
1

Summer Fellowship Report

On

Electroblocks(Arduino) - Bug fixing and Further Improvements

SubmiƩed by

JyoƟ Kumari

Pranav Prakash Ranjan

NaƟonal InsƟtute of Technology Rourkela

Under the guidance of

Prof.Kannan M. Moudgalya

Chemical Engineering Department

IIT Bombay

Rajesh Kushalkar

Sr. Manager Open Source Hardware,

IIT BOMBAY

Noah Glaser

 PraƟk Bhosale

Research Associate,

IIT Bombay

July 2024

2

Acknowledgement
I would like to take this opportunity to express my hearƞelt graƟtude
to everyone who played a pivotal role in making my summer
internship with FOSSEE - Electroblocks (Arduino) an enriching and
memorable experience.

First and foremost, I extend my deepest thanks to Noah Glaser, Prof.
Rajesh Kumar and Prof. PraƟk Bhosale for believing in my abiliƟes and
selecƟng me for this invaluable project. Their unwavering support
and constant encouragement have been the driving force behind my
progress.

I owe a great debt of graƟtude to my mentors, whose guidance and
wisdom have been indispensable throughout my internship. Their
expert advice and Ɵmely assistance not only helped me complete my
tasks successfully but also sharpened both my technical and non-
technical skills.

I also want to express my appreciaƟon to my colleagues working on
various projects. Their construcƟve feedback and criƟcal insights
have significantly contributed to my growth and development.

Pranav Prakash Ranjan

JyoƟ Kumari

3

DeclaraƟon
I declare that this wriƩen submission represents our ideas in my own
words and whenever other’s ideas or words have been included, I
have adequately cited and referenced the original sources. I declare
that I have properly and accurately acknowledged all sources used in
the producƟon of this thesis. I also declare that We have adhered to
all principles of academic honesty and integrity and have not
misrepresented or fabricated or falsified any idea/data/fact/source in
our submission. I understand that any violaƟon of the above will be a
cause for disciplinary acƟon by the InsƟtute and can also evoke penal
acƟon from the sources which have not been properly cited or from
whom proper permission has not been taken when needed.

Pranav Prakash Ranjan

JyoƟ Kumari

4

Index
1. IntroducƟon

1.1. Project Overview

2. Feature AddiƟons

2.1: Changed from Forward backward to clockwise and anti-
clockwise

2.2 Created animation, to show the movement in both directions

2.3 Created dropdown for number of motors.

2.4 Implementing Speed Control for Motors

2.5 Added a checkbox in sensor setup block to apply the
changes to all the loops

2.6 Created a page in Electroblocks to show list of projects readily
available

3. Bug Fixes

3.1 Reducing / adding the number of rows when selected.

4. Conclusion

5. Future Work

5

List Of Figures
2.1: Changed from Forward backward to clockwise and anti-clockwise

2.2: After adding animation, to show the movement in both directions

2.3 Creating dropdown for number of motors

2.4 After Implementing Speed Control for Motors

2.5 Added a checkbox in sensor setup block to apply the changes to
all the loops

2.6 After Creating a page in Electroblocks to show list of projects readily
available

3.1 Reducing / adding the number of rows when selected

6

Chapter 1

IntroducƟon
Electroblocks is an innovaƟve plaƞorm that simplifies learning and
experimenƟng with electronics and programming using Arduino. It
offers modular, plug-and-play components that can be easily
connected, eliminaƟng complex wiring. CompaƟble with the Arduino
ecosystem, users can program projects with the Arduino IDE. Its user-
friendly interface and clear labeling make it accessible for all skill
levels, enhancing understanding of electronics and coding. Ideal for
STEM educaƟon, Electroblocks supports a wide range of projects,
from simple to complex. By combining Arduino's flexibility with
modular simplicity, Electroblocks empowers creaƟvity and makes
prototyping straighƞorward for beginners and experienced makers
alike.

1.1 Project Overview
During this fellowship, I worked on the exisƟng project which was
already completed to some extent. For the most part, my main job
was to find and fix any bugs or errors in the project and to add the
new features that were needed.

7

Chapter 2
Feature Additions
During the internship, I added a few features to the project, most of
these features aimed at improving the accessibility of the website
and facilitate some stuff in the website.

2.1 Changed from Forward backward to clockwise and anti-
clockwise.

When you change the control scheme from
forward/backward movement to clockwise/anticlockwise
rotation, it alters how users interact with the system. This
change could be for a robotic system, a user interface
element, or any application where directional control is
essential.

Fig 2.1
Here's how to handle this transition eƯectively:
Understanding the Control Change
Forward/Backward:

 Forward: Moves the entity in a straight line ahead.
 Backward: Moves the entity in a straight line behind.

8

Clockwise/Anticlockwise:
 Clockwise: Rotates the entity to the right.
 Anticlockwise: Rotates the entity to the left.

Steps to Implement the Control Change
1. Update Control Inputs:

o Replace forward and backward commands with
clockwise and anticlockwise commands.

o Ensure that the input method (e.g., buttons, joystick,
keyboard) corresponds to the new rotational
commands.

2. Adjust the Logic:
o Modify the underlying logic to handle rotational

movement instead of linear movement.
o For instance, if you are controlling a robot, change the

motor control commands to rotate the robot instead of
moving it forward or backward.

3. Recalibrate Movements:
o If applicable, calibrate the speed and degree of rotation

for the clockwise and anticlockwise commands to
ensure smooth operation.

o Determine the appropriate units of rotation (e.g.,
degrees per second) for precise control.

4. Update the User Interface:
o Change any visual indicators or instructions from

forward/backward to clockwise/anticlockwise.
o Ensure that users can easily understand and adapt to

the new control scheme.
5. Test and Validate:

o Conduct thorough testing to ensure the new controls
work as expected.

o Gather user feedback to identify any issues or areas of
confusion with the new controls.

9

By following these steps, you can smoothly transition from
forward/backward controls to clockwise/anticlockwise controls,
ensuring that users can eƯectively and intuitively interact with the
system.

10

2.2 Created animation, to show the movement in both directions.
Creating an animation to demonstrate both clockwise and
anticlockwise movements can significantly improve user
comprehension.

Fig 2.2
Here’s how you can eƯectively plan and implement this concept.
Objectives:

 Visually demonstrate the diƯerence between clockwise and
anticlockwise rotations.

 Make the animation intuitive and easy to understand for users.
Key Elements:

1. Rotating Object: Choose a clear and easily recognizable object
such as an arrow, gear, or dial to represent rotation.

2. Direction Indicators: Include markers or labels that indicate
"Clockwise" and "Anticlockwise."

3. Animation Phases:
o Initial Phase: Start with the object in a neutral, stationary

position.
o Clockwise Rotation: Animate the object rotating clockwise

for a few seconds.
o Return to Neutral: Bring the object back to the neutral

position.

11

o Anticlockwise Rotation: Animate the object rotating
anticlockwise for a few seconds.

o Loop: Optionally, loop the animation for continuous
demonstration.

Implementation Steps:
1. Design the Visuals:

o Use a design tool to create the rotating object and any
directional markers or labels.

o Ensure the design is simple and the rotation direction is
clearly indicated.

2. Animation Planning:
o Clockwise Rotation: Plan for the object to rotate to the

right. This can be visualized as the top of the object moving
to the right and downwards.

o Anticlockwise Rotation: Plan for the object to rotate to the
left. This is the opposite direction, with the top of the object
moving to the left and downwards.

o Neutral Position: Design a starting and resting position for
the object where no rotation is happening.

3. User Interface:
o Integrate the animation into your user interface in a

prominent location where users can easily see and
understand it.

o Ensure there are clear buttons or triggers for starting each
type of rotation (e.g., "Start Clockwise" and "Start
Anticlockwise").

4. Testing and Feedback:
o Test the animation with real users to ensure it is clear and

eƯective.
o Collect feedback on whether the rotation directions are

easily distinguishable and if the animation helps in
understanding the control scheme.

12

5. Refinement:
o Based on feedback, refine the animation for smoother

transitions and better clarity.
o Ensure the speed and smoothness of the rotation are

appropriate and do not cause any visual discomfort.

By following these steps, you can create an eƯective and intuitive
animation that demonstrates both clockwise and anticlockwise
movements, helping users understand the new control scheme and
making the interaction more engaging.

13

2.3 Created dropdown for number of motors.

When you add a dropdown to select the number of motors, it allows
users to configure the system according to their specific needs. This
feature can be particularly useful in applications such as robotics,
automation systems, or any scenario where motor control is required.

fig 2.3

Steps to Implement the Dropdown

1. Define the Dropdown Options:

o Determine the range of motor numbers that can be selected
(e.g., 1 to 6 motors).

o Populate the dropdown with these options.

2. Handle Selection:

o Capture the user's selection.

14

o Adjust the interface or system configuration based on the
selected number of motors.

3. Update the Interface:

o Dynamically update the interface to display controls or
indicators for the selected number of motors.

o Ensure that the system or application logic adjusts to
handle the specified number of motors.

Conceptual Approach

1. Dropdown Options:

 Provide a range of options that the user can select from, such as 1
to 6 motors.

 The dropdown should be easily accessible and clearly labeled.

2. Capture User Selection:

 When the user selects a number of motors, capture this
selection.

 Use this selection to adjust the rest of the interface or system
configuration accordingly.

3. Dynamically Update Interface:

 Based on the selected number of motors, dynamically display
controls or indicators for each motor.

 Ensure that the controls are intuitive and provide clear feedback
for each motor.

User Experience Considerations

1. Clear Labeling:

o Clearly label the dropdown to indicate its purpose, such as
"Select Number of Motors."

15

2. Responsive Interface:

o Ensure that the interface responds immediately to the
user's selection by displaying the appropriate number of
controls.

3. Intuitive Controls:

o Design the motor controls to be intuitive and easy to use.

o Provide clear feedback for each motor, such as indicating
the current state or speed.

4. Accessibility:

o Ensure the dropdown and controls are accessible to all
users, including those with disabilities.

o Provide keyboard navigation and screen reader support if
applicable.

By implementing a dropdown for selecting the number of motors and
dynamically updating the interface, you provide a flexible and user-
friendly way for users to configure and control their motors. This
approach ensures that the system can adapt to various configurations
and user needs, enhancing the overall user experience.

16

2.4 Implementing Speed Control for Motors

Adding the ability to change the speed of each motor enhances the
control and flexibility of your system.

Fig 2.4

Here's how you can conceptualize and implement this feature.

Steps to Implement Speed Control

1. Dropdown for Motor Selection:

o Provide a dropdown to select the number of motors.

o Dynamically generate controls for each motor based on the
selection.

2. Speed Control Sliders:

o For each motor, include a slider or input field to adjust the
speed.

o Ensure the speed range is appropriate for your motors (e.g.,
0 to 100% or specific RPM values).

3. Real-time Feedback:

o Display the current speed next to each slider.

17

o Update the motor's speed in real-time as the user adjusts
the slider.

Conceptual Approach

1. Dropdown Options for Motor Selection:

 Provide options like 1 to 6 motors.

 When the user selects a number, dynamically generate controls
for each motor.

2. Speed Control Interface:

 For each motor, display a slider to adjust the speed.

 Optionally, include input fields for precise speed adjustments.

3. Real-time Speed Adjustment:

 As the user adjusts the slider, update the motor's speed
immediately.

 Display the current speed next to the slider for visual feedback.

User Experience Considerations

1. Clear and Intuitive Controls:

o Label each motor and its corresponding speed control
clearly.

o Ensure the sliders are responsive and easy to use.

2. Real-time Feedback:

o Provide immediate visual feedback for each motor's speed.

o Consider using indicators or gauges to show the current
speed.

3. Error Handling:

18

o Handle cases where speed values might be out of range or
invalid.

o Provide error messages or warnings as necessary.

By implementing these features, you create a flexible and user-friendly
interface that allows users to control the speed of each motor
individually. This enhances the overall functionality and usability of
your system, making it more adaptable to various use cases and user
needs.

19

2.5 Added a checkbox in sensor setup block to apply the changes to
all the loops

Adding a checkbox to apply changes to all loops in the sensor setup
block can significantly enhance the user experience by streamlining
the configuration process.

Fig 2.5

Here’s how you can conceptualize and implement this feature
eƯectively.

Conceptual Approach

1. Checkbox Integration:

o Add a checkbox labeled "Apply changes to all loops" in the
sensor setup block.

o When checked, any changes made to one loop will
automatically apply to all loops.

2. User Interaction Flow:

o Users configure settings for one loop.

20

o If the checkbox is checked, the same settings propagate to
all loops.

o If unchecked, users can configure each loop individually.

3. Real-time Feedback:

o Provide immediate visual feedback to indicate that changes
have been applied to all loops.

o Display a confirmation message or indicator to reassure
users.

Steps to Implement the Feature

1. Designing the Interface:

 Checkbox Placement: Place the checkbox within the sensor
setup block in a prominent position.

 Labeling: Clearly label the checkbox as "Apply changes to all
loops" for clarity.

2. Capturing User Input:

 When the checkbox is checked, listen for changes in the loop
settings.

 Capture the configuration settings from the active loop.

3. Applying Changes:

 If the checkbox is checked, apply the captured settings to all
loops.

 Update the configuration for each loop dynamically.

4. Providing Feedback:

 Display a message or visual indicator confirming that changes
have been applied to all loops.

 Ensure that users can see which settings have been propagated.

21

Example Scenario

Use Case: Sensor Configuration Interface

1. User Scenario:

o The user is configuring sensors for multiple loops in a
system.

o They want to apply the same settings to all loops to save
time.

2. Checkbox Interaction:

o The user checks the "Apply changes to all loops" checkbox.

o They configure settings for Loop 1 (e.g., threshold values,
sensitivity).

3. Applying Settings:

o As the user changes settings for Loop 1, the same changes
are applied to Loops 2, 3, and 4 automatically.

o The interface shows a confirmation message: "Changes
applied to all loops."

4. User Feedback:

o The user sees real-time updates indicating that all loops
have been configured with the same settings.

o If the user unchecks the checkbox, they can adjust each
loop individually without aƯecting the others.

User Experience Considerations

1. Clear Instructions:

o Provide clear instructions or tooltips explaining the
checkbox functionality.

22

o Ensure users understand that changes will be applied to all
loops when the checkbox is checked.

2. Feedback Mechanism:

o Implement visual feedback such as highlighting or a
confirmation message to show that changes have been
applied.

o Consider adding an "undo" option in case users want to
revert the changes.

3. Accessibility:

o Ensure the checkbox is easily accessible and usable with
keyboard navigation.

o Provide appropriate labels and ARIA attributes for screen
readers.

4. Error Handling:

o Handle scenarios where applying changes to all loops
might cause conflicts or errors.

o Provide informative error messages or prompts to guide
users.

By following these steps and considerations, you can implement an
eƯective feature that allows users to apply changes to all loops with a
single action, enhancing the eƯiciency and usability of your sensor
configuration interface.

23

2.6 Created a page in Electroblocks to show list of projects readily
available

Creating a page within Electroblocks to showcase a list of readily
available projects can provide users with inspiration and
resources to get started quickly. This page should be user-friendly,
informative, and visually appealing.

Fig 2.6
Key Components

1. Header:
o Title: "Available Projects"
o Brief description or introduction to the projects list.

2. Project List:
o Each project should have a card or tile layout.
o Information on each project should include:

 Project title
 Brief description
 DiƯiculty level
 Required components
 Link to detailed instructions or tutorial
 Image or thumbnail

3. Filters and Search:

24

o Allow users to filter projects by diƯiculty level, components
required, or categories (e.g., robotics, automation, sensors).

o Include a search bar for quick access to specific projects.
4. Footer:

o Additional resources or links
o Contact information or support links

Layout and Design
1. Header:

 Title: "Available Projects"
 Description: A short paragraph introducing the projects list and

encouraging users to explore and try out diƯerent projects.
2. Project List:

 Use a grid layout for better visual organization.
 Each project card should include:

o Title: Clearly display the project name.
o Description: A brief summary of the project.
o DiƯiculty Level: Indicate whether the project is Beginner,

Intermediate, or Advanced.
o Components: List key components required for the project.
o Link: A button or link to view detailed instructions or a

tutorial.
o Image: An illustrative thumbnail or image related to the

project.
3. Filters and Search:

 Filters: Dropdown menus or checkboxes to filter projects by:
o DiƯiculty level (Beginner, Intermediate, Advanced)
o Components required (Arduino, sensors, motors, etc.)
o Categories (Robotics, Automation, Sensors, etc.)

 Search Bar: A search input at the top for users to quickly find
specific projects.

4. Footer: Include links to additional resources, such as tutorials,
community forums, or documentation.

25

 Provide contact information or links to support channels.
User Experience Considerations

1. Ease of Navigation:
o Ensure the page is easy to navigate with clear headings and

sections.
o Use consistent design elements and spacing.

2. Visual Appeal:
o Use high-quality images and a clean, modern design.
o Make sure the text is readable with suƯicient contrast.

3. Responsiveness:
o Ensure the page is responsive and looks good on various

devices, including desktops, tablets, and smartphones.
4. Accessibility:

o Ensure the page is accessible to users with disabilities.
o Use appropriate ARIA labels and ensure keyboard

navigability.

By following these guidelines, you can create a functional and
appealing projects list page in Electroblocks, making it easier for users
to find and engage with available projects.

26

Chapter 3
Bug Fixing

3.1 Reducing / adding the number of rows when selected 16*2 / 20*4

Adjusting Content for DiƯerent Display Modes

When designing an interface that allows users to switch between
diƯerent display modes, such as 16x2 and 20x4 LCD displays, you
need to ensure the content fits appropriately within the
constraints of each mode. Here’s how to handle this:

Understanding the Display Modes

16x2 Display:

 16 characters per row
 rows

27

20x4 Display:
 20 characters per row
 4 rows

Steps to Adjust Content

1. Determine the Current Mode:

 Allow the user to select the display mode through a
dropdown menu or similar interface element.

 Read the selected mode to know whether it’s 16x2 or 20x4.

2. Prepare the Content:

 Collect or generate the content that needs to be displayed.
 Ensure the content is flexible enough to be split across

multiple rows.

3. Adjust Content Based on Mode:

 Calculate the number of characters per row and the number
of rows available.

 Split the content into segments that fit within the current
display's constraints.

 For a 16x2 display, divide the content into chunks of 16
characters each and distribute them over 2 rows.

 For a 20x4 display, divide the content into chunks of 20
characters each and distribute them over 4 rows.

4. Display the Adjusted Content:
 Clear any previous content displayed.
 Render the new content, ensuring each segment is placed in its
respective row.
 Make sure to handle cases where content might overflow the
available space.

28

User Experience Considerations

 Smooth Transitions:
 Implement smooth transitions when switching between

modes to enhance the user experience.
 Avoid abrupt changes that can confuse the user.

Content Overflow Handling:

 For content longer than the display capacity, implement
scrolling or pagination.

 Inform users if content is truncated to fit the display.

Real-Time Updates:
 Ensure that any change in the display mode updates the

content in real-time without requiring a page refresh.

By following these steps, you can eƯectively adjust and display content
on diƯerent LCD display modes, providing a seamless user experience.

29

Chapter 4
Conclusion
This project was truly special, like a work of art that I thoroughly
enjoyed creating. Working on it and adding different features was a
lot of fun, and I got to learn so many new things along the way. I'm
really thankful to my mentors for their amazing guidance throughout
the project. I believe this project has so much potential. It could be a
great help to students and researchers who are exploring
Electroblocks(Arduino). All the effort and creativity that went into
this project make it a valuable tool for learning and researching. I'm
excited about the impact this project could have and how it might
make a difference for others.

30

Chapter 5
Future Work

 This project can be improved further by adding new
features and fixing already present bugs.

 Create a virtual environment that does not require the
internet for people with bad internet.

 It should work on a Windows machine as the server. You
will need to get both the main Electro Blocks repo and the
Electro Blocks server working.

 Expanded Sensor Integration
 User Interface Enhancements
 Automated testing and debugging tools
 Multi-language support
 Enhanced data visualization tools

