
Semester-Long Internship Report

On

DevOps Intern

Submitted by

Shiv Chaudhary

Under the guidance of

Lee Thomas Stephen

FOSSEE, IIT Bombay

and mentor

Mr. Rohan Mhatre

July 25, 2024



About FOSSEE Project:

The FOSSEE project is part of the National Mission on Education through ICT, with the
thrust area being "Adaptation and deployment of open source simulation packages
equivalent to proprietary software, funded by MHRD, based at the Indian Institute of
Technology Bombay (IITB).

The FOSSEE (Free/Libre and Open Source Software for Education) project promotes using
FLOSS tools in academia and research. The FOSSEE project is part of the National Mission
on Education through Information and Communication Technology (ICT), Ministry of
Education(MoE), Government of India.

About The National Mission on Education:

To improve the levels of education in India, the Ministry of Human Resource Development
has launched an ambitious educational mission with an outlay of about US $ One billion. It
is proposed that it be implemented through Information and Communication
Technologies. The following minimum requirements are placed to fund a project through
this mission:

● It has to be inter-institutional.
● It should be development-oriented in any general field of college-level

education.
● Any material developed through this mission has to be delivered as open

source.
● It should belong to any one of the about twenty sub-missions identified in the

mission document, available at www.sakshat.ac.in

To know more about FOSSEE and its projects, visit: https://fossee.in/

http://sakshat.ac.in/
http://www.sakshat.ac.in/
https://fossee.in/


Acknowledgment

I would like to express my deepest gratitude to everyone who contributed to successfully
completing my internship. First and foremost, I am profoundly thankful to my Lee Thomas
Stephen and mentor, Mr. Rohan Mhatre, for their invaluable guidance, support, and
encouragement throughout this journey. Their expertise, patience, and willingness to
share their knowledge have been instrumental in my learning and growth. They gave me
the tools and confidence to tackle challenges and excel in my project.

Furthermore, I am grateful to the FOSSEE organization for providing me with this
wonderful opportunity. This experience has been pivotal in shaping my career aspirations
and has given me a clearer understanding of the professional world.

I would also like to acknowledge my professors and academic advisors for their continuous
support and guidance, which laid the foundation for my internship. Their encouragement
and advice have been invaluable throughout this process.

Lastly, I extend my heartfelt appreciation to my family and friends for their unwavering
support and encouragement. Their belief in my abilities and their constant motivation has
been a source of strength for me. This internship has been an incredibly enriching
experience, and I am grateful to all who made it possible.

Thank you all for being a part of this significant phase of my professional journey.

1



Contents

1 Introduction 3

2 Google Cloud Platform (GCP) Setup and Configuration 7

2.1 Overview.............................................................................................................7
2.2 Setting up Ansible and Jenkins on a Virtual Machine.........................................9

2.2.1 Installation.............................................................................................9

2.2.2 Summary..............................................................................................17

2.2.3 Testing...................................................................................................19

3 Learnings 21

4 Conclusion 22

2



Chapter 1

Introduction

Google Cloud consists of a set of physical assets, such as computers and hard disk drives,
and virtual resources, such as virtual machines (VMs), that are contained in data centers
around the globe. Each data center location is in a region. Regions are available in Asia,
Australia, Europe, Africa, the Middle East, North America, and South America. Each region
is a collection of zones that are isolated from each other within the region. Each zone is
identified by a name that combines a letter identifier with the name of the region. For
example, zone a in the East Asia region is named asia-east1-a.

This distribution of resources provides several benefits, including redundancy in case of
failure and reduced latency by locating resources closer to clients. This distribution also
introduces some rules about how resources can be used together.

Accessing resources through services

In cloud computing, what you might be used to thinking of as software and hardware
products become services. These services provide access to the underlying resources. The
list of available Google Cloud services is long, and it keeps growing. When you develop
your website or application on Google Cloud, you mix and match these services into
combinations that provide the infrastructure you need and then add your code to enable
the scenarios you want to build.

Global, regional, and zonal resources
Some resources can be accessed by any other resource across regions and zones. These
global resources include pre-configured disk images, disk snapshots, and networks. Some
resources can be accessed only by resources that are located in the same region. These
regional resources include static external IP addresses. Other resources can be accessed
only by resources that are located in the same zone. These zonal resources include VM
instances, their types, and disks.

The following diagram shows the relationship between global scope, regions and zones,
and some of their resources:

3

https://cloud.google.com/about/locations
https://cloud.google.com/products


Projects

Any Google Cloud resources that you allocate and use must belong to a project. You can
think of a project as the organizing entity for what you're building. A project is made up of
the settings, permissions, and other metadata that describe your applications. Resources
within a single project can work together easily, for example, by communicating through
an internal network, subject to the regions-and-zones rules. A project can't access another
project's resources unless you use Shared VPC or VPC Network Peering.

Each Google Cloud project has the following:

● A project name, which you provide.
● A project ID, which you can provide, or Google Cloud can provide it for you.
● A project number, which Google Cloud provides.

Each project ID is unique across Google Cloud. After you have created a project, you can
delete the project but its ID can never be used again. You can create multiple projects and
use them to separate your work in whatever way makes sense for you. For example, you
might have one project that can be accessed by all team members and a separate project
that can only be accessed by certain team members.

4

https://cloud.google.com/vpc/docs/shared-vpc
https://cloud.google.com/vpc/docs/vpc-peering


Ways to interact with the services

Google Cloud console

The Google Cloud console provides a web-based, graphical user interface that you can use
to manage your Google Cloud projects and resources. When you use the Google Cloud
console, you either create a new project or choose an existing project and then use the
resources that you create in the context of that project.

Command-line interface

If you prefer to work at the command line, you can perform most Google Cloud tasks by
using the Google Cloud CLI. The gcloud CLI lets you manage development workflow and
Google Cloud resources in a terminal window.

For example, you can create a Compute Engine virtual machine (VM) instance by running
the gcloud compute instances create command in the shell environment.

5

https://console.cloud.google.com/
https://cloud.google.com/sdk/gcloud
https://cloud.google.com/sdk/gcloud/reference/compute/instances/create


For a list of gcloud commands, see the gcloud reference.

For more information about Cloud Shell, see How Cloud Shell works.

Firewall rules

Each VPC network implements a distributed virtual firewall that you can configure.
Firewall rules allow you to control which packets are allowed to travel to which
destinations. Every VPC network has two implied firewall rules that block all incoming
connections and allow all outgoing connections.

The default network has additional firewall rules, including the default-allow-internal rule,
which permits communication among instances in the network.

Read more about firewall rules.

IP addresses

Google Cloud resources, such as Compute Engine VM instances, forwarding rules, GKE
containers, and App Engine, rely on IP addresses to communicate.

Read more about IP addresses.

Private Google Access

When you enable Private Google Access for a subnet, instances in a subnet of a VPC
network can communicate with Google APIs and services by using private IP addresses
instead of external IP addresses.

6

https://cloud.google.com/sdk/gcloud/reference
https://cloud.google.com/shell/docs/how-cloud-shell-works
https://cloud.google.com/vpc/docs/firewalls#default_firewall_rules
https://cloud.google.com/vpc/docs/firewalls#more_rules_default_vpc
https://cloud.google.com/vpc/docs/firewalls
https://cloud.google.com/vpc/docs/ip-addresses
https://developers.google.com/apis-explorer/


Chapter 2

Google Cloud Platform (GCP) Setup and
Configuration

2.1 Overview

The setup process includes the following phases:

1. Establish your organization, administrators, and billing: Set up the top-level node

of your hierarchy, create initial administrator users, and connect your payment

method.

2. Create an initial architecture: Select an initial folder and project structure, assign

access, configure logging, apply security settings, and set up your network.

3. Deploy your settings: Your initial architecture choices are compiled in Terraform

configuration files. You can quickly deploy through the Google Cloud console or

download the files to customize and iterate using your own workflow.

4. Apply monitoring and support settings: Apply recommended monitoring and

support settings to bolster your architecture.

VPC networks

In this task, you set up your initial networking configuration, which you can scale as your

needs change.

Virtual Private Cloud architecture

A Virtual Private Cloud (VPC) network is a virtual version of a physical network that is

implemented inside of Google's production network. A VPC network is a global resource

that consists of regional subnetworks (subnets).

VPC networks provide networking capabilities to your Google Cloud resources such as

Compute Engine virtual machine instances, GKE containers, and App Engine flexible

environment instances.

7

https://cloud.google.com/vpc/docs/overview
https://cloud.google.com/vpc/docs/subnets


Shared VPC connects resources from multiple projects to a common VPC network so that

they can communicate with each other using the network's internal IP addresses. The

following diagram shows the basic architecture of a Shared VPC network with attached

service projects.

When you use Shared VPC, you designate a host project and attach one or more service

projects to it. Virtual Private Cloud networks in the host project are called Shared VPC

networks.

The example diagram shows production and non-production host projects, each of which

contains a shared VPC network. You can use a host project to centrally manage the

following:

● Routes

● Firewalls

● VPN connections

● Subnets

8

https://cloud.google.com/vpc/docs/shared-vpc


2.2 Setting up Ansible and Jenkins on a Virtual Machine

2.2.1 Installation

● Login to the GCP account

● Create 2 VMs in GCP. 1- ansible-jenkins-vm 2- app-vm

● To create a VM follow the below steps

9



Vm is Created Successfully

10



Follow the same steps and create 1 more instance like this and name it app-vm

Firewall Rules:

11



ansible-jenkins-vm

The above Image Shows the Version of Ansible and Jenkins installed on the ansible-jenkins-vm
VM.

The above Images show configuration files and the playbook used by Ansible for the provision of
the Django app on app-vm.

Ansible playbook runs perfectly as desired and creates configuration on app-vm.

12



Architecture :

Jenkins is an open-source continuous integration/continuous delivery and deployment
(CI/CD) automation software DevOps tool. It is used to implement CI/CD workflows called
pipelines.

Ansible is an open-source, command-line IT automation software application. It can
configure systems, deploy software, and orchestrate advanced workflows to support
application deployment, system updates, and more.

13



Home Page of Jenkins running on ansible-jenkins-vm vm using external ip on port 8080.

Creating a project

14



Configure jenkins for pipeline:

15



Jenkins Configuration

app-vm

py app config is done successfully in app-vm from ansible-jenkins-vm using ansible.

16



2.2.2 Summary

This section documents the process of deploying a Python application on a virtual machine
(app-vm) using Ansible, orchestrated from another virtual machine (ansible-jenkins-vm)
on the Google Cloud Platform (GCP). The deployment process also involves setting up a
continuous integration/continuous deployment (CI/CD) pipeline using Jenkins, which
triggers the deployment whenever new code is pushed to GitHub.

Setup and Configuration

1. Infrastructure Preparation:

Both app-vm and ansible-jenkins-vm were provisioned on GCP. The app-vm serves

as the host for the Python application, while the ansible-jenkins-vm acts as the

control node for managing configurations and deployments using Ansible.

2. Ansible Installation and Configuration:

Ansible was installed on ansible-jenkins-vm, and the necessary SSH key pair was

generated for secure communication between the two VMs. The public SSH key

was added to the authorized_keys file on app-vm to enable passwordless

authentication.

3. Playbook Development:

A custom Ansible playbook was created to automate the deployment process. The

playbook included tasks for:

○ Installing Dependencies: Ensuring that Python, pip, and other required

packages were installed on app-vm.

○ Cloning the Repository: Pulling the latest version of the application code

from GitHub.

○ Setting Up Virtual Environment: Creating and activating a Python virtual

environment on app-vm.

○ Installing Python Requirements: Installing all necessary Python packages

using the requirements.txt file.

○ Configuring Nginx: Deploying and configuring Nginx as a reverse proxy to

serve the Python application. A Jinja2 template was used to dynamically

generate the Nginx configuration file, tailored to the environment on

app-vm.

○ Starting Gunicorn: Ensuring that Gunicorn was set up as the application

server to serve the Python application.

4. Nginx Configuration using Jinja2:

The Nginx configuration was templated using Jinja2 within the Ansible playbook.

This allowed for the dynamic insertion of variables such as server names and port

numbers, making the deployment flexible and adaptable to different

environments.

17



5. Jenkins CI/CD Pipeline:

Jenkins was installed on ansible-jenkins-vm to facilitate continuous deployment. A

Jenkins pipeline was configured to trigger the Ansible playbook whenever new

code is pushed to the GitHub repository. The pipeline stages included:

○ Code Checkout: Pulling the latest code from the repository.

○ Ansible Playbook Execution: Running the Ansible playbook to deploy the

updated code on app-vm.

○ Post-Deployment Tests: Running basic tests to ensure the application is

running smoothly after deployment.

Workflow

1. A developer pushes new code to the GitHub repository.

2. Jenkins detects the push event and triggers the CI/CD pipeline.

3. Jenkins executes the Ansible playbook on ansible-jenkins-vm.

4. The playbook performs the necessary tasks on app-vm to deploy the updated

Python application.

5. The application is served via Nginx on app-vm, with Gunicorn as the application

server.

Challenges and Solutions

● SSH Connectivity: Initial challenges were faced in establishing SSH connectivity

between the two VMs. This was resolved by correctly setting up the SSH keys and

ensuring that the necessary ports were open on both VMs.

● Nginx Configuration: The Nginx configuration required careful templating to ensure

that the application was correctly served. This was managed by using Jinja2

templates within the Ansible playbook.

● Jenkins Integration: Integrating Jenkins with the Ansible playbook required

fine-tuning to ensure that the deployment process was seamless and triggered

automatically upon code updates.

18



2.2.3 Testing

Pipeline is running successfully when pushing code to github.

Console Output

19



App is running as desired.

20



Chapter 4

Learnings

Technical Skills Enhancement

● Gained Proficiency in GCP and DevOps Tools: Developed a strong understanding of
Google Cloud Platform (GCP), including setting up and managing virtual machines,
configuring network settings, and deploying applications.

● Mastered Ansible and Jenkins: Acquired advanced skills in using Ansible to
automate the deployment process and Jenkins to set up CI/CD pipelines, ensuring
seamless integration and delivery.

● Enhanced Scripting and Automation: Improved my ability to write and
troubleshoot Ansible playbooks and Jenkins pipelines, optimizing the deployment
of Python applications across multiple VMs.

● Advanced Troubleshooting Skills: Developed the ability to identify and resolve
issues in deployment processes, including SSH connectivity, Nginx configuration,
and pipeline failures.

Feedback and Continuous Improvement.

● Adopted a Mindset of Continuous Learning: Embraced the importance of staying
updated with the latest tools and practices in DevOps and cloud computing,
continuously seeking ways to enhance my skill set.

● Self-Assessment and Growth: Regularly assessed my progress in mastering new
technologies and sought feedback to identify areas for further improvement.

Communication Skills

● Improved Technical Communication: Enhanced my ability to clearly document
complex processes, such as setting up Ansible and Jenkins, making the information
accessible to team members and future users.

● Collaborative Problem-Solving: Gained experience in effectively communicating
with team members to troubleshoot issues, share knowledge, and collaboratively
improve workflows.

● Guiding Peers: Developed the ability to explain DevOps concepts, such as CI/CD
pipelines and cloud infrastructure, to colleagues, contributing to a collaborative
learning environment

21



Chapter 5

Conclusion

My internship experience has been profoundly enriching and has significantly con-

tributed to my professional and personal growth. Engaging in the development of the

FOSSEE System Administration allowed me to apply knowledge in a practical setting,

enhancing my skills in DevOps and problem-solving in general. The challenges I

encountered and overcame during these projects sharpened my problem-solving skills

and provided a deeper understanding of working on open-source projects in general.

Working on various tasks such as astro-ansible-gcp and drupal-mariadb-gcp enhanced

my technical skills. This not only expanded my knowledge of system administration but

also taught me the importance of comprehensive documentation and testing. On the

other hand, tools like Vagrant provided me an opportunity to learn about local testing.

This internship has helped outline my career aspirations. The hands-on experience has

prepared me for future professional challenges. I am deeply grateful for this

opportunity and confident that the skills and insights gained during this internship will

be immensely beneficial to my career development. As I move forward, I am excited to

leverage the knowledge and experience acquired to contribute meaningfully to the

tech industry, especially the open-source world, and achieve my professional goals.

22



Projects:

1. Ansible-Jenkins-GCP:

● Project Title: Ansible-Jenkins-GCP

● Overview: This project establishes a CI/CD pipeline that leverages Jenkins to

automate the deployment of a Django application on virtual machines. The

integration with GitHub is achieved through webhooks, while Ansible simplifies the

creation and deployment processes.

● DevOps Principles: Employed Infrastructure as Code (IaC) and CI/CD

methodologies.

● Challenges Faced:

○ Mastering Ansible's unique syntax and diverse modules.

○ Ensuring playbooks could be reused without unintended side effects.

○ Gaining a comprehensive understanding of Jenkins' functionalities with GCP

and Ansible.

○ Safeguarding sensitive environmental variables to prevent exposure.

○ Learning Nginx configuration best practices for application hosting.

● Solutions Implemented:

○ Incorporated shell scripts and systemd services to enhance playbook

idempotence.

○ Utilized Jenkins' built-in options to securely manage environmental

variables.

● Key Takeaways: Acquired practical experience in writing Ansible playbooks and

managing server configurations, along with an understanding of the advantages of

using tools like Jenkins and GitHub Actions.

23



2. Astro-Ansible-GCP:

● Project Title: ASTRO-ANSIBLE-GCP

● Overview: This project automates the deployment of an Astro website on GCP by

implementing a Jenkins and Ansible pipeline. A GitHub webhook triggers the

Jenkins pipeline upon detecting new commits, leading to the execution of Ansible

playbooks for VM instance provisioning and website deployment.

● DevOps Principles: Focused on IaC alongside CI/CD practices.

● Challenges Faced:

○ Developing a strategy for maintaining idempotent Ansible playbooks.

○ Navigating the learning curve of integrating Jenkins with GCP.

○ Understanding the nuances of Nginx configurations to effectively serve the

application.

● Solutions Implemented:

○ Used Jenkins’ internal features for secure environmental variable

management.

● Key Takeaways: Gained hands-on experience in setting up automated CI/CD

pipelines and managing GCP infrastructure while also enhancing skills in scripting,

version control, and workflow automation.

24



3. DRUPAL-MARIADB-GCP-ANSIBLE:

● Project Title: DRUPAL-MARIADB-GCP-ANSIBLE

● Overview: This project automates the deployment of a Drupal website using

Jenkins and Ansible on a GCP VM instance. The setup includes configuring Jenkins

to respond to GitHub webhooks, utilizing Ansible playbooks for VM provisioning,

and the installation of necessary software dependencies.

● DevOps Principles: Implemented IaC with Jenkins, CI through GitHub, and

continuous deployment to GCP.

● Challenges Faced:

○ Ensure that Composer installations are set on an appropriate path for

accessibility.

○ Managing the state of the Drupal directory to ensure it was both created

and clear for new deployments.

○ Effectively reloading the PHP-FPM and Nginx services to apply changes

without downtime.

● Solutions Implemented:

○ Utilized the Composer module for streamlined installation.

○ Configured PHP-FPM to use a port instead of a socket for better

accessibility.

● Key Takeaways: Learned to set up Jenkins on GCP and automate the deployment

of Drupal, gaining valuable insights into managing environment variables securely

and leveraging GitHub webhooks for automation.

25



4. DRUPAL-MARIADB-GCP-ANSIBLE-UPDATE:

● Project Title: DRUPAL-MARIADB-GCP-ANSIBLE-UPDATE

● Overview: This script updates an existing Drupal environment, ensuring both the

Drupal core and its modules are brought up to the latest versions.

● DevOps Principles: Applied IaC principles using Jenkins and Ansible for

maintenance tasks.

● Challenges Faced:

○ Ensuring compatibility of the existing modules with the latest Drupal

version.

○ Implementing a rollback mechanism in case the update process encounters

issues.

○ Coordinating updates without affecting the live environment or user

experience.

● Key Takeaways: Developed skills in automating Drupal updates through Jenkins

and Ansible while also enhancing my understanding of securely managing GCP

credentials and automating deployment processes via GitHub webhooks.

26



Reference

Ansible

Jenkins

GCP Cloud

GitHub Code Link

27

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_intro.html
https://www.jenkins.io/doc/
https://cloud.google.com/docs
https://github.com/FOSSEE-Intern/shiv-project-code

