01: Q <= 1’b0;

2’b10: Q <= 1’b1;

2’b11: Q <= ~Q;

default: ;

endcase

end

21

assign Qbar = ~Q;

endmodule

7.3 Schematic Diagram

Figure 7.1: T FLIP FLOP

7.4 Ngspice Plots

Figure 7.2: INPUT

22

Figure 7.3: OUTPUT

7.5 Python Plots

Figure 7.4: CLOCK INPUT

23

Figure 7.5: T INPUT

Figure 7.6: OUTPUT -Q

Figure 7.7: OUTPUT Q-BAR

24

Chapter 8

Binary to Gray-Code Converter

8.1 Circuit Details

A Binary to Gray code converter is a digital circuit that converts a binary number
into its corresponding Gray code representation. Gray code is a binary numeral
system where two successive values differ in only one bit, which minimizes errors in
digital systems, especially during transitions. The conversion from binary to Gray
code can be derived using the following logic:

• The most significant bit (MSB) of the Gray code is the same as the MSB of
the binary code.

• Each subsequent bit of the Gray code can be found by XOR-ing the current
binary bit with the previous binary bit.

8.2 Verilog Code

module binary_to_gray

(input [3:0] bin, //binary input

output [3:0] G //gray code output

);

assign G[3] = bin[3];

assign G[2] = bin[3] ^ bin[2];

assign G[1] = bin[2] ^ bin[1];

assign G[0] = bin[1] ^ bin[0];

endmodule

25

8.3 Schematic Diagram

Figure 8.1: Binary to Gray-Code Converter

8.4 Ngspice Plots

Figure 8.2: BINARY INPUT

26

Figure 8.3: GRAY CODE OUTPUT

27

Chapter 9

Single Port Memory

9.1 Circuit Details

A single port memory is a type of memory that can be accessed by only one device
or process at a time. In this type of memory, data can be written and read from the
same port. It is generally used in applications where only one processor is used, and
the memory is not required to be accessed by multiple processors simultaneously.
The design of a single port memory in Verilog involves the use of a register array.
The size of the register array is determined by the number of data bits that need to
be stored in memory. In this blog post, we will discuss the design of a single port
memory with 8-bit data and 16-bit address.

9.2 Verilog Code

module single_port_memory(

input clk, // Clock input

input [15:0] addr, // Address input

input [7:0] din, // Data input

input wr_en, // Write enable input

output reg [7:0] dout // Data output

);

reg [7:0] mem [0:65535]; // Register array for memory storage

always @(posedge clk) begin

if(wr_en) // Write operation

mem[addr] <= din;

else // Read operation

dout <= mem[addr];

end

endmodule

28

9.3 Test bench Code

module single_port_RAM_tb;

reg clk;

reg [15:0] addr; // Address input

reg [7:0] din; // Data input

reg wr_en; // Write enable input

wire [7:0] dout; // Data output

// Instantiate the RAM module

single_port_RAM ram (

.clk(clk),

.addr(addr),

.din(din),

.wr_en(wr_en),

.dout(dout)

);

// Provide stimulus

initial begin

clk = 0;

addr = 16’h0000; // Assign an address (e.g., 0x0000)

din = 8’hFF; // Example data input (e.g., 0xFF)

wr_en = 1; // Enable write operation

// Apply stimulus for a few clock cycles

#10;

clk = 1;

#10;

clk = 0;

// Add more stimulus if needed...

end

endmodule

29

9.4 Schematic Diagram

Figure 9.1: SINGLE PORT MEMORY

9.5 Ngspice Plots

Figure 9.2: DATA INPUT

30

Figure 9.3: ADDRESS INPUT

Figure 9.4: DATA OUTPUT

31

Figure 9.5: NgSpice Log

32

Chapter 10

PID Controller

10.1 Circuit Details

A PID controller (Proportional-Integral-Derivative controller) is a control loop feed-
back mechanism widely used in industrial control systems. It continuously calculates
an error value as the difference between a desired setpoint and a measured process
variable, and applies a correction based on proportional, integral, and derivative
terms, hence the name PID. Using the proportional, one can know the error and
this error helps in providing the corrective response value. The proportional term is
even termed as proportional gain constant. With integral, the past error values are
known and integrated. When the error values are excluded from the system, then
the integral value gets increased. And using the derivative, the forthcoming error
values are expected depending on the current values. Features 16-bit arithmetic
for high-precision control. Configurable Kp, Ki, Kd coefficients to adapt to various
systems. Clock prescaling feature to adjust the controller’s sampling rate. Includes
a testbench simulating a generic linear system for validation.

Figure 10.1: BLOCK DIAGRAM

10.2 Verilog Code

33

‘timescale 1ns / 1ps

module pid_controller(

input clk,

input rst_n,

input [1:0] setpoint,

input [1:0] feedback,

input [1:0] Kp,

input [1:0] Ki,

input [1:0] Kd,

input [1:0] clk_prescaler,

output reg [1:0] control_signal

);

// Internal signals

reg [1:0] prev_error = 2’b00;

reg [3:0] integral = 4’b0000;

reg [1:0] derivative = 2’b00;

// Clock divider for sampling rate

reg [1:0] clk_divider = 2’b00;

reg sampling_flag = 0;

always @(posedge clk or negedge rst_n) begin

if (~rst_n)

clk_divider <= 2’b00;

else if (clk_divider == clk_prescaler) begin

clk_divider <= 2’b00;

sampling_flag <= 1;

end else begin

clk_divider <= clk_divider + 1;

sampling_flag <= 0;

end

end

always @(posedge clk or negedge rst_n) begin

if (~rst_n) begin

// Reset logic generally specific to application

end

else if (sampling_flag) begin

// PID Calculation

integral <= integral + (Ki * (setpoint - feedback));

derivative <= Kd * ((setpoint - feedback) - prev_error);

34

// Calculate control signal

control_signal = (Kp * (setpoint - feedback)) + integral[1:0] +

derivative;↪→

prev_error <= (setpoint - feedback);

end

end

endmodule

10.3 Schematic Diagram

Figure 10.2: PID CONTROLLER

10.4 Ngspice Plots

Figure 10.3: NgSpice Plot

35

Figure 10.4: NGSPICE LOG

36

Chapter 11

Single Stage Delta-Sigma Digital
to Analog Converter

11.1 Circuit Details

A Delta-Sigma Digital to Analog Converter (DAC) is a type of DAC that oversam-
ples the input signal and uses noise shaping to push quantization noise out of the
band of interest. This method results in high-resolution digital-to-analog conver-
sion. A single stage Delta-Sigma DAC uses a single Delta-Sigma modulator stage
to convert a digital input signal to an oversampled and noise-shaped output, which
is then filtered to produce the final analog output.

11.2 Verilog Code

‘timescale 1ns / 1ps

module DAC #(

^^Iparameter dac_bw = 16

)(

^^Iinput^^Iwire^^I^^I^^I^^Iclk,

^^Iinput^^Iwire^^I^^I^^I^^Irst_n,

^^Iinput^^Iwire^^I[15 : 0]^^Idin,

^^Ioutput^^Iwire^^I^^I^^I^^Idout

);

^^Ilocalparam bw_ext = 2;

^^Ilocalparam bw_tot = dac_bw + bw_ext;

^^Ireg^^I^^I^^I^^I^^I^^Idout_r;

^^Ireg^^I^^I^^I^^I^^I^^Idac_dout;

37

^^Ireg signed^^I^^I[bw_tot-1 : 0]^^IDAC_acc_1st;

^^Iwire signed^^I^^I[bw_tot-1 : 0]^^Imax_val = (2**(dac_bw - 1) - 1);

^^Iwire signed^^I^^I[bw_tot-1 : 0]^^Imin_val = -(2**(dac_bw - 1));

^^Iwire signed^^I^^I[bw_tot-1 : 0]^^Idac_val = (!dout_r) ? max_val : min_val;

^^Iwire signed^^I^^I[bw_tot-1 : 0]^^Iin_ext = {{bw_ext{din[dac_bw - 1]}}, din};

^^Iwire signed^^I^^I[bw_tot-1 : 0]^^Idelta_s0_c0 = in_ext + dac_val;

^^Iwire signed^^I^^I[bw_tot-1 : 0]^^Idelta_s0_c1 = DAC_acc_1st + delta_s0_c0;

^^Ialways@(posedge clk)begin

^^I^^Iif(!rst_n)begin

^^I^^I^^IDAC_acc_1st <= ’d0;

^^I^^Iend else begin

^^I^^I^^IDAC_acc_1st <= delta_s0_c1;

^^I^^Iend

^^Iend

^^Ialways@(posedge clk)begin

^^I^^Iif(!rst_n)begin

^^I^^I^^Idout_r^^I^^I<= 1’b0;

^^I^^I^^Idac_dout^^I<= 1’b0;

^^I^^Iend else begin

^^I^^I^^Idout_r^^I^^I<= delta_s0_c1[bw_tot-1];

^^I^^I^^Idac_dout^^I<= ~dout_r;

^^I^^Iend

^^Iend

^^Iassign dout = dout_r;

endmodule

38

11.3 Schematic Diagram

Figure 11.1: DAC Schematic Diagram

11.4 Ngspice Plots

Figure 11.2: DAC INPUT

39

Figure 11.3: CLOCK and RESET PLOT

Figure 11.4: DAC OUTPUT

40

Figure 11.5: NGSPICE LOG

41

Chapter 12

Digital Calculator

12.1 Circuit Details

The digital calculator performs arithmetic operations on two 8-bit inputs (a and b)
based on a 2-bit operation selector (opt). It supports addition, absolute subtrac-
tion, multiplication, and division.It’s capable of performing four distinct arithmetic
operations on two 8-bit inputs (a and b) based on a 2-bit operation selector (opt).
The operations include addition (opt = 2’b00), absolute subtraction (—a-b— when
opt = 2’b01), multiplication (opt = 2’b10), and division (opt = 2’b11). The result
of these operations is stored in a 16-bit output register (result).

12.2 Verilog Code

module digital_calculator(result,a,b,opt);

input [7:0]a,b;// two 8 bit inputs

input [1:0]opt;

output reg [15:0]result;// one 16 bit output, assuming the multiplcation result

is maximum of 16bits↪→

always@(a,b)

begin

case(opt)

2’b00:result=a+b;//addition

2’b01:begin// modulo subtraction |a-b|

if(a>b)

result=a-b;

else

result=b-a;

end

2’b10:result=a*b;//multiplication

2’b11:result=a/b;//divison

endcase

42

end

endmodule

12.3 Schematic Diagram

Figure 12.1: Digital calculator

12.4 Ngspice Plots

Figure 12.2: INPUT-1

43

Figure 12.3: INPUT-2

Figure 12.4: Operation Selector

44

Figure 12.5: OUTPUT

Figure 12.6: NgSpice Log

45

Figure 12.7: NgSpice Log

Figure 12.8: NgSpice Log

46

Figure 12.9: NgSpice Log

47

Bibliography

[1] FOSSEE Official Website.
URL: https://fossee.in/about

[2] Implementation of Basic Logic Gates using VHDL in ModelSim in Circuit
Digest Website by Raghul Saravanan. 2020.
URL: https://circuitdigest.com/microcontroller-projects/

implementation-of-basic-logic-gates-using-vhdl-in-modelsim

[3] Wikipedia Official Website. 2020.
URL: https://www.geeksforgeeks.org/ripple-counter-in-digital-logic/

[4] Verilog Coding Tips and Tricks.
URL: https://verilogcodes.blogspot.com/2015/10/

verilog-code-for-bcd-to-7-segment.html

[5] eSim Official website. 2020.
URL: https://esim.fossee.in/

[6] tanmay-mohapatra Flipflop Verilog github Repository.
URL: https://github.com/tanmay-mohapatra/Flipflop_Verilog/blob/

main

[7] Vedant-02 Verilog-HDL-Lab-Experiments Github Repository.
URL: https://github.com/Vedant-02/Verilog-HDL-Lab-Experiments/

blob/main/Binary/20to/20Gray/20Code/20Converter/bin_gray.v

[8] Github FOSSEE NGHDL Repository.
URL: https://github.com/FOSSEE/nghdl

[9] Obijuan github Repository.
URL: https://github.com/Obijuan/Z80-FPGA/tree/master/TV80-verilog

48

https://fossee.in/about
https://circuitdigest.com/microcontroller-projects/implementation-of-basic-logic-gates-using-vhdl-in-modelsim
https://circuitdigest.com/microcontroller-projects/implementation-of-basic-logic-gates-using-vhdl-in-modelsim
https://www.geeksforgeeks.org/ripple-counter-in-digital-logic/
https://verilogcodes.blogspot.com/2015/10/verilog-code-for-bcd-to-7-segment.html
https://verilogcodes.blogspot.com/2015/10/verilog-code-for-bcd-to-7-segment.html
https://esim.fossee.in/
https://github.com/tanmay-mohapatra/Flipflop_Verilog/blob/main
https://github.com/tanmay-mohapatra/Flipflop_Verilog/blob/main
https://github.com/Vedant-02/Verilog-HDL-Lab-Experiments/blob/main/Binary/20to/20Gray/20Code/20Converter/bin_gray.v
https://github.com/Vedant-02/Verilog-HDL-Lab-Experiments/blob/main/Binary/20to/20Gray/20Code/20Converter/bin_gray.v
https://github.com/FOSSEE/nghdl
https://github.com/Obijuan/Z80-FPGA/tree/master/TV80-verilog

[10] roboticvedant github Repository.
URL: https://github.com/roboticvedant/Verilog-PID-Controller/

blob/main/PID_controller/PID_controller.srcs/sources_1/new/pid.v

[11] briansune github Repository.
URL: https://github.com/briansune/Delta-Sigma-DAC-Verilog/blob/

main/hdl/dsa_single.v

[12] Single-Port Memory by Aditya Mathur.
URL: https://www.linkedin.com/pulse/single-port-memory-aditya-mathur/

[13] ekb0412 github Repository.
URL: https://github.com/ekb0412/100DaysofRTL/blob/main/Day080-/

20Single-port/20RAM/single_port_ram.v

[14] eSim winter internship reports.
URL: https://static.fossee.in/fossee/winter-intership-2023/

reports/eSim

[15] armaan-says github Repository - DIGITAL-SYSTEM-DESIGN
URL: https://github.com/armaan-says/DIGITAL-SYSTEM-DESIGN

49

https://github.com/roboticvedant/Verilog-PID-Controller/blob/main/PID_controller/PID_controller.srcs/sources_1/new/pid.v
https://github.com/roboticvedant/Verilog-PID-Controller/blob/main/PID_controller/PID_controller.srcs/sources_1/new/pid.v
https://github.com/briansune/Delta-Sigma-DAC-Verilog/blob/main/hdl/dsa_single.v
https://github.com/briansune/Delta-Sigma-DAC-Verilog/blob/main/hdl/dsa_single.v
https://www.linkedin.com/pulse/single-port-memory-aditya-mathur/
https://github.com/ekb0412/100DaysofRTL/blob/main/Day080-/20Single-port/20RAM/single_port_ram.v
https://github.com/ekb0412/100DaysofRTL/blob/main/Day080-/20Single-port/20RAM/single_port_ram.v
https://static.fossee.in/fossee/winter-intership-2023/reports/eSim
https://static.fossee.in/fossee/winter-intership-2023/reports/eSim
https://github.com/armaan-says/DIGITAL-SYSTEM-DESIGN

	Introduction
	eSim
	Ngspice
	NGHDL
	Makerchip-NgVeri

	Problem Statement
	Approach
	Problem in Implementing Zilog Z80 Microprocessor using NgVeri

	Universal Gate
	Circuit Details
	VHDL Code for NAND Gate
	VHDL Code for NOR Gate
	Schematic Diagram
	Ngspice Plots

	3-Bit Ripple Counter
	 Circuit Details
	Verilog Code
	Schematic Diagram
	Ngspice Plots

	8-bit ALU
	 Circuit Details
	Verilog Code
	Schematic Diagram
	Ngspice Plots

	BCD to Seven Segment Decoder
	 Circuit Details
	Verilog Code
	Schematic Diagram
	Ngspice Plots

	Realization of T Flip flop using JK flip flop
	 Circuit Details
	Verilog Code for JK Flip Flop
	Schematic Diagram
	Ngspice Plots
	Python Plots

	Binary to Gray-Code Converter
	 Circuit Details
	Verilog Code
	Schematic Diagram
	Ngspice Plots

	Single Port Memory
	 Circuit Details
	Verilog Code
	Test bench Code
	Schematic Diagram
	Ngspice Plots

	PID Controller
	 Circuit Details
	Verilog Code
	Schematic Diagram
	Ngspice Plots

	Single Stage Delta-Sigma Digital to Analog Converter
	 Circuit Details
	Verilog Code
	Schematic Diagram
	Ngspice Plots

	Digital Calculator
	 Circuit Details
	Verilog Code
	Schematic Diagram
	Ngspice Plots

	Bibliography

