A

Semester-Long Internship Report
On

DevOps Intern

Submitted by

Shiv Chaudhary

Under the guidance of

Lee Thomas Stephen
FOSSEE, IIT Bombay

and mentor

Mr. Rohan Mhatre

July 25, 2024

About FOSSEE Project:

The FOSSEE project is part of the National Mission on Education through ICT, with the
thrust area being "Adaptation and deployment of open source simulation packages
equivalent to proprietary software, funded by MHRD, based at the Indian Institute of
Technology Bombay (lITB).

The FOSSEE (Free/Libre and Open Source Software for Education) project promotes using
FLOSS tools in academia and research. The FOSSEE project is part of the National Mission
on Education through Information and Communication Technology (ICT), Ministry of
Education(MoE), Government of India.

About The National Mission on Education:

To improve the levels of education in India, the Ministry of Human Resource Development
has launched an ambitious educational mission with an outlay of about US $ One billion. It
is proposed that it be implemented through Information and Communication
Technologies. The following minimum requirements are placed to fund a project through
this mission:

e It has to be inter-institutional.

e It should be development-oriented in any general field of college-level
education.

e Any material developed through this mission has to be delivered as open
source.

e It should belong to any one of the about twenty sub-missions identified in the
mission document, available at www.sakshat.ac.in

To know more about FOSSEE and its projects, visit: https://fossee.in/

http://sakshat.ac.in/
http://www.sakshat.ac.in/
https://fossee.in/

Acknowledgment

| would like to express my deepest gratitude to everyone who contributed to successfully
completing my internship. First and foremost, | am profoundly thankful to my Lee Thomas
Stephen and mentor, Mr. Rohan Mhatre, for their invaluable guidance, support, and
encouragement throughout this journey. Their expertise, patience, and willingness to
share their knowledge have been instrumental in my learning and growth. They gave me
the tools and confidence to tackle challenges and excel in my project.

Furthermore, | am grateful to the FOSSEE organization for providing me with this
wonderful opportunity. This experience has been pivotal in shaping my career aspirations
and has given me a clearer understanding of the professional world.

| would also like to acknowledge my professors and academic advisors for their continuous
support and guidance, which laid the foundation for my internship. Their encouragement
and advice have been invaluable throughout this process.

Lastly, | extend my heartfelt appreciation to my family and friends for their unwavering
support and encouragement. Their belief in my abilities and their constant motivation has
been a source of strength for me. This internship has been an incredibly enriching
experience, and | am grateful to all who made it possible.

Thank you all for being a part of this significant phase of my professional journey.

Contents

1 Introduction 3
2 Google Cloud Platform (GCP) Setup and Configuration 7
2.0 OVBIVIBW. i 7
2.2 Setting up Ansible and Jenkins on a Virtual Machine..........ccccoovvviiiiiiiiiinnnnen. 9
D R [15 71| =Y o o TP 9

2.2.2 SUMIMAIY ciiiiiiiiiieceeceeteti i erss s s e e e e e e e e e e et e e e et et e tba b s aeseseeeaeaaeaeeeseennnes 17

2.2.3 TeSHING e e et 19

3 Learnings 21
4 Conclusion 22

Chapter 1
Introduction

Google Cloud consists of a set of physical assets, such as computers and hard disk drives,
and virtual resources, such as virtual machines (VMs), that are contained in data centers
around the globe. Each data center location is in a region. Regions are available in Asia,
Australia, Europe, Africa, the Middle East, North America, and South America. Each region
is a collection of zones that are isolated from each other within the region. Each zone is
identified by a name that combines a letter identifier with the name of the region. For
example, zone a in the East Asia region is named asia-east1-a.

This distribution of resources provides several benefits, including redundancy in case of
failure and reduced latency by locating resources closer to clients. This distribution also
introduces some rules about how resources can be used together.

Accessing resources through services

In cloud computing, what you might be used to thinking of as software and hardware
products become services. These services provide access to the underlying resources. The
list of available Google Cloud services is long, and it keeps growing. When you develop
your website or application on Google Cloud, you mix and match these services into
combinations that provide the infrastructure you need and then add your code to enable
the scenarios you want to build.

Global, regional, and zonal resources

Some resources can be accessed by any other resource across regions and zones. These
global resources include pre-configured disk images, disk snapshots, and networks. Some
resources can be accessed only by resources that are located in the same region. These
regional resources include static external IP addresses. Other resources can be accessed
only by resources that are located in the same zone. These zonal resources include VM
instances, their types, and disks.

The following diagram shows the relationship between global scope, regions and zones,
and some of their resources:

https://cloud.google.com/about/locations
https://cloud.google.com/products

Google Cloud Platform
(Global Scope)

Static External IP Addresses

Zone Zone

us-central 1-a us-central 1-b
{E} VMs Zore
us-central 1-c
C— Disks Fone
I -
us-central 1-f

Region: Central US

Region

Region

Metworks

Projects

Any Google Cloud resources that you allocate and use must belong to a project. You can
think of a project as the organizing entity for what you're building. A project is made up of
the settings, permissions, and other metadata that describe your applications. Resources
within a single project can work together easily, for example, by communicating through
an internal network, subject to the regions-and-zones rules. A project can't access another
project's resources unless you use Shared VPC or VPC Network Peering.

Each Google Cloud project has the following:

® A project name, which you provide.
e A project ID, which you can provide, or Google Cloud can provide it for you.
e A project number, which Google Cloud provides.

Each project ID is unique across Google Cloud. After you have created a project, you can
delete the project but its ID can never be used again. You can create multiple projects and
use them to separate your work in whatever way makes sense for you. For example, you
might have one project that can be accessed by all team members and a separate project
that can only be accessed by certain team members.

https://cloud.google.com/vpc/docs/shared-vpc
https://cloud.google.com/vpc/docs/vpc-peering

Ways to interact with the services

Google Cloud console

= Google Cloud Platform 2 OverviewsxampleProject ~

DASHBOARD ACTIVITY #' CUSTOMIZE
S* Project info {# Compute Engine & Google Cloud Platform status
CPU(%) All services normal |
} - Goto Cloud status dashboard
mplepr
= Billing
> Estimated charges 08021
@ Resources 2
iy Compute Engine > Go tothe Compute Engine dashboard
1instance ’
“ @ Error Reporting
@ sy
1 dataset RPI APIs Nosigr Havey P Es g’
Requests (requests/sec)
> Leam how to set up Error Reporting
= Trace
Notrace data from 1
B3 News
> Cetsmaedwith Sackitver Tace Whitepaper: Embark on a journey from monliths o

your BigQuery usage with Ocado Technology's GCP
® Getting Started

RPI Enable APIS and get credentials like keys
fedicated game servers In Kuberetes Engine: tutoria

> GotoAPIs overview

> Readallnews

-@- Deploy a Hello World app.

Documentation

£ Create a Cloud Storage bucket Learn about Compute Engine

() create a Cloud Function 1 Cloud Sorage

& install the Cloud SDK

The Google Cloud console provides a web-based, graphical user interface that you can use
to manage your Google Cloud projects and resources. When you use the Google Cloud
console, you either create a new project or choose an existing project and then use the
resources that you create in the context of that project.

Command-line interface

B A testproject165220 X + Zl® | - 2 x

Welcome to Cloud Shell! Type "help" to get started.
sangeethaa@test-project-165220:~$ gcloud version
Google Cloud SDK 158.0.0

alpha 2017.03.24

app-engine-go

app-engine-java 1.9.53

app-engine-python 1.9.54

beta 2017.03.24

bg 2.0.24

cloud-datastore-emulator 1.2.1

core 2017.06.02

datalab 20170525

docker-credential-ger
gcd-emulator vlbeta3-1.0.0

pubsub-emulator 2017.03.24
sangeethaa@test-project-165220:~$

If you prefer to work at the command line, you can perform most Google Cloud tasks by
using the Google Cloud CLI. The gcloud CLI lets you manage development workflow and
Google Cloud resources in a terminal window.

For example, you can create a Compute Engine virtual machine (VM) instance by running
the gcloud compute instances create command in the shell environment.

https://console.cloud.google.com/
https://cloud.google.com/sdk/gcloud
https://cloud.google.com/sdk/gcloud/reference/compute/instances/create

For a list of gcloud commands, see the gcloud reference.

For more information about Cloud Shell, see How Cloud Shell works.

Firewall rules

Each VPC network implements a distributed virtual firewall that you can configure.
Firewall rules allow you to control which packets are allowed to travel to which
destinations. Every VPC network has two implied firewall rules that block all incoming
connections and allow all outgoing connections.

The default network has additional firewall rules, including the default-allow-internal rule,
which permits communication among instances in the network.

Read more about firewall rules.

IP addresses

Google Cloud resources, such as Compute Engine VM instances, forwarding rules, GKE
containers, and App Engine, rely on IP addresses to communicate.

Read more about IP addresses.

Private Google Access

When you enable Private Google Access for a subnet, instances in a subnet of a VPC
network can communicate with Google APIs and services by using private IP addresses
instead of external IP addresses.

https://cloud.google.com/sdk/gcloud/reference
https://cloud.google.com/shell/docs/how-cloud-shell-works
https://cloud.google.com/vpc/docs/firewalls#default_firewall_rules
https://cloud.google.com/vpc/docs/firewalls#more_rules_default_vpc
https://cloud.google.com/vpc/docs/firewalls
https://cloud.google.com/vpc/docs/ip-addresses
https://developers.google.com/apis-explorer/

Chapter 2

Google Cloud Platform (GCP) Setup and
Configuration

2.1 Overview
The setup process includes the following phases:

1. Establish your organization, administrators, and billing: Set up the top-level node
of your hierarchy, create initial administrator users, and connect your payment
method.

2. Create an initial architecture: Select an initial folder and project structure, assign
access, configure logging, apply security settings, and set up your network.

3. Deploy your settings: Your initial architecture choices are compiled in Terraform
configuration files. You can quickly deploy through the Google Cloud console or
download the files to customize and iterate using your own workflow.

4. Apply monitoring and support settings: Apply recommended monitoring and
support settings to bolster your architecture.

VPC networks

In this task, you set up your initial networking configuration, which you can scale as your
needs change.

Virtual Private Cloud architecture

A Virtual Private Cloud (VPC) network is a virtual version of a physical network that is

implemented inside of Google's production network. A VPC network is a global resource

that consists of regional subnetworks (subnets).

VPC networks provide networking capabilities to your Google Cloud resources such as
Compute Engine virtual machine instances, GKE containers, and App Engine flexible
environment instances.

https://cloud.google.com/vpc/docs/overview
https://cloud.google.com/vpc/docs/subnets

Shared VPC connects resources from multiple projects to a common VPC network so that
they can communicate with each other using the network's internal IP addresses. The
following diagram shows the basic architecture of a Shared VPC network with attached
service projects.

PRODUCTION NON-PRODUCTION
HOST PROJECT | ' HOST PROJECT
A, | |
| service prosecT | | | SharedVPCnetwork I | | | | SharedVPCnetwork TX | | | service prosecT
. ™ :_: - ! 1 | - \ :_: r~ Y
i 3 1] 1 1 J
Workload ——— Region 1 ! i Region 1 1 Workload
' Subnet 1 1 Subnet 1 P
PR L) ' . L) D Mmoo .
| SERVICE PROJECT ; i Y i | ' Y i | SERVICE PROJECT
e R Region 2 y i Region 2 e
Workload : 1 Subnet ? { . Subnet 2 b Workload
|] \ . : | \ Y, : :
1 1 I 1 I
S 1 b o’ 1 I L o’ b e e e
LEGEND ‘: Host & service projects Shared VPC networks
__ Configure in previous task 5 Configure here in task 6

When you use Shared VPC, you designate a host project and attach one or more service
projects to it. Virtual Private Cloud networks in the host project are called Shared VPC
networks.

The example diagram shows production and non-production host projects, each of which
contains a shared VPC network. You can use a host project to centrally manage the

following:
® Routes
e Firewalls
e VPN connections
e Subnets

https://cloud.google.com/vpc/docs/shared-vpc

2.2 Setting up Ansible and Jenkins on a Virtual Machine

2.2.1 Installation

® Login to the GCP account

e (Create 2 VMs in GCP. 1- ansible-jenkins-vm 2- app-vm

® To create a VM follow the below steps

-

= Google Cloud Y

VIRTUAL MACHINES

VM instances

"

Iif Cloud overview >
Instance templates

sm Products and solutions > Sole-tenant nodes

Machine images

PINNED TPUs |
I
API APIs and services > Committed-use discounts I
o Reservations
B4 Billing
Migrate to Virtual Machines
e IAM and admin >
STORAGE
7
N7y Marketplace Disks
{£}] Compute Engine 3 Snapshots
Images
@ Kubernetes Engine >
Async replication
= e d Odm o ~

& Create an instance

4 CREATE VM FROM

Name *

€D EQUIVALENT CODE

[New VM instance ne - Monthly estimate
Create a single VM instance from I ansible-jenkins-vm o $12.95
scratch N
Labels @ That's about $0.02 hourly
New VM instance from DT e Pay for what you use: no upfront costs and per second billing
template
Create a single VM instance from an MANAGE LABELS tem Monthly estimate
axdsting templata I 2VCPU +4 GB memory $11.75
[New VM instance from machine Tags @ 10 6B balanced persistent disk $1.20
image + ADDTAGS Snapshot schedule Cost varies 2
Create a single VM instance from an ’
existing machine image Tota §12.95
A SHOW LESS ompute Engine pricin
Y Marketplace Compute Engine promg 2
Deploy a ready-to-go solution onto a Region (Zone* A LESS
VM instance [asia-south1 (Mumbai) v~ @ | |asasouthic -
Region is permanent Zone is permanent
Machine configuration
 General purpose | Compute optimized ~ Memory optimized Storage optimized ~ GPUs.
Machine types for common workloads, optimized for cost and flexibility
Series @ Description VCPUs @ Memory @ Platform
O c4 Consistently high performance 2-192 4-1,488GB Intel Emerald Rapids
O N4 Flexible & cost-optimized 2-80 4-640GB Intel Emerald Rapids
O c3 Consistently high performance 4-192 8-1536G8 Intel Sapphire Rapids.
O c3p Consistently high performance 4-360 8-2880GB AMD Genoa
® E Low cost, day-to-day computing 0.25-32 1-128GB Based on availability
CREATE CANCEL D EQUIVALENT CODE
Google Cloud gecp project v [Search (/) for resources, docs, products, and more ‘ Q_ search] 4+ & o ® :
Compute Engine ansible-jenkin... /' EDiT) RESET [CREATE MACHINE IMAGE CREATE SIMILAR i @ OPERATIONS ~ EQUIVALENTCODE @1 LEARN
P g i :
Virtual machines ~
DETAILS OBSERVABILITY 0S INFO 'SCREENSHOT
I B VMinstances
Name ansible-jenkins-vm
B instance templates Instance Id 3984584611215252668
Description None
B Soletenant nodes Type Instance
B Machine images Status @ Running
Creation time May 27,2024, 8:40:18 PM UTC+05:30
R TPUs Zone asia-south2-a
Instance template None
B8 Committed use discounts Inuseby Nome
& Resenvations Reservations Automatically choose
Labels None
& Migrate to Virtual Machin... Tags @ -
7
Storage ~ Deletion protection Disabled
g Dbisks Confidential VM service @ Disabled
Preserved state size 0GB
@ storage Pools
Snapshots Machine configuration
Machine type e2-medium
[images
CPU platform AMD Rome
@ AsyncReplication Minimum CPU platform None
Architecture X86/64
Instance groups ~ VCPUs to core ratio @ -
Custom le cores @ -
Marketplace Display device Disabled

Release Notes

Enable to use screen capturing and recording tools

(D EQUIVALENT CODE

10

N

Follow the same steps and create 1 more instance like this and name it app-vm

VM instances
INSTANCES OBSERVABILITY

VM instances

Filter Enter property name or value
O status Name 4 Zone
0Oe ansible-jenkins-vm asia-south2-a
Oe appvm asia-south2-a

Firewall Rules:

& Firewall rule details

jenkins-ci

Logs @
off
view in Logs Explorer

Network
default

Priority
1000

Direction

Ingress

Action on match

Allow

Targets

Target tags jenkins

Applicable to instances

CREATE INSTANCE & IMPORT VM

INSTANCE SCHEDULES

C REFRESH
Machine type Recommendations
e2-medium
e2-small

o .
EDIT W DELETE

@ The following table does not show any App Engine flexible environment instances

Filter Filter by instance name, project or subnetwork

Name 4 ‘Subnetwork Internal IP ranges
ansible- default 10.190.0.2
jenkins-vm

app-vm default 10.190.0.3

External IP ranges Tags

34.131.63.13

34.131.23.242

http-server,

http-server,

In use by

11

Internal IP
10.190.0.2 (nic0)

10.190.0.3 (nic0)

Service accounts

545604355315~

545604355315~

External IP Connect

34.131.63.13 (nic0) SSH ~

34.131.23.242 (nic0) SSH ~
Project Labels

geep-project-
371804
geep-project-
371804

Network details.

VIEW DETAILS

VIEW DETAILS

S LEARN

] m

ansible-jenkins-vm

shivchaudharytemp@ansible-jenkins-vm:~$ jenkins --version

2.462.1

shivchaudharytemp@ansible-jenkins-vm:~$ ansible --version

ansible [core 2.14.3]
config file = None
configured module search path = ['/home/shivchaudharytemp/.ansible/plugins/modules', '/usr/share/ansible/plugins/modules"]
ansible python module location = /usr/lib/python3/dist-packages/ansible

ansible collection location /home/shivchaudharytemp/.ansible/collections:/usr/share/ansible/collections
executable location = /usr/bin/ansible
python version = 3.11.2 (main, May 2 2024, 11:59:08) [GCC 12.2.0] (/usr/bin/python3)
jinja version = 3.1.2
libyaml = True
shivchaudharytemp@ansible-jenkins-vm:~$

The above Image Shows the Version of Ansible and Jenkins installed on the ansible-jenkins-vm
VM.

Linux ansible-jenkins-vm.asia-south2-a.c.gccp-project-371804.internal 6.1.0-23-cloud-amd64 #1 SMP PREEMPT DYNAMIC Debian 6.1.99-1 (2024-07-15) x86_64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Fri Aug 16 22:29:40 2024 from 35.235.244.192
shivchaudharytemp@ansible-jenkins-vm: ~

sle-playbooks deploy django_app < . p.yaml playbook.yaml vars.yml
shivchaudharytemp@ansible-jenkins-vm:~$ cat nginx.conf.j2
server {

listen 80;

server_name 34.131.218.104;

location = /favicon.ico { access_log off; log_not_found off; }

root /var/www/sysad_intern;

location / {
include proxy_params;
proxy _pass http://unix:/var/www/sysad_intern/sysad_intern.sock;

}
shivchaudharytemp@ansible-jenkins-vm:~$ cat playbook.yaml

Deploy Django Application

Install required packages

: "{{ item }}"
present

python3-pip
python3-venv
nginx
virtualenv

name: Clone the Django application repository
git

repo: "{{ django_app_repo }}"

dest: "{{ app_dir }}"

version: "main"

name: Create a Python virtual environment
command: python3 -m venv {{ app_dir }}/venv
args:

creates: "{{ app_dir }}/venv"

name: Install Python dependencies
pip:
requirements: "{{ app_dir }}/requirements.txt"

The above Images show configuration files and the playbook used by Ansible for the provision of
the Django app on app-vm.

Ansible playbook runs perfectly as desired and creates configuration on app-vm.

12

f!} SSH-in-browser £ UPLOADFILE & DOWNLOADFILE Jl E@ X

Architecture :

O
M

Developer

CI/CD Flow with Jenkins, Ansible, GCP VMs, and GitHub

& vm1

@ @ [1€ vmz
Ansible hosts.ini deploy Django J

project
Gunicorn

i install Guni
SR webt:::"trr‘l:gers T @ ——— ,——install Gunicom

ap:2)
GitHub Jenkins Playbook
Repository Server install Nginx

dj
Django
Project

Jenkins is an open-source continuous integration/continuous delivery and deployment
(CIl/CD) automation software DevOps tool. It is used to implement CI/CD workflows called

pipelines.

Ansible is an open-source, command-line IT automation software application. It can
configure systems, deploy software, and orchestrate advanced workflows to support

application deployment, system updates, and more.

13

Home Page of Jenkins running on ansible-jenkins-vm vm using external ip on port 8080.

/A Not Secure 34

® & m 3 (© NewChromeavailable }

Sign in to Jenkins

Username

shiv

Password

Keep me signed in

Creating a project

°* 5 m §} @© NewChrome

ailable

2 Jenkins (> log out

Q Search (32+K)

@) Shiv Chaudhary v

Dashboard > All > Newlitem

New Item

Enter an item name

ansible-demo-

Select an item type

9 Freestyle project
Classic, general-purpose job type that checks out from up to one SCM, executes build steps serially, followed by
post-build steps like archiving artifacts and sending email notifications.

Pipeline
o~

Orchestrates long-running activities that can span multiple build agents. Suitable for building pipelines (formerly
known as workflows) and/or organizing complex activities that do not easily fit in free-style job type.

Multi-configuration project

Suitable for projects that need a large number of different configurations, such as testing on multiple environments,
platform-specific builds, etc.

. Folder

Creates a container that stores nested items in it. Useful for grouping things together. Unlike view, which is just a filter,
afolder creates a separate namespace, so you can have multiple things of the same name as long as they are in
gifferent folders.

@ Multibranch Pipeline
Creates a set of Pipeline projects according to detected branches in one SCM repository.

Organization Folder
Bl creates a set of muttoranch project subfolders by scanning for repositories.

14

Not Secure 34.131.6:

New Chrome available

Dashboard ansible-demo Configuration

O cit 2

Repositories 7

Configure

£33 General

} source Code Management

Repository URL 2 *

m/FOSSEE:

 Build Triggers
Credentials 7
@ Build Environment

- none - v
= Build Steps

- Add ~
@ Post-build Actions S

Advanced v

Add Repository
Branches to build 2

Branch Specifier (blank for 'any’) 2 .

[*Jmain

Add Branch

Repository browser ?

(Auto)

Configure jenkins for pipeline:

® m T} @ NewChrome available

Dashboard > ansible-demo > Configuration
. Build Triggers
Configure
Trigger builds remotely (e.g., from scripts) 7
83 General Build after other projects are built ?
} source Code Management Build periodically 2
© Build Triggers GitHub hook trigger for GITScm polling 2
PollSCM 2
@ Build Environment

¢= Build Steps
Build Environment
& Post-build Actions

Use secret text(s) or file(s) 7

Terminate a build if it's stuck

Build Steps

Execute shell 7

Command

See the list of available environment variables

whoani
ansible-playbook i /home/shivchaudharytemp/hosts /home/shivchaudharytemp/deploy_django_app.yml

15

Jenkins Configuration

<« G A NotSecure 34.131.63.13:8080

f Jenkins Q Search (3t+K)

A1 ® m m 3 (@ NewcChromeavailable

[@] U@ @ shivchaudhary v (> log out

Dashboard

+ Newlitem
& Build History Al Tr

63 Manage Jenkins

s w Name & Last Success Last Failure
O My Views
©) & ansible-demo 9days13hr #39 9days13hr #37
Build Queue v
[©) ansible-project N/A N/A
No builds in the queue.
® sample-pipeline N/A N/A
Build Executor Status v
1 ldle lon: S M L
2 Idle

app-vm

/7 Add description

Last Duration

17 sec >
N/A [
N/A g

py app config is done successfully in app-vm from ansible-jenkins-vm using ansible.

shivchaudharytemp@app-vm.

shivchaudharytemp@app-vm
lite3 manage.py r ad_inter k venv web

shivchaudharytemp@app-vm: /v systemctl status gunicorn.service

enabled; preset: enabled)

5 UTC; 35min ago

Main PID:

Aug 2 v 804.internal
v 804.internal

-packages/django/middleware n.py", line 48, in process_requ

v/1ib/python3.11/site-packag
804.internal corn[405]: django.cor

i 1: dj core DisallowedHost: Invalid HTTP_HOST header: '
Ject-371804.internal gunic : Bad Request

jango/http/requ:

34.131.23.242'. You may need to add

804.internal c - - [16/Aug/ +0000] "GET / HTTP/1.0" 4C 90 "-" "Mozilla/5.0 (Macint Intel Mac

16

2.2.2 Summary

This section documents the process of deploying a Python application on a virtual machine
(app-vm) using Ansible, orchestrated from another virtual machine (ansible-jenkins-vm)
on the Google Cloud Platform (GCP). The deployment process also involves setting up a
continuous integration/continuous deployment (CI/CD) pipeline using Jenkins, which
triggers the deployment whenever new code is pushed to GitHub.

Setup and Configuration

1. Infrastructure Preparation:
Both app-vm and ansible-jenkins-vm were provisioned on GCP. The app-vm serves
as the host for the Python application, while the ansible-jenkins-vm acts as the
control node for managing configurations and deployments using Ansible.

2. Ansible Installation and Configuration:
Ansible was installed on ansible-jenkins-vm, and the necessary SSH key pair was
generated for secure communication between the two VMs. The public SSH key
was added to the authorized_keys file on app-vm to enable passwordless
authentication.

3. Playbook Development:
A custom Ansible playbook was created to automate the deployment process. The
playbook included tasks for:

o Installing Dependencies: Ensuring that Python, pip, and other required
packages were installed on app-vm.

o Cloning the Repository: Pulling the latest version of the application code
from GitHub.

o Setting Up Virtual Environment: Creating and activating a Python virtual
environment on app-vm.

o Installing Python Requirements: Installing all necessary Python packages
using the requirements.txt file.

o Configuring Nginx: Deploying and configuring Nginx as a reverse proxy to
serve the Python application. A Jinja2 template was used to dynamically
generate the Nginx configuration file, tailored to the environment on
app-vm.

o Starting Gunicorn: Ensuring that Gunicorn was set up as the application
server to serve the Python application.

4. Nginx Configuration using Jinja2:
The Nginx configuration was templated using Jinja2 within the Ansible playbook.
This allowed for the dynamic insertion of variables such as server names and port
numbers, making the deployment flexible and adaptable to different
environments.

17

5. Jenkins CI/CD Pipeline:
Jenkins was installed on ansible-jenkins-vm to facilitate continuous deployment. A
Jenkins pipeline was configured to trigger the Ansible playbook whenever new
code is pushed to the GitHub repository. The pipeline stages included:
o Code Checkout: Pulling the latest code from the repository.
o Ansible Playbook Execution: Running the Ansible playbook to deploy the
updated code on app-vm.
o Post-Deployment Tests: Running basic tests to ensure the application is
running smoothly after deployment.

Workflow
1. Adeveloper pushes new code to the GitHub repository.
2. Jenkins detects the push event and triggers the CI/CD pipeline.
3. Jenkins executes the Ansible playbook on ansible-jenkins-vm.
4. The playbook performs the necessary tasks on app-vm to deploy the updated

Python application.
5. The application is served via Nginx on app-vm, with Gunicorn as the application
server.

Challenges and Solutions

e SSH Connectivity: Initial challenges were faced in establishing SSH connectivity
between the two VMs. This was resolved by correctly setting up the SSH keys and
ensuring that the necessary ports were open on both VMs.

e Nginx Configuration: The Nginx configuration required careful templating to ensure
that the application was correctly served. This was managed by using Jinja2
templates within the Ansible playbook.

e Jenkins Integration: Integrating Jenkins with the Ansible playbook required
fine-tuning to ensure that the deployment process was seamless and triggered
automatically upon code updates.

18

2.2.3 Testing

Pipeline is running successfully when pushing code to github.

* Jenkins Q Search (3£+K) ®

Dashboard > ansible-demo

B status (©) ansible-demo

<[> Changes

2 Add description

Workspace
Disable Project

Build Now .
Permalinks

+ Last build (#36), 15 days ago

Delete Project + Last stable build (#36), 15 days ago
« Last successful build (#36), 15 days ago
GitHub Hook Log + Last failed build (#32), 22 days ago

« Last unsuccessful build (#32), 22 days ago
+ Last completed build (#36), 15 days ago

5
>
£33 Configure
w
0
7

Rename

£ Build History trend v
Q_ Filter
© #38 22.0u

) 19 Jul 20

18 Jul 2024, 09:11

16 Jul 2024, 12:42

15 Jul 2024, 10:56
) #31 15 Jul 2024, 10:56

®#30 16 .Jul

[y 5.in 2024 13:48 Pl

Console Output

8 s @ Console Output ©

) comolecunt
p— o recomens 1. ol 15 WO

o wonaa

W oosbuia e
® Timias
© crsusana

19

* & w o
Customise and control Google Chrome

& c

A Not Secure 34.131.116.40:8080/job/ansible-demobuildTimeTrend

‘? Jenkins Q search (2£+K) @) 0. ® U@ @ shivChaudhary v [logout
Dashboard ansible-demo Build Time Trend
@ status Build Time Trend
<[> Changes Build 1 Duration
®@#37 12sec
Work >
& Workspace @#36 19sec
> Build Now @435 1Bsec
@#3a 17 sec
€3 Configure ©@#33 18 sec
®©#32 1sec «
il Delete Project @#31 9.5 sec
®#30 12 sec
(7 GitHub Hook Log ®#29 14 sec
@28 26sec
/ Rename -
@#27 20sec
19 sec
5 Build History trend v 19 sec
Ow2a 20 sec 0
Q Filter / ®#23 15sec SRSV IIEEEYTEIILGY
@422 15 sec
5 #39 7Aug 2024, 09:56 ®
— x #21 16 sec
® #20 15 sec
©#38 7 Aug 202, 09:55
EEE S ®@#19 16 sec
@437 ZAug 2024, 09:38 [OF7H] 0.75 sec
@ #36 22 Jul 2024, 12:09 @7 073 sec
© #35 19 Jul 2024, 07:48 Cf)’”s 14 sec
@#ms 0.69 sec
[OF =7} 18 Jul 2024, 09:11
D #34 Owma 15 sec
Qs 1wz a Owz 1asec
@32 16 Jul 2024, 10:56 @2 16 sec
om 16 Jul 2024, 10156 ®#m 16 sec
®#10 15 sec
® #30 15 Ju1 2024, 10:20
® #30 ®#9 14 sec
@ swnzo 01 ®#s 5asec
® #28 9 Jun 2024, 10:05 @7 15 sec
. = P i

G ANotSecure 34.131.23.242 * ® & m &3 (© NewChromeavailable

Test Page

App is running as desired.

Cc /\ Not Secure 34.131.23.242/abou

Test About Page

20

Chapter 4
Learnings

Technical Skills Enhancement

e Gained Proficiency in GCP and DevOps Tools: Developed a strong understanding of
Google Cloud Platform (GCP), including setting up and managing virtual machines,
configuring network settings, and deploying applications.

e Mastered Ansible and Jenkins: Acquired advanced skills in using Ansible to
automate the deployment process and Jenkins to set up Cl/CD pipelines, ensuring
seamless integration and delivery.

e Enhanced Scripting and Automation: Improved my ability to write and
troubleshoot Ansible playbooks and Jenkins pipelines, optimizing the deployment
of Python applications across multiple VMs.

e Advanced Troubleshooting Skills: Developed the ability to identify and resolve
issues in deployment processes, including SSH connectivity, Nginx configuration,
and pipeline failures.

Feedback and Continuous Improvement.

e Adopted a Mindset of Continuous Learning: Embraced the importance of staying
updated with the latest tools and practices in DevOps and cloud computing,
continuously seeking ways to enhance my skill set.

e Self-Assessment and Growth: Regularly assessed my progress in mastering new
technologies and sought feedback to identify areas for further improvement.

Communication Skills

e Improved Technical Communication: Enhanced my ability to clearly document
complex processes, such as setting up Ansible and Jenkins, making the information
accessible to team members and future users.

e Collaborative Problem-Solving: Gained experience in effectively communicating
with team members to troubleshoot issues, share knowledge, and collaboratively
improve workflows.

e Guiding Peers: Developed the ability to explain DevOps concepts, such as Cl/CD
pipelines and cloud infrastructure, to colleagues, contributing to a collaborative
learning environment

21

Chapter 5

Conclusion

My internship experience has been profoundly enriching and has significantly con-
tributed to my professional and personal growth. Engaging in the development of the
FOSSEE System Administration allowed me to apply knowledge in a practical setting,
enhancing my skills in DevOps and problem-solving in general. The challenges |
encountered and overcame during these projects sharpened my problem-solving skills

and provided a deeper understanding of working on open-source projects in general.

Working on various tasks such as astro-ansible-gcp and drupal-mariadb-gcp enhanced
my technical skills. This not only expanded my knowledge of system administration but
also taught me the importance of comprehensive documentation and testing. On the
other hand, tools like Vagrant provided me an opportunity to learn about local testing.
This internship has helped outline my career aspirations. The hands-on experience has
prepared me for future professional challenges. | am deeply grateful for this
opportunity and confident that the skills and insights gained during this internship will
be immensely beneficial to my career development. As | move forward, | am excited to
leverage the knowledge and experience acquired to contribute meaningfully to the

tech industry, especially the open-source world, and achieve my professional goals.

22

Projects:

1. Ansible-Jenkins-GCP:

e Project Title: Ansible-Jenkins-GCP
e Overview: This project establishes a Cl/CD pipeline that leverages Jenkins to
automate the deployment of a Django application on virtual machines. The
integration with GitHub is achieved through webhooks, while Ansible simplifies the
creation and deployment processes.
e DevOps Principles: Employed Infrastructure as Code (laC) and CI/CD
methodologies.
e Challenges Faced:
o Mastering Ansible's unique syntax and diverse modules.
o Ensuring playbooks could be reused without unintended side effects.
o @Gaining a comprehensive understanding of Jenkins' functionalities with GCP
and Ansible.
o Safeguarding sensitive environmental variables to prevent exposure.
o Learning Nginx configuration best practices for application hosting.
e Solutions Implemented:
o Incorporated shell scripts and systemd services to enhance playbook
idempotence.
o Utilized Jenkins' built-in options to securely manage environmental
variables.
e Key Takeaways: Acquired practical experience in writing Ansible playbooks and
managing server configurations, along with an understanding of the advantages of

using tools like Jenkins and GitHub Actions.

23

2. Astro-Ansible-GCP:

Project Title: ASTRO-ANSIBLE-GCP
Overview: This project automates the deployment of an Astro website on GCP by
implementing a Jenkins and Ansible pipeline. A GitHub webhook triggers the
Jenkins pipeline upon detecting new commits, leading to the execution of Ansible
playbooks for VM instance provisioning and website deployment.
DevOps Principles: Focused on laC alongside CI/CD practices.
Challenges Faced:
o Developing a strategy for maintaining idempotent Ansible playbooks.
o Navigating the learning curve of integrating Jenkins with GCP.
o Understanding the nuances of Nginx configurations to effectively serve the
application.
Solutions Implemented:
o Used Jenkins’ internal features for secure environmental variable
management.
Key Takeaways: Gained hands-on experience in setting up automated CI/CD
pipelines and managing GCP infrastructure while also enhancing skills in scripting,

version control, and workflow automation.

24

3. DRUPAL-MARIADB-GCP-ANSIBLE:

Project Title: DRUPAL-MARIADB-GCP-ANSIBLE
Overview: This project automates the deployment of a Drupal website using
Jenkins and Ansible on a GCP VM instance. The setup includes configuring Jenkins
to respond to GitHub webhooks, utilizing Ansible playbooks for VM provisioning,
and the installation of necessary software dependencies.
DevOps Principles: Implemented 1aC with Jenkins, Cl through GitHub, and
continuous deployment to GCP.
Challenges Faced:
o Ensure that Composer installations are set on an appropriate path for
accessibility.
o Managing the state of the Drupal directory to ensure it was both created
and clear for new deployments.
o Effectively reloading the PHP-FPM and Nginx services to apply changes
without downtime.
Solutions Implemented:
o Utilized the Composer module for streamlined installation.
o Configured PHP-FPM to use a port instead of a socket for better
accessibility.
Key Takeaways: Learned to set up Jenkins on GCP and automate the deployment
of Drupal, gaining valuable insights into managing environment variables securely
and leveraging GitHub webhooks for automation.

25

4. DRUPAL-MARIADB-GCP-ANSIBLE-UPDATE:

e Project Title: DRUPAL-MARIADB-GCP-ANSIBLE-UPDATE
e Overview: This script updates an existing Drupal environment, ensuring both the
Drupal core and its modules are brought up to the latest versions.
e DevOps Principles: Applied 1aC principles using Jenkins and Ansible for
maintenance tasks.
e Challenges Faced:
o Ensuring compatibility of the existing modules with the latest Drupal
version.
o Implementing a rollback mechanism in case the update process encounters
issues.
o Coordinating updates without affecting the live environment or user
experience.
e Key Takeaways: Developed skills in automating Drupal updates through Jenkins
and Ansible while also enhancing my understanding of securely managing GCP

credentials and automating deployment processes via GitHub webhooks.

26

Reference

@ Ansible

£ Jenkins

&' GCP Cloud

&' GitHub Code Link

27

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_intro.html
https://www.jenkins.io/doc/
https://cloud.google.com/docs
https://github.com/FOSSEE-Intern/shiv-project-code

