
FOSSEE - ICFOSS Internship Report

on

Development of Osdag Installers and Osdag on

Cloud

Submitted by

Nandagopal VS

Under the guidance of

Prof Siddhartha Ghosh

Jitendra K and Meena J Mehta Chair Professor

and under the mentorship of

Ajmal Babu M S

Research Scholar

Department of Civil Engineering

INDIAN INSTITUTE OF TECHNOLOGY

BOMBAY

October 6, 2024

Acknowledgement

I would like to express my sincere gratitude to the FOSSEE and ICFOSS team for provid-
ing me with the opportunity to undertake this internship. Their commitment to fostering
learning and innovation created an enriching environment that greatly enhanced my ex-
perience.

I am especially thankful to Ajmal Babu, my mentor and project research associate in
the Osdag team. His guidance and support were invaluable throughout my internship.
His depth of knowledge and encouraging approach inspired me to navigate challenges
effectively and grow as a developer. I truly appreciate the time he dedicated to mentor-
ing me and sharing his insights, which have significantly contributed to my professional
development.

I would also like to extend my gratitude to Professor Siddhartha Ghosh for his leader-
ship and support of the Osdag project. His vision and commitment to advancing educa-
tional resources have made this internship possible, and I am grateful for the opportunity
to contribute to such impactful work.

Additionally, I want to thank all the Osdag team for their collaboration and assistance.

1

Contents

1 Introduction 4
1.1 FOSSEE . 4
1.2 ICFOSS . 4
1.3 OSDAG . 4
1.4 FOSSEE - ICFOSS Internship . 5
1.5 Motivations . 5
1.6 Objectives . 5

2 Contributions 6
2.1 Windows Installer Development . 6

2.1.1 Objective . 6
2.1.2 Tasks Completed . 6
2.1.3 Outcome . 6

2.2 Ubuntu Installer Development . 7
2.2.1 Objective . 7
2.2.2 Tasks Completed . 7
2.2.3 Outcome . 8

2.3 Osdag on Cloud Development . 8
2.3.1 Objective . 8
2.3.2 Tasks Completed . 8
2.3.3 Outcome . 8

2.4 Docker Setup for Osdag on Cloud . 9
2.4.1 Objective . 9
2.4.2 What is Docker? . 9
2.4.3 How Docker Works? . 10
2.4.4 Why use Docker? . 10
2.4.5 Tasks completed . 11
2.4.6 Docker Setup . 11
2.4.7 Outcome . 12

2.5 Contribution to Osdag Developer Manual 13
2.5.1 Outcome . 13

3 Technical Details of the Work 14
3.1 Technologies and Tools Used . 14
3.2 Osdag Cloud Architecture . 14

3.2.1 Backend . 14
3.2.2 Frontend . 16

3.3 Osdag Cloud Docker Setup . 17

2

CONTENTS

3.3.1 Backend Dockerfile . 17
3.3.2 Frontend Dockerfile . 19
3.3.3 Docker Compose . 20

3.4 Setting up Osdag Cloud . 21
3.5 Windows Installer . 22
3.6 Ubuntu Installer . 23

4 Reflections and Learnings 24

5 Conclusion 25

A Appendices 26
A.1 Repository Links . 26

3

Chapter 1

Introduction

1.1 FOSSEE

FOSSEE (Free/Libre and Open Source Software for Education) is an initiative under
the National Mission on Education through Information and Communication Technology
(NMEICT) by the Ministry of Education, Government of India. It promotes the use
of open-source software in education and research, offering a cost-effective alternative
to proprietary software. FOSSEE focuses on creating and supporting software solutions,
conducting workshops, and developing resources to encourage the adoption of open-source
tools in various academic and professional domains. The initiative also provides opportu-
nities for students and professionals to contribute to the open-source ecosystem through
internships and collaborative projects.

1.2 ICFOSS

ICFOSS (International Centre for Free and Open Source Software) is an autonomous
organization established by the Government of Kerala, India, with the mission to pro-
mote the use and development of Free and Open Source Software (FOSS). It serves as
a hub for innovation, research, and skill development in the FOSS ecosystem. ICFOSS
works on various initiatives, including software development, capacity building, and pol-
icy advocacy to foster the use of FOSS in education, governance, and industries. The
organization also collaborates with global FOSS communities and provides opportunities
for students, professionals, and researchers to contribute to open-source projects.

1.3 OSDAG

Osdag is Free/Libre and Open-Source Software being developed for the design of steel
structures following IS 800:2007 and other relevant design codes. OSDAG helps users
in designing steel connections, members and systems using interactive Graphical User
Interface (GUI). The source code is written in Python, 3D CAD images are developed
using PythonOCC. GitHub is used to ensure smooth workflow between different modules
and team members. It is in a path where people from around the world would be able
to contribute to its development. FOSSEE’s “Share alike” policy would improve the
standard of the software when the source code is further modified based on the industrial
and educational needs across the country. Design and Detailing Checklist (DDCL) for

4

CHAPTER 1. INTRODUCTION

different connections, members and structure designs is one of the main products of this
project. It would create a repository and design guidebook for steel construction based
on Indian Standard codes and best industry practices.

1.4 FOSSEE - ICFOSS Internship

The FOSSEE-ICFOSS Internship is a collaborative initiative between FOSSEE (Free/Li-
bre and Open Source Software for Education) and ICFOSS (International Centre for Free
and Open Source Software). This internship offers students a unique opportunity to work
closely with the FOSSEE team for a period of 1.5 to 2 months. The program is designed
to be a remote internship, allowing students to contribute to various open-source projects
from anywhere while receiving guidance and mentorship from the experienced FOSSEE
team. It focuses on fostering innovation, technical skill development, and contributions
to the open-source community, providing hands-on experience in real-world projects.

1.5 Motivations

The FOSSEE-ICFOSS Internship provides a unique opportunity for students to con-
tribute to impactful open-source projects while gaining hands-on experience in cutting-
edge technologies. This internship is designed to help students develop their technical
skills, supported by guidance and mentorship from the experienced FOSSEE team. Par-
ticipants can work remotely, making the program accessible, and gain valuable knowledge
in software development, documentation, and open-source advocacy. The experience not
only enhances their skill set but also builds a strong foundation for future career oppor-
tunities in the tech industry.

1.6 Objectives

The primary objectives of the FOSSEE-ICFOSS Internship are to provide students with
hands-on experience in open-source software development and promote the use of free and
open-source tools. The internship aims to foster innovation by encouraging students to
contribute to ongoing projects, enhance their problem-solving abilities, and work collabo-
ratively with a team. Additionally, it seeks to improve students’ technical skills, develop
comprehensive documentation, and raise awareness about the benefits of open-source
software in academia and industry.

5

Chapter 2

Contributions

2.1 Windows Installer Development

2.1.1 Objective

The primary objective was to update the OsdagWindows launcher to ensure compatibility
with Windows 11. This involved resolving issues with the installation process for key
dependencies like Miniconda, PyQt5, and LaTeX, and ensuring a smooth installation
experience for users.

2.1.2 Tasks Completed

• Fixed NSIS Script for Miniconda Installation: Resolved an issue where the NSIS
script was not properly installing Miniconda during setup.

• Fixed PyQt5 Installation Issue: Addressed and fixed compatibility problems related
to PyQt5 installation on Windows 11.

• Created and Tested Windows Installer Executable: Built the installer executable
(.exe) and thoroughly tested it on Windows 11 systems to confirm successful instal-
lations without errors..

2.1.3 Outcome

The updated Osdag Windows installer successfully supported Windows 11, with all ma-
jor dependencies (Miniconda, PyQt5, LaTeX) correctly installed. The final Windows
installer executable was fully functional and tested to provide a seamless installation ex-
perience across Windows 11 systems.

6

CHAPTER 2. CONTRIBUTIONS

2.2 Ubuntu Installer Development

2.2.1 Objective

To update the OsdagInstaller to support Ubuntu 24.04. This involved adding compat-
ibility for the latest Ubuntu version and resolving dependency issues that prevented
successful installations.

2.2.2 Tasks Completed

• Added Support for Ubuntu 24.04: Updated the OsdagInstaller to ensure compati-
bility with Ubuntu 24.04 by adapting the script for the latest system changes.

• Resolved Dependency Issues: Fixed dependency conflicts, ensuring all required
packages were installed without errors.

• Tested the Installer: Conducted comprehensive testing of the updated installer on
Ubuntu 24.04, ensuring smooth installation and functionality.

7

CHAPTER 2. CONTRIBUTIONS

2.2.3 Outcome

The updated OsdagInstaller now fully supports Ubuntu 24.04, with all dependency issues
resolved. The installer was thoroughly tested and confirmed to work smoothly on the
latest Ubuntu version

2.3 Osdag on Cloud Development

2.3.1 Objective

To create the End Plate module for the Osdag on Cloud platform, which involved de-
veloping the necessary UI components, writing a new backend endpoint, and integrating
the module with existing backend logic.

2.3.2 Tasks Completed

• Created New UI Components for End Plate Module: Developed new UI components
in React, ensuring they were responsive and user-friendly.

• Wrote New Backend Endpoint for End Plate Module: Developed a new backend
endpoint for the End Plate module, while reusing the underlying logical functions
from the Fin Plate module to avoid redundant code.

• Integrated Frontend with Backend APIs: Successfully connected the new UI com-
ponents with the backend APIs using the newly developed endpoint.

• Fixed Cookies Issue: Resolved a frontend issue related to improper cookie handling,
which was causing errors when switching between different modules.

2.3.3 Outcome

The End Plate module was successfully implemented with newly developed UI compo-
nents, while the existing backend functionality was efficiently adapted for it. The cookies
handling issue was fixed, resulting in smooth navigation between modules.

8

CHAPTER 2. CONTRIBUTIONS

2.4 Docker Setup for Osdag on Cloud

2.4.1 Objective

The objective was to simplify and streamline the setup process for the Osdag on Cloud
project by creating a Dockerized environment. This was necessary due to the significant
time and challenges faced when manually setting up the project, particularly dealing with
various dependency issues.

2.4.2 What is Docker?

Docker is an open-source platform that enables developers to automate the deployment,
scaling, and management of applications inside lightweight, portable containers. Contain-
ers bundle an application along with its dependencies, libraries, and configuration files,
ensuring that it can run consistently across different environments without the typical
issues related to compatibility or conflicting dependencies.

9

CHAPTER 2. CONTRIBUTIONS

2.4.3 How Docker Works?

Docker containers are built on top of a lightweight virtualization layer, which allows them
to share the host operating system’s kernel, unlike traditional virtual machines that re-
quire separate OS instances. This makes Docker containers much faster to start, use
fewer resources, and offer greater flexibility.

Docker uses the following key components:

• Dockerfile: A text file that defines the environment and the steps needed to build a
Docker image. It includes instructions like what base image to use (e.g., Ubuntu),
what dependencies to install, and how to configure the application.

• Docker Image: A snapshot of a container that contains the application and its de-
pendencies. An image is immutable and can be reused to create multiple containers.

• Docker Container: A running instance of a Docker image. Containers are isolated
from each other, ensuring that one application’s environment does not interfere
with another’s.

• Docker Compose: A tool used to define and manage multi-container Docker appli-
cations. By using a docker-compose.yml file, developers can easily set up and run
multiple containers with a single command.

2.4.4 Why use Docker?

Docker is ideal for developers who need to work with multiple applications or services,
each requiring its own specific environment. It solves the ”it works on my machine”

10

CHAPTER 2. CONTRIBUTIONS

problem by providing a consistent environment for all stages of development, from local
machines to production servers. It is widely adopted in software development because it
reduces setup time, increases the reliability of deployments, and allows for better resource
management.

By using Docker, development teams can focus on coding without worrying about
setup issues or dependency conflicts, ensuring a smoother development process and more
reliable software delivery.

2.4.5 Tasks completed

• Created Dockerfile and Docker Compose Configuration: Wrote a Dockerfile to create
a reproducible development environment that included all necessary dependencies
and configuration settings. Created a docker-compose.yml file to manage the
various containers (frontend, backend, and database).

• Managed Dependency Issues via Docker: Packaged all necessary dependencies within
Docker containers to isolate the environment and eliminate dependency conflicts.
This included specific versions of libraries, database systems, and other external
dependencies required for Osdag on Cloud.

2.4.6 Docker Setup

The Docker setup for the Osdag on Cloud project consists of three main containers: one
for the backend, one for the frontend, and a database container based on PostgreSQL,
all managed through Docker Compose. The backend Dockerfile is located in the root
directory. The frontend Dockerfile is located in the osdagclient directory, sets up the
React frontend environment.

Backend Docker Configuration

The Dockerfile in the root directory sets up an Ubuntu-based container for running the
backend of the Osdag on Cloud project, which is a Django-based web application. The
configuration includes necessary dependencies, Python packages, and environment set-
tings for running the backend services smoothly.

Frontend Docker Configuration

The Dockerfile in the osdagclient directory configures a container for the React-based
frontend of the project, using a Node.js 18-alpine image. It installs necessary dependencies
and runs the Vite development server.

Docker Compose Configuration

The Docker Compose file defines three services: backend, frontend, and db. The backend
service builds from a Dockerfile in the root directory, while the frontend service builds
from a Dockerfile in the osdagclient directory, running the Vite development server.
Both services use mounted volumes for real-time file synchronization. The db service
uses a PostgreSQL 14 image and uses a named volume for persistent database storage.

11

CHAPTER 2. CONTRIBUTIONS

2.4.7 Outcome

The Docker setup for the Osdag on Cloud project made the development and deployment
processes much easier

• Simplified Local Setup: Developers can now easily set up Osdag on Cloud on their
local devices without worrying about installing all dependencies, configuring the
database, or managing other setup details. This greatly reduces setup time and
complexity.

• Consistent Development Environment: By using Docker, all developers work in the
same setup, which help avoid issues where code works on one computer but not on
another.

• Easy Deployment: Docker Compose allows us to start all parts of the project with
a single command, making it quick to deploy.

• Isolation: Each part of the project runs in its own container, reducing conflicts and
making the system easier to manage and secure.

• Future Scalability: The container setup will enable Osdag on Cloud to scale quickly
in the future. If the project grows or requires more resources, it can be easily
adjusted without significant changes to the infrastructure.

12

CHAPTER 2. CONTRIBUTIONS

2.5 Contribution to Osdag Developer Manual

During my internship, I contributed to the Osdag Developer Manual by providing com-
prehensive documentation to assist users and developers in understanding the project.
My contributions included the following key areas:

• Installation Instructions: I developed comprehensive instructions for installing Os-
dag on both Windows and Ubuntu operating systems. This section offers step-
by-step guidance to ensure users can successfully install the application without
encountering common issues.

• Windows Installer Creation: I documented the process for creating a Windows
installer for Osdag, detailing the necessary tools and scripts involved

• Installer Scripts for Linux: I provided documentation on the installer scripts utilized
for the Linux version of Osdag. This section outlines the purpose of each script,
how they function, and their significance in the overall installation process.

• Osdag on Cloud Documentation: I contributed to the documentation for the Osdag
on Cloud project, outlining its structure and core components. This section aims
to give developers a clear understanding of the project’s organization and the key
functionalities of each component.

• Docker Setup Instructions: I created a detailed guide on setting up Osdag on Cloud
using Docker on a local device. This guide includes instructions for configuring the
environment, building containers, and running the application, which simplifies the
process for developers to get started without dealing with complex setups.

2.5.1 Outcome

The contributions made to the Osdag Developer Manual have significantly improved
the usability and accessibility of the project for both new users and developers. By
providing clear and detailed instructions, the documentation aims to reduce the
learning curve associated with installing and working with Osdag.

13

Chapter 3

Technical Details of the Work

3.1 Technologies and Tools Used

The following technologies were employed in the development of Osdag on Cloud:

• Python for backend development.

• React and Vite for the frontend.

• PostgreSQL as the database.

• Docker for containerization.

• Git for version control and collaboration.

3.2 Osdag Cloud Architecture

Osdag on cloud mainly includes 3 components a backend , frontend and a db. Docker
was used to manage these services.

3.2.1 Backend

The following section provides an overview of the API structure and the implementation
of core functionalities.

14

CHAPTER 3. TECHNICAL DETAILS OF THE WORK

Osdag-web

manage.py

osdag

urls.py

serializers.py

models.py

views.py

tests

web api

endplate outputView.py

outputCalc view.py

....

osdag api

modules

end plate connection.py

fin plate connection.py

osdag web

1. models.py
This file defines models for the Django application, each model maps to a single
database table.These models are intended to manage and store structural design
data, user account information, and material properties.

2. urls.py
This file defines the URL routing for the Osdag Web API, mapping various end-
points to corresponding views.

• sessions/create/: Creates a new session (CreateSession view).

• sessions/delete/: Deletes an existing session (DeleteSession view).

• calculate-output/Fin-Plate-Connection: Calculates output for Fin Plate
Connection (OutputData view).

• calculate-output/End-Plate-Connection: Calculates output for End Plate
Connection (EndPLateOutputData view).

3. serializers.py

This file defines a set of serializers for various models used in the Osdag Web
API.Serializers allow complex data such as querysets and model instances to be

15

CHAPTER 3. TECHNICAL DETAILS OF THE WORK

converted to native Python datatypes that can then be easily rendered into JSON,
XML or other content types. Serializers also provide deserialization, allowing parsed
data to be converted back into complex types, after first validating the incoming
data.

4. fin plate connection.py
This script is designed to validate input data, create a module for fin plate connec-
tion design, generate output values in a formatted manner, and generate a CAD
model as a BREP file.

• create module(): Creates and returns an instance of the FinPlateConnection
class.

• validate input(): Validates the input values against the required types. If
the validation fails, appropriate custom errors are raised.

• generate output(): Generates and returns the output values from the mod-
ule in a formatted JSON structure. The output includes details like pitch
distance, bolt capacity, and logs generated during processing.

5. end plate connection.py
Similar to fin plate connection.py but for End Plate Connection design.

3.2.2 Frontend

Osdag-web

manage.py

osdagclient

public

src

assets

components

shearConnection

FinePlate.jsx

EndPlate.jsx

context

ModuleState.jsx

UserState.jsx

ModuleReducer.jsx

App.jsx

....

16

CHAPTER 3. TECHNICAL DETAILS OF THE WORK

1. App.jsx
This React file is the main entry point for the web application that manages user
authentication, routing, and layout rendering

2. FinePlate.jsx
The FinePlate.jsx component is responsible for rendering the user interface for the
FinPlate module. It accepts user input, communicates with the backend API, and
displays the resulting output to the user.

3. EndPlate.jsx
Component for rendering the user interface for EndPlate module.

4. ModuleState.jsx
This component is a React context provider that manages the state and provides
various functionalities for interacting with the backend API. It handles state man-
agement for the developed modules, including connectivity lists, material details,
and session management.

5. UserState.jsx
This component is a React context provider designed to handle user authentica-
tion, authorization, and state management related to user login, signup, and file
operations.

3.3 Osdag Cloud Docker Setup

3.3.1 Backend Dockerfile

This Dockerfile sets up the backend container for osdag cloud. It uses an Ubuntu 22.04
base image and -

1. Installs necessary system packages, including FreeCAD and LaTeX.

2. Downloads and installs Miniconda .

3. Copies Conda packages and the installer script into the container.

4. Sets up a new Conda environment with Python 3.7.6, installs python packages using
both pip and Conda .

5. Copies the project files and installs additional dependencies from the requirements.txt
file.

6. Exposes port 8000 and starts the Django development server.

17

CHAPTER 3. TECHNICAL DETAILS OF THE WORK

1 FROM ubuntu:22.04

2

3 ENV DEBIAN_FRONTEND=noninteractive

4 ENV TZ=Asia/Kolkata

5

6 RUN apt update && \

7 apt install -y wget bzip2 software-properties-common curl python3-pip

libpq-dev libssl-dev build-essential libgl1-mesa-glx libglu1-mesa freecad

texlive-full && \

8 mkdir -p /snap/bin && \

9 ln -s /usr/bin/freecad /snap/bin/freecad.cmd

10

11 RUN mkdir -p /opt/conda && \

12 wget https://repo.anaconda.com/miniconda/Miniconda3-py37_4.8.2-Linux-

x86_64.sh -O /opt/conda/miniconda.sh && \

13 bash /opt/conda/miniconda.sh -b -p /opt/miniconda && \

14 rm -f /opt/conda/miniconda.sh && \

15 /opt/miniconda/bin/conda init bash

16

17 COPY install_dependencies.sh /app/install_dependencies.sh

18 COPY ./conda_packages/ /app/conda_packages/

19

20 RUN bash -c "source /opt/miniconda/etc/profile.d/conda.sh && \

21 conda create -n myenv python=3.7.6 -y && \

22 conda activate myenv && \

23 pip install --upgrade pip pyopenssl && \

24 pip install /app/conda_packages/pdflatex-0.1.3.tar.gz \

25 /app/conda_packages/PyLaTeX-1.3.1.tar.gz \

26 /app/conda_packages/XlsxWriter-1.2.8.tar.gz \

27 /app/conda_packages/Pygments-2.6.1.tar.gz \

28 /app/conda_packages/openpyxl-3.0.3.tar.gz \

29 /app/conda_packages/PyYAML-5.3.1.tar.gz \

30 /app/conda_packages/PyQt5-5.14.2-5.14.2-cp35.cp36.cp37.cp38-

abi3-manylinux2014_x86_64.whl \

31 /app/conda_packages/pdfkit-0.6.1-py3-none-any.whl \

32 /app/conda_packages/pandas-1.0.5-cp37-cp37m-manylinux1_x86_64

.whl \

33 /app/conda_packages/pynput-1.6.8-py2.py3-none-any.whl \

34 /app/conda_packages/PyGithub-1.54.1.tar.gz"

35

36 WORKDIR /app

37

38 RUN chmod +x /app/install_dependencies.sh && \

39 bash -c "source /opt/miniconda/etc/profile.d/conda.sh && \

40 conda activate myenv && \

41 /app/install_dependencies.sh"

42

43 COPY . /app

44

45 RUN bash -c "source /opt/miniconda/etc/profile.d/conda.sh && \

18

CHAPTER 3. TECHNICAL DETAILS OF THE WORK

46 conda activate myenv && \

47 pip install -r requirements.txt"

48

49 ENV LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6

50 EXPOSE 8000

51

52 CMD ["bash", "-c", "source /opt/miniconda/etc/profile.d/conda.sh && conda

activate myenv && python manage.py runserver 0.0.0.0:8000"]

3.3.2 Frontend Dockerfile

1 FROM node:18-alpine

2

3 WORKDIR /app

4

5 COPY package*.json ./

6

7 RUN npm install

8

9 COPY . .

10

11 EXPOSE 5173

12

13 CMD ["npm", "run", "dev"]

14

15

This Dockerfile sets up a container for the frontend of Osdag cloud project using the
node:18-alpine image and.

1. Sets the working directory to /app.

2. Copies the package.json and package-lock.json files and installs the necessary de-
pendencies using npm install.

3. Copies the remaining project files into the container.

4. Exposes port 5173 for the Vite development server.

5. Runs the server with the command npm run dev

19

CHAPTER 3. TECHNICAL DETAILS OF THE WORK

3.3.3 Docker Compose

Docker Compose is a tool for defining and running multi-container applications. It does
the following:

1. Backend: Builds the backend image using a Dockerfile located in the root directory,
mounts the current directory to /app.

2. Frontend: Builds the React frontend using a Dockerfile located in the osdagclient
directory, mounts the osdagclient directory to /app.

3. Database (db): Uses the official PostgreSQL 14 image, with user credentials and a
specified database, and stores data in a named volume (postgres data).

1 version: ’3’

2

3 services:

4 backend:

5 build:

6 context: .

7 dockerfile: Dockerfile

8 ports:

9 - "8000:8000"

10 volumes:

11 - .:/app

12 depends_on:

13 - db

14

15 frontend:

16 build:

17 context: ./osdagclient

18 dockerfile: Dockerfile

19 ports:

20 - "5173:5173"

21 volumes:

22 - ./osdagclient:/app

23 environment:

24 - CHOKIDAR_USEPOLLING=true

25 command: npm run dev

26

27

28 db:

29 image: postgres:14

30 environment:

31 POSTGRES_USER: myuser

32 POSTGRES_PASSWORD: mypassword

33 POSTGRES_DB: mydb

34 ports:

35 - "5432:5432"

36 volumes:

37 - postgres_data:/var/lib/postgresql/data

38

20

CHAPTER 3. TECHNICAL DETAILS OF THE WORK

39 volumes:

40 postgres_data:

3.4 Setting up Osdag Cloud

1. Clone or Download the Repository

• Clone or download this repository to your local machine.

2. Download the dependencies

• Download conda packages folder and copy it to the Osdag web folder.

3. Build the image

• Build the image using

docker compose build

4. Npm install

• Start the frontend container by

docker compose run frontend sh

• Install the necessary dependencies using

npm i

5. Setting up backend

• Run the containers using

docker compose up

• Open the bash shell inside the backend container using

docker exec -it osdag-web-backend-1 /bin/bash

• Execute the following commands

source /opt/miniconda/etc/profile.d/conda.sh

conda activate myenv

python populate_database.py

python update_sequences.py

To rebuild the image after making any changes use docker compose build. To start
all the containers use docker compose up

21

https://github.com/Nandagopalvs25/Osdag-web.git
https://drive.google.com/drive/folders/1DrGFG3YCligybxtWM_dAOC8HkhelTcvR?usp=sharing

CHAPTER 3. TECHNICAL DETAILS OF THE WORK

3.5 Windows Installer

NSIS (Nullsoft Scriptable Install System) is a professional open-source system to create
Windows installers. It is designed to be small, flexible, and capable of creating complex
installation scripts. Follow these steps to create a Windows installer for Osdag:

1. Clone or Download the Repository

• Clone or download this repository to your local machine.

2. Download Miniconda3

• Download Miniconda3-py37 23.1.0-1 and copy it to the Files folder.

• Rename the file to Miniconda3-latest-Windows-x86 64.exe.

3. Download Python Dependencies

• Download all required Python dependencies as listed in the
install osdag dependencies.bat file located in the dependencies folder.

• Copy the downloaded dependencies into the dependencies folder.

4. Download MiKTeX

• Download miktex-x64.exe and move it into the Files/latex folder.

5. Create Executables for Installers

• Use pyinstaller to create executables of latex package installer.py and mik-
tek installer.py.

• Move the created .exe files (they will be created in the dist folder) into the
latex folder.

6. Copy Osdag Folder

• Copy the Osdag folder into the Files folder.

7. Install NSIS Software

• Install the NSIS software from the official NSIS website.

• Move the header files (environment files) to the include folder inside the NSIS
installed directory.

8. Compile the Installer Script

• Compile the osdag.nsi file using NSIS.

• The installer will be created in the same location as the osdag.nsi file.

22

https://github.com/Nandagopalvs25/WindowsInstaller
https://nsis.sourceforge.io/Main_Page

CHAPTER 3. TECHNICAL DETAILS OF THE WORK

3.6 Ubuntu Installer

The Ubuntu installer mainly includes 3 scripts

Miniconda3-latest-Linux-x86_64.sh

It is a shell script used to install Miniconda on Linux systems. Miniconda is a
minimal installer for Conda, a package manager that simplifies the process of managing
and deploying applications, environments, and packages. It is particularly useful for set-
ting up Python environments and dependencies.

2-install-osdag.sh

The script begins by removing any existing Osdag directory to ensure a clean installation.
The script then creates a configuration file (Osdag.config) with default workspace and
installation directory paths. The Osdag files are copied to the user’s home directory. The
script then creates and activate a Conda environment (osdagenv) with Python 3.7.6.
Various necessary dependencies are then installed using both apt-get and conda, as well
as pip for Python packages.

3-install-texlive.sh

This script is designed to install and configure TeX Live on Ubuntu which is a compre-
hensive TeX distribution used for typesetting documents

23

Chapter 4

Reflections and Learnings

Throughout my internship, I had the opportunity to work with various technologies
and tools that enhanced my technical skills and understanding of software development
processes. Here are the key areas I focused on during my tasks:

• NSIS (Nullsoft Scriptable Install System): I learned how to create Windows in-
stallers using NSIS, which involved writing scripts to automate the installation
process. This experience taught me how to create user-friendly installers and how
to troubleshoot common issues that arise during installation.

• Docker: Setting up Docker for the Osdag on Cloud project was a great learning ex-
perience. I gained hands-on experience in creating Dockerfiles for both backend and
frontend containers, as well as using Docker Compose to manage multi-container
applications.

• React: While working on the Osdag on Cloud project, I developed UI components
using React and integrated them with backend APIs. This helped me to understand
more about front-end development and the importance of creating responsive and
interactive user interfaces.

• Python and Django: My involvement in developing endpoints for the backend of the
Osdag project enhanced my Python programming skills, particularly in the context
of Django.

• Version Control with Git: Throughout my internship, I used Git for version con-
trol, which helped me understand how to track changes, collaborate with other
developers, and manage code effectively.

• Problem-Solving Skills: Throughout the internship, I encountered various chal-
lenges, such as dependency issues and installation failures. Overcoming these obsta-
cles helped me develop strong problem-solving skills and the ability to troubleshoot
effectively.

24

Chapter 5

Conclusion

In summary, my internship experience with the Osdag team was highly rewarding. This
internship provided me with valuable experiences that broadened my technical expertise
and improved my problem-solving abilities. The skills I acquired in software installa-
tion, containerization, front-end and back-end development, documentation, and version
control will undoubtedly benefit my future endeavors in the field of software engineering.

25

Appendix A

Appendices

A.1 Repository Links

• Windows Installer Repository

• Ubuntu Installer Repository

• osdag-web Repository

• Windows Installer

• Ubuntu Installer

26

https://github.com/Nandagopalvs25/WindowsInstaller
https://github.com/Nandagopalvs25/UbuntuInstaller
https://github.com/Nandagopalvs25/Osdag-web
https://drive.google.com/drive/folders/1SvOqG1FEQVKxcnPopTcHvg06Swr05ZMU?usp=sharing
https://drive.google.com/drive/folders/13GXetn-SP9alAZraaf3KsDA7_9dSQ3K5?usp=sharing

	Introduction
	FOSSEE
	ICFOSS
	OSDAG
	FOSSEE - ICFOSS Internship
	Motivations
	Objectives

	Contributions
	Windows Installer Development
	Objective
	Tasks Completed
	Outcome

	Ubuntu Installer Development
	Objective
	Tasks Completed
	Outcome

	Osdag on Cloud Development
	Objective
	Tasks Completed
	Outcome

	Docker Setup for Osdag on Cloud
	Objective
	What is Docker?
	How Docker Works?
	Why use Docker?
	Tasks completed
	Docker Setup
	Outcome

	Contribution to Osdag Developer Manual
	Outcome

	Technical Details of the Work
	Technologies and Tools Used
	Osdag Cloud Architecture
	Backend
	Frontend

	Osdag Cloud Docker Setup
	Backend Dockerfile
	Frontend Dockerfile
	Docker Compose

	Setting up Osdag Cloud
	Windows Installer
	Ubuntu Installer

	Reflections and Learnings
	Conclusion
	Appendices
	Repository Links

