
Summer Fellowship Report

On

Scilab Signal Processing Toolbox development

Submitted by

Abinash Singh

Under the guidance of

Prof.Kannan M. Moudgalya

Chemical Engineering Department

IIT Bombay

Mentor

Ms. Rashmi Patankar

July 30, 2024

Acknowledgment

I am deeply grateful to my mentor Ms. Rashmi Patankar for her invaluable
guidance, support, and encouragement throughout my internship with the
FOSSEE Team at IIT Bombay.

Their expertise and patience have been pivotal in my learning and professional
growth during this period.

I would also like to sincerely thank Prof. Kannan M. Moudgalya and Prof. Kumar
Appaih for their insightful guidance, which has significantly shaped my
understanding of open-source systems.

Additionally, I wish to express my heartfelt appreciation to my friends who
supported me in completing the screening tasks for this internship. Their
encouragement and assistance were crucial in overcoming challenges and achieving
milestones.

I remain dedicated to contributing to Scilab and other FOSSEE initiatives. In the
coming months, my primary focus will be on advancing the signal processing
toolkit further. I am enthusiastic about the opportunities ahead and eager to make
meaningful contributions to these projects.

I am thankful to everyone who has been part of this journey, supporting and
inspiring me along the way. Your unwavering belief in my capabilities has made
this experience incredibly rewarding.

1

Contents

1 Introduction 3

2 Signal Processing Toolbox Development 4
2.1 Overview . 4
2.2 Development Workflow . 5

2.2.1 Reading Octave Implementation 5
2.2.2 Line By Line Translation . 5
2.2.3 Comparing Inbuilt Functions And Writing Missing Ones . . . 6
2.2.4 Test And Iterate . 6

2.3 Current Status . 7
2.3.1 Documentation pattern . 7
2.3.2 Functions Completed . 8
2.3.3 Incomplete implementations and FIXME issues 8

3 Scilab-Octave Toolbox Devlopment 9
3.1 Overview . 9
3.2 Current Status . 10
3.3 Common Errors And Fixes . 11

4 Learnings 12

5 Conclusion 13

2

Chapter 1

Introduction

Scilab is a free and open-source, cross-platform numerical computational package
and a high-level, numerically oriented programming language.

It can be used for signal processing, statistical analysis, image enhancement, fluid
dynamics simulations, numerical optimization, and modeling, simulation of explicit
and implicit dynamical systems, and (if the corresponding toolbox is installed)
symbolic manipulations.

Scilab is one of the two major open-source alternatives to MATLAB, the other one
is GNU Octave. Scilab puts less emphasis on syntactic compatibility with
MATLAB than Octave does, but is similar enough to easily transfer skills between
the two systems.

IIT Bombay is leading the effort to popularise Scilab in India and the Scilab Signal
Processing Toolbox is one of its endeavors toward the cause. This effort is part of
the Free and Open source Software for Science and Engineering Education
(FOSSEE) project, supported by the National Mission on Education through ICT
of the Ministry of Education.

FOSSEE Scilab Signal Processing Toolbox is a comprehensive suite designed for
the analysis, manipulation, and visualization of signals, developed and maintained
by FOSSEE, IIT Bombay.

It offers a wide range of functions that cover fundamental and advanced signal
processing techniques, including filtering, spectral analysis, and time-frequency
analysis.

Users can implement various types of digital filters (such as FIR and IIR), perform
Fourier transforms, and analyze the frequency content of signals. The toolbox also
supports wavelet transform methods, which are essential for non-stationary signal
analysis.

With its intuitive interface and extensive testing, the Signal Processing Toolbox is
a powerful tool for engineers, researchers, and ed- educators working in fields like
telecommunications, audio processing, and biomedical signal analysis.

3

Chapter 2

Signal Processing Toolbox
Development

2.1 Overview

The toolbox is comprised of an amalgamation of various functions (listed in the
directory FOSSEE-Signal-Processing-Toolbox/macros/) of mainly two categories:
functions that perform the required computation natively in Scilab, and functions
that pass the input from the user to be processed by Octave.

To convert functions of the latter type to the former type has been the primary
goal of this internship project. The motivation for this is multifaceted, but a few
are listed as follows:

• Calling Octave’s signal processing function using Scilab requires an
intermediary toolbox, the FOSSEE Scilab-Octave Toolbox. This makes
FSOT and Octave a dependency for the Scilab Signal Processing Toolbox,
which is non-optimal.

• Using Scilab-native code for computations is much more performant than
having Octave deal with them and simply uses Scilab as an interface.

• The FOSSEE Scilab-Octave Toolbox is still in development and hence,
somewhat lacking in features. For example, any functions that have boolean
values, structs, or graphs/images as input or output cannot be accessed using
the toolbox. This significantly diminishes its usefulness while handling signal
processing functions.

This process of re-writing functions in native Scilab code involves some steps, which
are explained from here onwards.

4

2.2 Development Workflow

The workflow underwent significant changes as I gained experience during this in-
ternship. Here is a summary of the workflow:

• Reading the Octave implementation

• Translating line by line

• Comparing the functions and writing missing ones

• Testing and iterating

2.2.1 Reading Octave Implementation

This analysis is crucial for planning our code translation process from Octave to
Scilab. It’s important to consider that certain sub-functions in Octave may not
have direct equivalents in Scilab.

To find the Octave documentation for a desired function, search online and
determine which package it belongs to. Typically, functions will belong to one of
two packages:

1. Octave’s signal package: You can access the source code intended for
translation at https://octave.sourceforge.io/signal/ Most functions
are written in pure Octave, although some may be implemented in C++.

2. Octave’s core package: Download the source code of the latest version of
Octave and search for the desired function within the downloaded folder.

The outcomes of this process include:

• Estimation of time constraints.

• Identification of sub-functions that are not available in Scilab.

• Assessment of the complexity involved in the translation process.

2.2.2 Line By Line Translation

This task requires meticulous line-by-line translation for successful adaptation.
The focus is primarily on syntax differences between Octave and Scilab.

Here are some key differences to note. If you encounter difficulties, refer to the
documentation for Octave and Scilab:

• In Octave, if, else, for, while, and switch statements should be closed with
endif, endfor, endwhile, and endswitch, respectively. In Scilab, you simply
use ”end”.

• Constants like! , pi, eps, j, true, and false are defined differently: in Octave
as !, pi, eps, j, true/false, and in Scilab as ˜ %pi, %i, %eps, %T /%F.

5

https://octave.sourceforge.io/signal/

• ”print usage” function is not available in Scilab so replace it with some
error(”message”)

• The overall syntax is quite similar, but these differences are important to
keep in mind.

2.2.3 Comparing Inbuilt Functions And Writing Missing
Ones

Now that you have identified which sub-functions are present in the code and
checked their availability in Scilab, there is still a possibility of encountering errors.
Scilab and Octave functions with the same name may behave differently.

The best approach is to consult the documentation for both platforms and adjust
the implementation accordingly. If the differences are significant, consider writing
a wrapper function or creating separate implementations.

Octave Scilab equivalents

Octave Scilab
length(a) max(size(a))
string s̃tring
end $

Another example is When comparing the max and min functions between Scilab
and Octave, it’s important to note a difference: Octave computes min/max along
the columns of a matrix, whereas Scilab computes max/min over the entire matrix.

Paying attention to these nuances is crucial to avoid potential errors.

Now, regarding sub-functions that are unavailable in Scilab, you can follow a
similar workflow: consult Octave’s documentation, obtain the source code, and
translate it to Scilab.

Challenges may arise with functions implemented in C++. In such cases, you can
extract the algorithm from the C++ code and attempt to implement it directly in
Scilab or utilize Scilab’s C++ API. Alternatively, consider creating a wrapper
C++ function to interface with the code and dynamically link it to Scilab.
However, I don’t recommend this if you do not have a good command of C++.

2.2.4 Test And Iterate

This is a crucial but often tedious part of the workflow. To lighten the load, you can
find test cases at the bottom of the Octave source code files. Attempt these first,
and If you encounter difficulties running some test cases, don’t worry—create your
own examples instead.

Compare the outputs of these examples with those from Octave and your im-
plemented function. Ensure to write diverse test cases covering different calling
sequences, aiming for at least one example for each type.

6

2.3 Current Status

Following the previously outlined workflow, I have successfully translated the
following:

• 27 functions independently.

• 2 functions in collaboration with another intern.

In total, our team has translated approximately 60 functions.
Each function is accompanied by documentation at the top of its file and test cases
at the bottom.

Furthermore, in my repository, you can find additional test cases and
documentation in a README file for each function. As part of my plans for the
next semester’s DSP lab, I intend to include real-world examples in these
README files, beyond the scope of this internship.

2.3.1 Documentation pattern

Since the functions are intended to mirror their implementation in Octave, it’s
prudent to use Octave’s documentation as a reference for documenting the
corresponding Scilab functions.

Additionally, consult Matlab’s documentation for these functions, as Octave may
have certain bugs. If your test cases fail despite following all steps, compare your
code’s output with Matlab’s to troubleshoot further.

The documentation for a function sits just below the function’s declaration, and is
written as one big comment block. There are four components to a function’s
documentation:

1. Calling Sequence: The order of evaluation for the function for the set of
given parameters.

2. Parameters: The expected values for the function’s parameters. This section
outlines the type as well as the acceptable values for these parameters.

3. Description: A comprehensive description of the function. This section
outlines default behaviors, expected input and output, and how to interpret
them, dependencies and other such data

4. Examples: An example to demonstrate the correct usage of the function.

It is worth noting that in the process of re-writing functions to use Scilab code, the
documentation part does not require a lot of modifications because the intended
behavior for the function is, most of the time, already well-documented and in line
with their Octave counterparts.

All of my work is available in my GitHub repository GITHUB

7

https://github.com/abinash108/Signal-processing-toolkit-devlopment-

2.3.2 Functions Completed

S.No Function Dependencies/custom functions
1 fftn
2 fht
3 fft1
4 fft21
5 fftconv
6 ifft1
7 ifft2
8 ifftn
9 idct2
10 idct1 idct1
11 idst1 dst1
12 czt fft1 , ifft1
13 xcorr2
14 shanwavf
15 rceps fft1 , ifft1
16 pulstran
17 hilbert1 fft1 , ifft1 , ipermute
18 grpdelay fft1
19 pwelch fft1
20 tfe pwelch
21 mscohere pwelch
22 cpsd pwelch
23 cohere pwelch
24 arch fit autoreg matrix , ols
25 arch test ols
26 spectral xdf fft1
27 spectral adf ifft1 , fft1
28 unwrap2 ipermute
39 cplxreal cplxpair , ipermute

2.3.3 Incomplete implementations and FIXME issues

No issues

8

Chapter 3

Scilab-Octave Toolbox
Devlopment

3.1 Overview

The FOSSEE Scilab-Octave Toolbox is a practical tool designed to enable the exe-
cution of Octave functions directly within the Scilab environment. With this tool-
box, users can seamlessly run Octave scripts and functions in Scilab, combining
the strengths of both platforms.

This enhances the overall computational experience by allowing access to Scilab’s
powerful visualization and modeling capabilities alongside Octave’s extensive
numerical computation libraries.

The Scilab-Octave Toolbox is a valuable resource for anyone looking to maximize
the potential of these two powerful tools. The Scilab-Octave toolbox has been

built and tested on Linux Debian 10, Ubuntu 18.10 and 19.10 (64-bit), Windows
10 (64-bit) with Octave 4.4.1, 5.1.0 and Scilab 6.0.x. The instructions to install the
toolbox on one’s system can be found on 2 here. The toolbox is currently capable
of the following:

• Move matrices and vectors in and out of Octave via Scilab.

• Handle multiple inputs and outputs.

• Handle any size of inputs and outputs.

• Handle input and output of type ’string’, ’double’, and ’structure’.

• Call native functions of Octave.

• Load packages in Octave.

• Display error messages thrown by Octave.

• Call those functions provided by Octave packages that handle matrices and
strings.

9

3.2 Current Status

During my internship, I dedicated two weeks to resolving issues with the FOSSEE
Scilab-Octave toolbox to make it compatible with the latest operating systems,
Octave, and Scilab versions.

This effort aimed to streamline the development of the signal processing toolbox
by avoiding the need to rewrite signal processing functions in Scilab. Instead,
Octave could handle the computationally intensive tasks.

Throughout that time, my primary focus was on fixing the FSOT toolbox for the
newest versions of Octave and Scilab. Despite my efforts, I encountered challenges
that prevented me from successfully resolving all issues within the allotted time.
However, I remain committed to continuing this work beyond the internship.
Key challenges I faced during debugging included:

• Insufficient documentation for the Octave C++ API, necessitating the
examination of source code for insights. Changes in the Octave C++ API
across recent versions led to unresolved symbol errors.

• Compatibility issues have resulted in segmentation faults when invoking the
octave fun function after building the toolbox for Scilab 2024 and Octave 8.4
.

• Stack trace is complex to decode.

• The need to redesign data structures to efficiently manage intermediate
values.

Analyzing the stack trace and test file in the src folder concludes that there is no
issue in octave c++ API, There are some new changes in some Scilab’s object files
in the latest version. The stack trace is given below :

For further details on this toolbox, including its source code and project report,
please refer to the relevant documentation.

10

3.3 Common Errors And Fixes

• libfun. so not found : Ensure libfun. so is added to the linker’s path folder.

• Error in -loctave and -loctaveinterp: Add your Octave installation path
to the linker’s configuration file /etc/ld.so.conf.d/.

• Symbol errors related to FFTW: Install Scilab via the command line or
attempt to build it from the source.

Refer to the FSOT toolbox GitHub repository for further assistance.

11

Chapter 4

Learnings

I have had a lot of great experiences from this internship opportunity, some are
enumerated below.

1. Technical Skills Enhancement:

• Gained proficiency in Scilab, Linux, dynamic linking, c++ Octave, Git,
and GitHub.

• Developed advanced coding skills like testing and documentation.

• Improved understanding of technical concepts and practical
applications.

2. Feedback and Continuous Improvement:

• Learned to receive and act on constructive feedback.

• Gained an understanding of the importance of continuous learning and
improvement.

• Developed the ability to self-assess and seek growth opportunities.

3. Professionalism and Work Ethic:

• Developed a strong sense of professionalism in a workplace setting.

• Learned the importance of punctuality, reliability, and accountability.

• Gained experience in maintaining a professional demeanor in various
sit– uations.

4. Adaptability and Flexibility:

• Learned to adapt to new environments and changing circumstances.

• Gained experience in managing multiple tasks and shifting priorities.

• Developed resilience and the ability to thrive in a dynamic work
environment- menu.

12

Chapter 5

Conclusion

In conclusion, my internship experience at FOSSEE, IIT Bombay, working on the
development of the Scilab Signal Processing Toolbox and contributing to the
Scilab-Octave Toolbox has been immensely rewarding and educational.
Throughout this internship, I have made significant contributions to the
open-source community, particularly in enhancing the functionality and
performance of the Signal Processing Toolbox.

The primary focus of my work has been on translating Octave-based signal
processing functions into native Scilab code. This transition aims to improve the
toolbox’s efficiency and reduce dependencies on external tools like the
Scilab-Octave Toolbox. Through meticulous workflow planning, detailed function
translations, rigorous testing, and iterative improvements, I have successfully
converted approximately 29 functions to Scilab, alongside documenting each
function comprehensively.

Furthermore, my involvement in resolving issues with the Scilab-Octave Toolbox
has contributed to enhancing its compatibility with modern operating systems and
software versions. This effort ensures a seamless integration of Octave
functionalities within the Scilab environment, thereby expanding the usability and
effectiveness of both tools for scientific and engineering applications.

Looking ahead, I am committed to continuing my contributions to FOSSEE
projects, particularly in further developing the Signal Processing Toolbox. I plan
to integrate real-world examples into the toolbox and continue collaborating with
my peers to address any remaining challenges and implement new features.

I am deeply grateful to my mentor Ms. Rashmi Patankar for her unwavering
support and guidance throughout this internship. Her expertise and
encouragement have been instrumental in my professional development. I also
thank Prof. Kannan M. Moudgalya and Prof. Kumar Appaih for their invaluable
insights and my friends for their continuous support.

In conclusion, this internship has not only strengthened my technical skills but
also reinforced my commitment to contributing to the advancement of open-source
software for scientific and engineering education. I look forward to applying the
knowledge and experience gained here in my future endeavors.

13

Signal processing Toolbox development

Reference

• https://github.com/abinash108/Signal-processing-toolkit-devlopment-

• https://github.com/FOSSEE/fossee-scilab-octave-toolbox

• https://octave.sourceforge.io/pkg-repository/signal/

• https://scilab.in/fossee-scilab-toolbox/signal-processing-toolbox

14

https://github.com/abinash108/Signal-processing-toolkit-devlopment-
https://github.com/FOSSEE/fossee-scilab-octave-toolbox
https://octave.sourceforge.io/pkg-repository/signal/
https://scilab.in/fossee-scilab-toolbox/signal-processing-toolbox

	Introduction
	Signal Processing Toolbox Development
	Overview
	Development Workflow
	Reading Octave Implementation
	Line By Line Translation
	Comparing Inbuilt Functions And Writing Missing Ones
	Test And Iterate

	Current Status
	Documentation pattern
	Functions Completed
	Incomplete implementations and FIXME issues

	Scilab-Octave Toolbox Devlopment
	Overview
	Current Status
	Common Errors And Fixes

	Learnings
	Conclusion

