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Chapter 1

Introduction

This report contains all the contributions made by me during the FOSSEE Summer Fellowship
2024 from 15th May 2024 to 15th July 2024. I did the fellowship under the guidance of the
R team under the FOSSEE Project. My contributions included the R TextBook Companion
Project, a Case Study on INR-USD Exchange Rate Data, and the creation of study material on
Linear Time Series Models.

The FOSSEE (Free/Libre and Open Source Software for Education) project promotes the use
of FLOSS tools to improve the quality of education in our country. The project aims to reduce
dependency on proprietary software in educational institutions. The FOSSEE project is part
of the National Mission on Education through Information and Communication Technology
(ICT), Ministry of Education (MoE), Government of India.



Chapter 2

Contribution to the TextBook Companion
(TBC) project

As part of the selection process for the FOSSEE Summer Fellowship, applicants are required
to choose a standard textbook in areas such as Probability, Statistics, or Algebra that includes
at least 80 solved examples, and to submit a TBC proposal for the R TBC project. My proposal
was approved, and during the fellowship, I contributed to the R TBC project by developing a
companion resource in R for the textbook listed below:

Table 2.1: Details of the textbook selected for R TBC contribution.

Textbook Name Author Edition
Probability And Statistics | Morris H. Degroot, Mark J. Schervish 4th

I have coded 349 solved problems of the book. My submitted TBC is available for public
use on the R TBC Completed Books webpage.


https://r.fossee.in/textbook_run/531/1/1

Chapter 3

Case Study on Foreign Exchange Rate
(INR-USD) dataset

3.1 Data Collection

The INR-USD Exchange Rate dataset consisting of the daily exchange rate of USD-INR is the
dataset used for the analysis. The data are noon buying rates in New York. The data starts from
January 3, 2000, to June 14, 2024. The data is recorded daily at 4 PM DST and is provided
with a 7-day frequency by Federal Reserve Bank of New York.

3.2 Data Sources

The data is sourced with the following descriptions:

* Name: H.10 Weekly Release [1]

Provider: Federal Reserve Bank of New York
* Currency: INR-USD exchange rate

* Frequency: Daily

* Time Period: January 2000 to June 2024

The dataset consisted of USD exchange rates with various countries,but we focused on only
INR-USD exchange rate.

3.3 Data Description

The dataset is stored in the CSV format and has the dimension of 6381 rows and 2 columns.
The description of headers/column names of the constructed dataset is given in the following
table:

Table 3.1: Description of each header of the constructed dataset.

Attributes Description Data Type
Unique.Identifier.. The date of recorded exchange rate. | character
H10.HI0.RXI_N.B.IN | The exchange rate of the day at noon. | character



https://www.federalreserve.gov/datadownload/Chart.aspx?rel=H10&series=3604f6e0c01fd1a3275b2de1f6547cb6&lastobs=&from=01/01/2000&to=06/14/2024&filetype=csv&label=include&layout=seriescolumn&pp=Download
https://www.federalreserve.gov/datadownload/Chart.aspx?rel=H10&series=3604f6e0c01fd1a3275b2de1f6547cb6&lastobs=&from=01/01/2000&to=06/14/2024&filetype=csv&label=include&layout=seriescolumn&pp=Download

A random subset of size 5 is selected from the constructed dataset and shown below for
clarity.

Table 3.2: A random subset of the dataset.

Unique.Identifier.. | H10.H10.RXI_N.B.IN
2000-01-03 43.5500
2000-02-29 43.6500
2003-12-29 45.6600
2004-02-10 45.2200
2004-02-17 45.2800

3.4 Data Preprocessing

Let us import the data and read the head of the data along with summary of the data to see, how
the data is distributed.

df <- read.csv ("FRB_H10.csv")
head (df)
summary (df)

df [6 % 2]

Unique.ldentifier.. H10.H10.RXI_N.B.IN
1 Time Period RXI_N.B.IN
2 2000-01-03 43.5500
3 2000-01-04 43.5500
4 2000-01-05 43.5500
5 2000-01-06 43.5500
6 2000-01-07 43.5500

Figure 3.1: Exchange Rates of INR against USD

Unique.Identifier.. H10.H10.RXI_N.B.IN

Length:6381 Length:6381
Class :character Class :character
Mode :character Mode :character

Figure 3.2: Summary of unprocessed data

As we can see there is an extra row stating the contents of the row, then after only does the
original data starts. So we shall be removing the first row. And in the summary we can see that
the both the data values are in characters datatype and not in their respective datatypes, so we
shall also make them into the date and numeric format. We also convert the column names to
DATE and RATE for easiness of calling them. These are done using the following commands
along with a summary of the data after preprocessing using the skim(x) function in the skimr
package of R.




df <- df[-1,]

rownames (df) <- NULL

colnames (df) <- c("DATE", "RATE")
dfSDATE <- as.Date (df$SDATE)
df$SRATE <- as.numeric (dfSRATE)
skim (df)

— Data Summary

values
Name df
Number of rows 6380
Number of columns 2
Column type frequency:
Date 1
numeric 1
Group variables Nohe
— Variable type: Date
skim_variable n_missing complete_rate min max median n_unique
DATE 0 1 2000-01-03 2024-06-14 2012-03-24 6380

— Variable type: numeric
skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 ploo hist
RATE 248 0.961 57.3 13.2 38.5 45.8 51.9 68.1 83.6 Ml—

Figure 3.3: Summary after cleaning

So we see that after cleaning the dataset, there are almost 248 missing values in it. We
handle the missing values by applying linear interpolation using the code. And then we plot
the data to see how the data looks like.

dfSRATE <- na.approx (df$RATE, na.rm = FALSE)
ggplot (df, aes(x = DATE, y = RATE)) +
geom_line () +
labs (x = "Date",
y = "Rate") +
theme minimal ()
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Figure 3.4: Plot of data

From the plot we can see that there is an increasing trend in the graph providing an insight into
the overall direction of the data. There is also considerable short-term fluctuations throughout
the period, indicating volatility.

3.5 Data Analysis
3.5.1 ACF and PACF Plots

The Autocorrelation function[2] measures the linear relationship between lagged values of a
time series. The equation is as follows:

_ Z?zkﬁ—l(xt — ) (24— — T) _ Cov(zt, x—1)
Sy (ae — )2 Var(z)

(3.1)

where:
* T is the length of the time series,
¢ 7 1s the mean of the series,
* k is the lag.

The partial autocorrelation function (PACF) measures the correlation between time series
observations separated by & time units, y, and 1;_j, after removing the effects of all shorter
lag correlations y; 1,92, ...,%—x-1)- The PACF plot is a graphical representation of the
correlation of a time series with itself at different lags, after removing the effects of the previous
lags.
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Figure 3.5: ACF and PACF plots

The ACF and PACEF plots of the data is given above. As we can see the ACF plot has
significant auto-correlation at many lags that does not decay quickly which are very high, that
is they are close to 1. There is also a slow decay in the ACF plot, which suggests a that there is
trend component. The lack of cyclical pattern in ACF states that there is no seasonality in the
data. The PACF plot shows a significant spike at lag 1, and then drops off dramatically. This is
a characteristic of an AR(1) process.

3.5.2 Linear Model

Let us fit a linear model to the data. A linear model is used to describe the relationship between
a dependent variable and one or more independent variables by fitting a linear equation to the
data.

Im_model <- 1m(RATE ~ DATE, data = df)
dfs$fitted <- predict (1lm_model)
ggplot (df, aes(x = DATE, y = RATE)) +

geom_line () +
geom_line (aes(y = fitted), color = "red") +
labs(x = "Time", y = "RATE")
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Figure 3.6: Linear model

In the figure the red line is the fitted values of the linear model, and the black one is the
actual data. We can see from the figure itself, that the linear model is not fitting the data very
well.Even though the linear model could capture the overall trend of the graph.

Now let us look at the residuals of the model [7] . We can check the residuals of the model
by using the residuals(model) function in R. This function when we pass the model as the
parameter, will provide us the residuals or error of the model. This is calculated using the
difference between the actual value and fitted values.

dfSresiduals <—- residuals (1lm_model)

ggplot (df, aes(x = DATE, y = residuals)) +
geom_line () +
labs(x = "Time", y = "Residuals") +
theme _minimal ()
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Figure 3.7: Residual plot of linear model

As we can see from the plot of the residuals [5], we can see that there is significant differ-
ence between the fitted values and the original data. The residuals keep ranging from -10 to 10.
The model specifically do not capture the early part of the data. This suggests us the that the
linear model is not the best fit for the data.

3.5.3 AR Model

Auto-Regressive models [2] are based on the idea that the current value of the series, y;, can be
explained as a function of p past values, 1, y:—2, - . ., Y1—p, Where p determines the number of
steps into the past needed to forecast the current value. The general formula goes as follows:

p
Ye = Z OilYi—i + € (3.2)
i=1

where ¢; ~ N(0, 0?) is independent identically distributed (iid) noise with mean 0 and variance
o2, p represents the number of lag terms, and y;_; is the i-th lagged value in the data.

Let us try fitting an AR(1) model on the data. For this we will be using the arima(x, order =
¢(p,0,0), method) function, where x is the time series data, the p in the order parameter refers
to the number AR coefficients and for method parameter we can use conditional sum of squares
or maximum likelihood method. We here pass the data, specifying 1 AR coefficient which to
be found out by maximum likelihood method[3].

arl <- arima (dfS$SRATE, order = c(1,0,0), method = "ML")
summary (arl)




call:
arima(x = df$RATE, order = c(1, 0, 0), method = "ML")

Coefficients:
arl dintercept
0.9999 57.3804
s.e. 0.0001 17.9925
sigmar? estimated as 0.05216: Tlog likelihood = 364.29, aic = -722.59
Training set error measures:

ME RMSE MAE MPE MAPE MASE ACF1
Training set 0.006238412 0.2283839 0.1454059 0.008944538 0.2560209 1.000476 -0.005987199

Figure 3.8: AR(1) model

The coefficient of the AR(1) model is 0.9999, which is very near to one. This suggests that
that the series is following a unit root process, that is non-stationary and we know that it has a
trend. So thus we can say that the model does not fit the best for the data due to its near-unit
root behaviour.

3.54 ARIMA Model

An Auto-Regressive Integrated Moving Average (ARIMA) [2] model is specified by the fol-
lowing three parameters: (p, d, q).
Auto-Regressive (AR) part:

* The auto-regressive part involves regressing the variable on its own lagged (past) values.

* The parameter p is the number of lag observations included in the model (the number of
terms in the auto-regressive part).

Integrated (I) part:

* The integrated part involves differencing the raw observations to make the time series
stationary (i.e., having constant mean and variance over time).

* The parameter d is the number of times the differencing is applied to make the series
stationary.

Moving Average (MA) part:

* The moving average part involves modeling the error term as a linear combination of
error terms occurring contemporaneously and at various times in the past.

* The parameter ¢ is the size of the moving average window (the number of terms in the
moving average part).

Let us fitan ARIMA(1,1,0) model on our given data. We are differencing the data to remove
the trend present in the data[3].

10



ar_dl <- arima (dfS$SRATE, order = c¢(1,1,0), method = "ML")
summary (ar_dl)

call:
arima(x = dffRATE, order = c(1, 1, 0), method

IIMLII)

Coefficients:
arl

-0.0052

s.e. 0.0125

sigmahr2 estimated as 0.05221: 1log likelihood = 365.16, aic = -726.32
Training set error measures:

ME RMSE MAE MPE MAPE MASE ACF1
Training set 0.006287983 0.2284767 0.1453905 0.009443458 0.2560122 0.9997579 -0.001121566

Figure 3.9: ARIMA(1,1,0) model summary

As we can see, the model coefficient is -0.0052 value. This coefficient was found using the
Maximum Likelihood Estimate method. Now let us check the residuals using checkresidu-
als(model) function in R, where we pass the model as a parameter.

checkresiduals (ar_dl)

Residuals from ARIMA(1,1,0)
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Figure 3.10: Different residual plots of ARIMA(1,1,0) model
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Ljung-Box test

data: Residuals from ARIMA(1,1,0)
Q* = 76.895, df = 9, p-value = 6.669e-13

Model df: 1. Total lags used: 10

Figure 3.11: Ljung Box Test of Residuals

The function gives the following results as we see above. Let us go through one-by-one.
The top plot shows the plotting of the residuals. It provides us an understanding of how well the
model is fitted, as we see that most residuals are clustered around zero with some occasional
spikes. The ACF plot of the residuals is provided in the bottom left of the figure. As we can see
most of the lags fall within the confidence interval suggesting that there is little auto-correlation.
The few values exceeding the confidence interval suggest that there is some internal structure
which the model could not capture very well.

Ljung-Box [5] test is a test used in time series analysis to assess whether the lagged values
of the residuals from a time series model exhibit significant auto-correlation upto a specified
lag (null hypothesis). Here in the above result we can assess the following:

e Q*: It is the sum of squared auto-correlations of the residuals up to lag 10. This is the
test static calculated for Ljung-Box test.

 df: It represents the degrees of freedom, which is the difference of number of lags used
with number of parameters. It determines the number of auto-correlations that are being
tested.

* p-value: This is the probability associated with the test statistic. Here we have a very
small p-value (e.g., 6.669 x 1071%) suggests strong evidence to reject Hy, i.e. there is
significant autocorrelation in the residuals.

As there is significant autocorrelation in the residuals, we can say that the model is not the best
fit for the given time series data. So we should go for nonlinear models such as TAR, STAR,
etc.

3.5.5 TAR Model

Threshold Autoregressive (TAR) model [2] is a type of nonlinear time series model that incor-
porates a strict threshold to capture regime changes in the data. In TAR models, the regime
switches abruptly when the time series crosses a certain threshold.

The Threshold Autoregressive (TAR) model is defined as:

)10+ S X ey ifXiq<ny

_ ] (3.3)
' {65270 + Zfil 02X +eap W Xi g>ry

where:

e X, is the time series data.

12



®1,0, P20 are the intercept terms for the two regimes.

* p1, p2 are the number of lagged observations included in the model for each regime.

* 014, @2, are the autoregressive coefficients for each regime.

~ is the threshold value.

* €14, €2, are the white noise error terms for each regime.

We can fit a TAR model for the data in R using the setar (x, m = 2, thDelay
1, model = "TAR") function from the t sDyn package in R, where:

¢ x 18 the time series data,

* mis the embedding dimension,

* thDelay is the time delay for the threshold variable,

* model is used to represent which model to use.

tar _model <- setar (dfSRATE,
summary (tar_model)

m= 2,

thDelay

= 1, model = "TAR")

13




SETAR model ( 2 regimes)
Coefficients:
Low regime:
const.L phiL.1 phiL.?2
-0.008769538 0.804014735 0.196357122

High regime:
const.H phiH.1 phiH. 2
0.000872988 1.010832919 -0.010743396

Threshold:
-variable: zZ(t) = + (0) X(t)+ (Lx(t-1)
-Value: 44.52
Proportion of points in low regime: 15.02% High regime: 84.98%
Residuals:
Min 10 Median 3Q Max

-2.2845353 -0.0889303 -0.0052547 0.0879108 2.5319251

Fit:
residuals wvariance = 0.05194, AIC = -18856, MAPE = 0.2562%

Coefficient(s):

Estimate 5td. Error t value Pr(|tl)

const.L -0.00876954 0.17692855 -0.0496 0.9605

phiL.1  0.80401473 0.04365901 18.4158 < 2.2e-16 ***

phiL. 2 0.19635712 0.04378933  4.4841 7.44%e-06 ***

const.H 0.00087299 0.01502571 0.0581 0.9537

phiH.1  1.01083292 0.01305200 77.4466 < 2.2e-16 *¥*

phiH.2 -0.01074340 0.01305536 -0.8229 0.4106

Signif. codes: 0 “***’ (g 001 ‘**’ Q.01 **’ 0.05 “." 0.1 ' "1

Threshold
variable: Z(t) = 4+ (0) X(t) + (1) x(x-1)

value: 44.52

Figure 3.12: TAR model summary

We used the SETAR() function to fit a TAR model[3], and we got the following model. The
threshold values was found out to be 44.52, and the estimates of each regime AR coefficients
are given too. As we can see in the summary only 15.02% is only in the lower regime and the
rest, that is 84.98% are in the higher regime. The residuals range from —2.28 to 2.53.

Now let us look into the fitting of the model. We shall be separating the fitted values based
on the regime, and plotting the fitted values along the original data.

14



threshold <- 44.52
fitted_values <- fitted.values (tar_model)

df$Fitted_RATE <- c(rep(NA, length (df$SRATE) - length(fitted_values))
, fitted_values)

dfSRegime <- ifelse (dfS$SFitted_RATE > threshold, 1, 2)

ggplot (df, aes(x = as.Date (DATE))) +
geom_line (aes(y = RATE), color = "red") +
geom_line (aes(y = Fitted_RATE, color = as.factor (Regime))) +
scale_color_manual (values = c("1" = "blue", "2" = "green")) +
geom_hline (yintercept = threshold, color = "black", size = 1) +
labs (x = "Date",
y = "RATE",
color = "Regime") +
theme_minimal () +
theme (legend.position = "none")
80
70
E
X a0
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Figure 3.13: Fitting of TAR model

As we can see in the above graph, the fitted values almost precisely fits the original data. Thus
proves that the given model is a good fit of the data. For further understanding let us look into
the ACF plot of residuals.

15
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Figure 3.14: ACF of TAR model residuals

The residuals of the plot have very low correlation between them stating that the TAR model
has captured the complexities of the data really well. There are only a little lags above the con-
fidence interval. So TAR model is a good fit of the data. We shall be seeing further forecasting
using the model in the results section.

3.5.6 STAR Model

Smooth Threshold Auto-Regressive (STAR) model [4] is a type of nonlinear time series model
that incorporates smooth threshold functions to capture nonlinear relationships between the cur-
rent observation and its lagged values. Unlike the hard threshold in Threshold Auto-Regressive
(TAR) models, where the regime switches abruptly at a certain threshold, the smooth threshold
function allows for gradual transitions between regimes. Common choices for .S include logis-
tic or exponential functions.

The Smooth Threshold Auto-Regressive (STAR) model is defined as:

p
Xe=p+ Y 6 (Xei = %S (Xeminn)) + & (3.4)

i=1

where:

X, is the time series at time £.

( 1s the intercept term.

p is the number of lagged observations included in the model.

¢, are the autoregressive coefficients.

~; are the threshold parameters.

16



* S(-) is the smooth threshold function.

* ¢, is the white noise error term.

We can fit a STAR model for the data in R using the star(x, m=2, noRegimes, d=1, thDelay =
1, sig = 0.05) function from the tsDyn package in R, where:

* x is the time series datad,

* mis the embedding dimension,

* noRegimes is the maximum number of regimes,

* d is the time delay,

* thDelay is the time delay for the threshold variable,

* sigis the significance level.

star_model <- star (dfSRATE, m = 3, noRegimes = 2, d = 1, thDelay =
1, sig = 0.05)

Testing linearity... p-Value = 4.733342e-06

The series is nonlinear. Incremental building procedure:

Building a 2 regime STAR.

Performing grid search for starting values...

Starting values fixed: gamma = 72.07692 , th = 44.50276 ; SSE = 329.5165
Optimization algorithm converged

Optimized values fixed for regime 2 : gamma = 72.07694
Finished building a MRSTAR with 2 regimes

, th = 44.51943 ; SSE = 329.5092

Figure 3.15: STAR model

As we can see in the STAR model the starting values are gamma value of 72.07692 which
determines how sharply or smoothly the transitions between regimes occur in the model. Higher
the gamma value sharper the transition between regimes. The theta value is chosen as 44.50276
which determines the point around which the transition between regime occurs.

We shall now check into the fitted values of the model. We can get the fitted values of the
model using the fitted.values(model) function in R, by passing the model into it. After plotting
the values alongside the original we can see that how well the model fits the data.

17




fitted_values <- fitted.values (star_model)

combined_df <- data.frame (
Date = dfS$SDATE,
Original_ RATE = dfS$RATE,
Fitted_RATE = c(rep(NA, length (df$RATE) - length(fitted_values)),
fitted_values)

ggplot (combined_df, aes(x = Date)) +

geom_line (aes(y = Original_ RATE, color = "Original")) +
geom_line (aes(y = Fitted RATE, color = "Fitted")) +
scale_color_manual (values = c ("Original" = "blue", "Fitted" = "red
")) +
labs (x = "Date",
y = "RATE",
color = "Legend") +

theme_minimal ()
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Figure 3.16: Fitted values of STAR model with original data

From the above graph we can see that the fitted values of the STAR model fits original data
very well as the original data values are overlapped very well. So we can infer that the model
is a good fit for the data.

Let us look into the ACF plot of the models residuals to further accurately look into our
inference. As said before we will be using the ACF(data) function to plot the ACF plot.

18
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Figure 3.17: ACF of STAR model residuals

As we see from the plot above, there are less values which are crossing the confidence
interval compared to the plot of the residuals of the TAR model. This depicts that it has an even
better understanding of the data when compared to the TAR model. This model accurately fits
the data. We shall further look into the forecasting using the model in the results section.

3.6 Results

We could see that both the TAR model and STAR model fitted the data the best compared to
other linear models. Both the models fitted the data very well and the residuals of both models
where very low. And the residuals of the models had very less auto-correlation in different lags
too.

3.6.1 Forecast using TAR model

We use the forecast(model, n.ahead=1) function to predict future values, specifying the model
and the prediction length with the n.ahead parameter. To visualize the forecast alongside the
original data, we plot both together. Predictions for the next 7 days using both TAR and STAR
models show almost similar results, suggesting that both models fit the data comparably well.
Let us now examine the plot of these predicted values combined with the original data to better
understand the forecast’s alignment with historical trends.

Time Series:

Start = 6381

End = 6387

Freguency = 1

[1] 83.54857 83.55701 83.56546 83.57390 83.58235 83.59079 83.59024

Figure 3.18: TAR Forecast Values
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Figure 3.19: Zoomed-in TAR forecast

3.6.2 Forecast using STAR model

Similar to the above forecasting, we can do the same for the STAR model. We shall predict the
next 7 forecasted values using the function and plot them. For easy visualization, we opted for
only a few starting values of the original data.

Time Series:

start = 6381

End = 6387

Frequency = 1

[1] 83.55358 83.56164 83.57014 83.57908 83.58799 83.59686 83.60573

Figure 3.20: STAR model forecast values
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Figure 3.21: Zoomed-in STAR forecast
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3.6.3 Model Evaluation

Here we can see in the results, both of them give almost similar forecasts. This shows that both
the models captures the trend similarly. Thus we can say that both the models have very good
fitting and forecasting of the data.

Now we can compare the models used using the Akaike Information Criterion (AIC) values
of the models using the AIC(model) function in R. AIC is used for the evaluation of a model
to know how well the model works. The lower the AIC value, the better the model is. The AIC
is computed using the formula:

AIC = 2k — 21n(L) (3.5)

where k is the number of parameters in the model, and In(L) is the log-likelihood of the model.

aic_ar_dl model <-— AIC(ar_dl)
aic_tar model <- AIC (tar_model)
aic_star model <—- AIC (star_model)

print (paste ("AIC for ARIMA(1,1,0) model:", aic_ar_dl_model))
print (paste ("AIC for TAR model:", aic_tar_model))
print (paste ("AIC for STAR model:", aic_star_model))

[1] "AIC for ARIMA(1,1,0) model: -733.358633593421"
[1] "AIC for TAR model: -18855.7430923718"
[1] "AIC for STAR model: -18885.0205506413"

Figure 3.22: AIC values of the models

Now we can see that the STAR model has a lower AIC value compared to the TAR model,
which stating that the STAR model is the better model over the TAR model. For further infer-
ence we can see the AIC value of ARIMA(1,1,0) model also here. We can see how much better
the AIC value of the non-linear models are compared to that of the ARIMA model.
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Chapter 4

Study Material Project

I was involved in the creation of study material for a workshop conducted at IIT Bombay on
“Linear Time Series”. The study material created was on time series linear models, including
AutoRegressive (AR), Moving Average (MA), and AutoRegressive Moving Average (ARMA)
models. Two documents were created. The first document focused on the coding aspect, i.e., the
practical usage of the models, and the second one covered the underlying theoretical concepts
of the code. The study aims to build and demonstrate the foundation required for the practical
applications of these models in time series data forecasting. The study material included simu-
lation of the data, model fitting, residual analysis, ACF and PACF plots, and forecasting results
using each model. This resource can be accessed using the following link:

Link to Study Material: https://r.fossee.in/resources
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Chapter 5

Conclusion

During my FOSSEE Summer Fellowship 2024, I focused on enhancing the use and understand-
ing of R, an open-source language for statistical analysis. Key initiatives included the Textbook
Companion Project, where I developed educational resources by coding textbook solutions in
R. In the Foreign Exchange Rate Case Study, analyzed the INR/USD dataset to provide in-
sights into time series analysis and currency forecasting, which will be valuable for economists
and financial organizations. The creation of study material, producing resources on linear time
series models shall further enrich the available educational content.

This on-campus fellowship promoted group learning and gave me useful skills that I can use
in my future pursuits. This experience improved my technical proficiency and understanding
of organizational dynamics. The projects increased the usability and awareness of open-source
software, specifically R, and instilled in me values of dedication, hard work, and contributing
to the community.
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