
Semester Long Internship Report

On

eSim Tool Manager and Packaging

Submitted by

Suchinton Chakravrty

Under the guidance of

Prof.Kannan M. Moudgalya

Chemical Engineering Department

IIT Bombay

May 17, 2023

Acknowledgment

I would like to express my sincerest gratitude to the entire FOSSEE team for afford-
ing me the esteemed opportunity of being a part of this Fellowship. Working with an
open-source organization like FOSSEE has been an enlightening experience, allow-
ing me to delve into the intricacies of simulation software such as eSim and acquire
valuable problem-solving skills. I am immensely grateful for this learning experi-
ence, which I will treasure in the years to come throughout my career. I extend my
heartfelt appreciation to Prof. Kannan M. Moudgalya for his visionary leadership
and dedication to advancing this initiative. It is through his guidance that I was
granted the privilege of contributing as an intern, however small my role may have
been.

Furthermore, I would like to express my warmest gratitude to the entire FOS-
SEE team, including our mentors Mr. Sumanto Kar, Mr. Rahul Paknikar, and Mrs.
Usha Vishwanathan. Their constant support and mentorship throughout my intern-
ship have been invaluable. Whenever I encountered challenges, they were readily
available to provide guidance and help me navigate through the complexities, lead-
ing me to effective solutions. I hold their teachings in the highest regard and will
carry them forward in my future endeavours.

I also wish to extend my special thanks to my fellow interns, whose unwavering
support and motivation have been instrumental in our collaborative efforts towards
the success of this project.

Overall, my time interning at FOSSEE has been a delightful experience, con-
tributing to both personal growth and the development of FOSSEE. I have gained
profound insights and knowledge that will undoubtedly shape my future. As an
aspiring professional in the semiconductor industry, this internship serves as a sig-
nificant milestone on my path towards a successful career.

1

Contents

1 Introduction 4

1.1 eSim . 4

1.2 Flatpak . 4

2 Task Chosen: Tool Manager and Packaging 6

3 Methodology 7

4 Implementation 9

4.1 Defining the Flatpak Manifest . 10
4.1.1 run.sh . 10
4.1.2 org.flatpak.FOSSEE Inst test.yml 10
4.1.3 python3-py7zr.json . 13
4.1.4 git.json . 15

4.2 Main Program: FOSSEE Inst test.py 16
4.2.1 class AppWindow(...): . 16
4.2.2 install Pip package(): . 18
4.2.3 install Verilator from Archive(): 18
4.2.4 install Verilator SRC(): . 19
4.2.5 QThread classes: . 20
4.2.6 Main Function: . 21

4.3 Install Script: Install verilator.sh . 21

4.4 Testing script: test . 23

5 Results 24

5.1 GUI & Launching procedure . 24

5.2 Installing Python Dependencies for eSim: 25

5.3 Installing Verilator from Archived package(Pre-built): 25

5.4 Installing Verilator from Source: . 26

2

6 Workflow 27

6.1 build new flatpak.sh . 27

6.2 flapak-pip-generator . 28

7 Conclusion and Future Scope 29

7.1 Conclusion . 29

7.2 Future Work . 29

Bibliography 30

3

Chapter 1

Introduction

FOSSEE (Free/Libre and Open Source Software for Education) is an initiative taken
by the National Mission on Education through Information and Communication
Technology (ICT), Ministry of Human Resource Development (MHRD), Govern-
ment of India which has successfully developed various open- source tools and pro-
motes the use of these tools in improving the quality of education and helping every
individual avail these sources free of cost. The software is being developed in such
a way that it can stay relevant with respect to the commercial software.

1.1 eSim

eSim is a free/libre and open source EDA tool for circuit design, simulation, analysis
and PCB design developed by FOSSEE, IIT Bombay. It is an integrated tool built
using free/libre and open source software such as KiCad, Ngspice, NGHDL and
GHDL.[4]

1.2 Flatpak

Flatpak is a software distribution and package management system for Linux. It
provides a way to package applications and their dependencies in a self-contained
manner, making it easier to distribute and run applications across different Linux
distributions.[1] Here are some key features of Flatpak:

• Sandboxed Environment: Flatpak packages are sandboxed, meaning they run
in isolation from the rest of the system. This enhances security and prevents
conflicts between applications or libraries.

• Dependency Management: Flatpak allows applications to bundle their de-
pendencies, ensuring that they have the required libraries and components
available, regardless of the host system’s configuration.

• Cross-Distribution Compatibility: Flatpak packages are designed to be portable
across different Linux distributions. This means developers can create a single
package that works on multiple distributions, reducing the need for distribution-
specific packaging.

4

• Runtime Environment: Flatpak provides a runtime environment that contains
a set of common libraries and components required by applications. This
allows applications to rely on a consistent and up-to-date runtime, reducing
the need to bundle large amounts of dependencies within each m package.

Flatpak simplifies the packaging, distribution, and installation of Linux applications
by providing a standardized and secure platform. It promotes cross-distribution
compatibility and sandboxing, making it easier for developers to reach a wider au-
dience and for users to install and run applications without worrying about system
conflicts or complex dependency management.

Figure 1.1: Flatpak general scheme

5

Chapter 2

Task Chosen: Tool Manager and
Packaging

Currently, eSim only supports limited versions of some Linux Distributions, namely
Ubuntu and Fedora due to the dependency constraints on other platforms as they
might be hosted under different names, use different package managers, have differ-
ent packaging formats, or have outdated packages. This means that the dependencies
need to be resolved by self-hosting packages, compiling on the host machine and us-
ing alternative packaging management systems.

To address these concerns, my task was to implement a proof-on-concept installer
application for eSim which can,

• Install Python dependencies (using PiPy) for eSim in User space while the
installer remains sandboxed

• Install pre-built and pre-compiled binaries in the user space/ root file system,
including their libraries

• Partially build the packages from source in a sandboxed environment and
install them in user space.

In order to meet the requirements, we thought to design an m using the Flatpak
packaging format, this way more Linux distributions could be supported without
worrying about the native dependencies required to run the installer.
The Installer was created such that it would be -

• User-friendly

• Easily implemented

• Easily scalable

• Platform Independent

• and have its dependencies bundled

6

Chapter 3

Methodology

To implement the above points, we have taken the following approach:

• flatpak-spawn --host is used in the applications to run commands/ system
calls with access to resources outside the sandbox. It allows the application
to interact with the host system, such as accessing hardware devices or files.
Thereby bypassing the limitations of using a sandboxed environment for an
installer application.

• Next we need to have certain build tools available during runtime to compile/
build packages, this means that org.kde.Platform can not be used as the
application’s runtime, to overcome this we mount the SDK org.kde.SDK as the
Runtime, thereby providing us with the necessary build tools during runtime.

Note: This is only a temporary solution and any future work in this direction
should consider implementing the runtime dependencies as modules to the
org.kde.Platform runtime.

• Since the builds take a long time to compile, the GUI must remain responsive,
therefore QTherads are used to allow for processes to execute parallelly and
show real-time installation updates in the GUI.

• To make the Application extensible, execution of individual scripts must be
supported such that newer dependencies/ packages can be supported just by
adding new installation scripts.

7

Figure 3.1: Flatpak general scheme

As seen in the Figure above, the flatpak application has bundled resources, to
address time constraints, supports using the host resources to install packages using
host resources only and also supports partial builds in the Flatpak file system and
completion in the host file system.

8

Chapter 4

Implementation

The application has multiple stages and functions that will be discussed sequentially.
The Application’s runtime dependencies include; py7zr & pyqt5

Additional dependencies, on the host system, are:

• build tools

• make

• ccache

• python3 & python3-pip (pip3)

For reference, the File structure for the application’s repository can be seen
below.

Figure 4.1: Repo File structure 2

9

4.1 Defining the Flatpak Manifest

A Flatpak manifest is a configuration file that describes the structure and behaviour
of a Flatpak application. It provides instructions for building, packaging, and run-
ning the application as a Flatpak package.

4.1.1 run.sh

This shell script is executed every time our Flatpak application is launched.

#!/bin/sh

python3 -u /app/bin/FOSSEE_Inst_test.py

4.1.2 org.flatpak.FOSSEE Inst test.yml

The manifest provides the necessary instructions for building and running the ap-
plication within the Flatpak framework.

• Runtime Configuration: The application utilizes the runtime environment pro-
vided by the ”org.kde.Sdk” runtime with a specific version of ’5.15-22.08’. This
runtime provides the necessary dependencies and libraries for the application
to run.

• Base Application: The base application for this Flatpak is specified as ”com.riverbankcomputing.PyQt.BaseApp”
with a version of ’5.15-22.08’. The base application serves as the foundation
upon which the application is built.[7]

• Command: The command to execute the application is specified as ”run.sh”.
This script is responsible for launching the application within the Flatpak
sandboxed environment.

• Finish Arguments: The finish arguments define the permissions and access
rights granted to the application within the Flatpak sandbox. These include:

– Sharing inter-process communication (IPC)

– Sharing network access

– Access to the X11 display server

– Access to the Wayland display server

– Access to the host operating system’s filesystem

– Access to the host filesystem

– Access to the user’s home directory

– Access to the Direct Rendering Infrastructure (DRI)

– Ability to communicate with the org.freedesktop.Flatpak interface

10

• Cleanup: The cleanup section specifies the files and directories that should
be removed after the application has been built. In this case, the ”/include”
directory and any files with the ”.a” extension will be deleted.

• Files: The files section describes the file permissions and access rights for
specific paths within the application’s sandbox. In this case, the ”/verilator/*”
path is readable and writable.

• Modules: Modules define the components and build instructions for the appli-
cation. The Flatpak manifest contains the following modules:

app-id: org.flatpak.FOSSEE_Inst_test

runtime: org.kde.Sdk

runtime-version: '5.15-22.08'

sdk: org.kde.Sdk

base: com.riverbankcomputing.PyQt.BaseApp

base-version: 5.15-22.08

command: run.sh

finish-args:

- --share=ipc

- --share=network

- --socket=x11

- --socket=wayland

- --filesystem=host-os

- --filesystem=host

- --filesystem=home

- --device=dri

- --talk-name=org.freedesktop.Flatpak

cleanup:

- '/include'

- '*.a'

files:

- path: /verilator/*

read: true

write: true

modules:

- name: FOSSEE_Inst_test

buildsystem: simple

build-commands:

- install -D FOSSEE_Inst_test.py /app/bin/FOSSEE_Inst_test.py

- install -D run.sh /app/bin/run.sh

11

sources:

- type: file

path: FOSSEE_Inst_test.py

- type: file

path: run.sh

- name: assets

buildsystem: simple

build-commands:

- cp -r assets/ /app/assets/

sources:

- type: dir

path: assets/

dest: assets/

- python3-py7zr.json

12

4.1.3 python3-py7zr.json

This module is used for handling 7z archives in Python. It provides functionality to
create, extract, and manipulate 7z files. We use this in our application to extract
prebuilt binaries and additional libraries and export them to the host file system.
To resolve this dependency we install the package and its own dependencies using
pip (provided by the flatpak SDK and not the host system)

{

"name": "python3-py7zr",

"buildsystem": "simple",

"build-commands": [

"pip3 install --verbose --exists-action=i --no-index

--find-links=\"file://${PWD}\" --prefix=${FLATPAK_DEST} \"py7zr\"

--no-build-isolation"

↪→

↪→

],

"sources": [

{

"type": "file",

"url": "https://files.pythonhosted.org/packages/2a/18/70c32fe9357f3ee

a18598b23aa9ed29b1711c3001835f7cf99a9818985d0/Brotli-1.0.9.zip",

"sha256":

"4d1b810aa0ed773f81dceda2cc7b403d01057458730e309856356d4ef4188438"↪→

},

{

"type": "file",

"url": "https://files.pythonhosted.org/packages/14/6f/825068e229aaa59719d2

52d2279a23ba471f95d6df18ca09e9f7f445fda3/inflate64-0.3.1.tar.gz",

"sha256":

"b52dd8fefd2ba179e5dfa18d6eca7e2fc822584616271c039d5ef1f9ca90c71c"↪→

},

{

"type": "file",

"url":

"https://files.pythonhosted.org/packages/22/31/ec5f46fd4c83185b806aa9c736↪→

e228cb780f13990a9cf4da0beb70025fcc/multivolumefile-0.2.3-py3-none-any.whl",

"sha256":

"237f4353b60af1703087cf7725755a1f6fcaeeea48421e1896940cd1c920d678"↪→

},

{

"type": "file",

"url":

"https://files.pythonhosted.org/packages/3d/7d/d05864a69e452f003c0d77e728e↪→

155a89a2a26b09e64860ddd70ad64fb26/psutil-5.9.4.tar.gz",

"sha256":

"3d7f9739eb435d4b1338944abe23f49584bde5395f27487d2ee25ad9a8774a62"↪→

13

},

{

"type": "file",

"url":

"https://files.pythonhosted.org/packages/1b/9c/514791abe077098ca6b4dac2ba↪→

8780c2f162aa35b5d99e48915a0f4ad2a8/py7zr-0.20.4-py3-none-any.whl",

"sha256":

"94d0c24217f6582741813ee94490a4ca82bd5f9bf35e4f8610cb588cf7445764"↪→

},

{

"type": "file",

"url":

"https://files.pythonhosted.org/packages/26/ff/25952179fa892e7d082a34e5↪→

917d747d05a227ba3c83dd3adac1c3f0be24/pybcj-1.0.1.tar.gz",

"sha256":

"8b682ed08caabfb7c042d4be083e28ddc692afb1deff5567111f8855071b75c3"↪→

},

{

"type": "file",

"url": "https://files.pythonhosted.org/packages/3d/07/cfd8f52b906887780131

7d26dc7225e19421bc659e1395d2cd6933b1a351/pycryptodomex-3.17.tar.gz",

"sha256":

"0af93aad8d62e810247beedef0261c148790c52f3cd33643791cc6396dd217c1"↪→

},

{

"type": "file",

"url":

"https://files.pythonhosted.org/packages/49/93/e45d3f8d2725ec448b9178↪→

b91791c2509d3a9b42d8984a22f576fe2f89be/pyppmd-1.0.0.tar.gz",

"sha256":

"075c9bd297e3b0a87dd7aeabca7fee668218acbe69ecc1c6511064558de8840f"↪→

},

{

"type": "file",

"url": "https://files.pythonhosted.org/packages/b0/d8/75d91aa30bac7fa5b88f

7216768c932b8b7ad48ccff1d2e322655c0571cd/pyzstd-0.15.4.tar.gz",

"sha256":

"de07ac54f57642f186732075cdce2be3d4a30228c3b17a6d8c6053765dc6eec8"↪→

},

{

"type": "file",

"url": "https://files.pythonhosted.org/packages/ba/a7/2c12b543f853dae8862

86b824200eb9d7cd2466e3d14eff1799fbe8223b9/texttable-1.6.7-py2.py3-none-any.whl",↪→

"sha256":

"b7b68139aa8a6339d2c320ca8b1dc42d13a7831a346b446cb9eb385f0c76310c"↪→

14

}

]

}

4.1.4 git.json

This module, while not used in the base manifest, serves as an implementation of
adding build tools required for runtime dependencies such as git, autoconf, make,
etc.

{

"name": "git",

"make-args": [

"INSTALL_SYMLINKS=1"

],

"make-install-args": [

"INSTALL_SYMLINKS=1"

],

"cleanup": [

"/lib/pkgconfig",

"/man"

],

"sources": [

{

"type": "archive",

"url":

"https://www.kernel.org/pub/software/scm/git/git-2.40.1.tar.xz",↪→

"sha256":

"4893b8b98eefc9fdc4b0e7ca249e340004faa7804a433d17429e311e1fef21d2",↪→

"x-checker-data": {

"type": "anitya",

"project-id": 5350,

"stable-only": true,

"url-template":

"https://www.kernel.org/pub/software/scm/git/git-$version.tar.xz"↪→

}

}

]

}

15

4.2 Main Program: FOSSEE Inst test.py

The application allows the user to install Pip packages and Verilator. It includes
a logo, a select package feature, and three buttons: Install Pip package, Install
Verilator from Archive, and Install Verilator from SRC. Some of the functions it
performs are listed below.

• When the Install Pip package button is clicked, the selected Pip package is
installed using the flatpack-spawn command and pip. If successful, a message
box pops up showing that the package was installed successfully. If there is
an error, a warning message box is shown.

• When the Install Verilator from Archive button is clicked, Verilator is installed
from a 7z archive file using pkexec and cp commands. If successful, a message
box pops up showing that Verilator was installed successfully. If there is an
error, a warning message box is shown.

• When the Install Verilator from SRC button is clicked, the user can see
the progress of Verilator installation from the source code through the In-
stallThread Source class that signals progress through the output signal pyqtSig-
nal.

• The main function shows the GUI.

4.2.1 class AppWindow(...):

The class AppWindow initializes several UI elements and assigns them to instance
variables. It adds a QLabel object named label and a QComboBox object named
combo. And then it also adds three push buttons named install_pkg_button,
install_verilator_from_Archive_button, and install_verilator_SRC_button.
For each button, a corresponding method is connected to its clicked signal.

Lastly, it adds a QPlainTextEdit object named Install_Output and creates an in-
stance of a custom thread class InstallThread_SRC and connects its output_signal
to the update_output method. Finally, it creates a QVBoxLayout and adds all ele-
ments to it before setting the layout for the AppWindow.

import sys

import subprocess

from PyQt5 import QtWidgets

from PyQt5.QtWidgets import QMessageBox

import PyQt5.QtCore

from PyQt5.QtCore import *

from PyQt5.QtGui import QPixmap

from PyQt5.QtWidgets import QLabel

import py7zr

16

import os

class AppWindow(QtWidgets.QWidget):

def __init__(self):

super().__init__()

self.initUI()

def initUI(self):

self.Logo = QLabel(self)

self.pixmap = QPixmap('/app/assets/Fossee_logo.png')

self.Logo.setPixmap(self.pixmap)

self.Logo.setAlignment(PyQt5.QtCore.Qt.AlignRight)

self.label = QtWidgets.QLabel('Select package to install:')

self.combo = QtWidgets.QComboBox()

self.combo.addItems(['makerchip-app', 'sandpiper-saas', 'matplotlib'])

self.install_pkg_button = QtWidgets.QPushButton('Install Pip package')

self.install_pkg_button.clicked.connect(self.install_Pip_package)

self.install_verilator_from_Archive_button =

QtWidgets.QPushButton('Install Verilator from Archive')↪→

self.install_verilator_from_Archive_button.clicked.

connect(self.intall_Verilator_from_Archive)↪→

self.install_verilator_SRC_button = QtWidgets.QPushButton('Install

Verilator from SRC')↪→

self.install_verilator_SRC_button.clicked.

connect(self.install_Verilator_SRC)

self.Install_Output = QtWidgets.QPlainTextEdit()

self.install_thread = InstallThread_SRC()

self.install_thread.output_signal.connect(self.update_output)

layout = QtWidgets.QVBoxLayout()

layout.addWidget(self.Logo)

layout.addWidget(self.label)

layout.addWidget(self.combo)

layout.addWidget(self.install_pkg_button)

layout.addWidget(self.install_verilator_from_Archive_button)

layout.addWidget(self.install_verilator_SRC_button)

layout.addWidget(self.Install_Output)

self.setLayout(layout)

17

4.2.2 install Pip package():

This function retrieves the currently selected item in a combo box. It then attempts
to call subprocess to execute the command flatpak-spawn --host sys.executable -m
pip install <package> where ¡package¿ is the selected item from the combo box. If
this command executes successfully, a message box and plain text output inform
the user that <package> was installed successfully. If an exception is thrown during
execution, a message box and plain text output inform the user that an error has
occurred. The exception is also printed to the plain text output.

def install_Pip_package(self):

package = self.combo.currentText()

try:

subprocess.check_call(['flatpak-spawn', '--host', sys.executable,

'-m', 'pip', 'install', package])↪→

QtWidgets.QMessageBox.information(self, 'Success', f'{package}

installed successfully')↪→

self.Install_Output.appendPlainText(f'Success: {package} installed

successfully')↪→

except Exception as e:

QMessageBox.warning(self,"ERROR", str(e))

self.Install_Output.appendPlainText("[ERROR!]: ")

self.Install_Output.appendPlainText(str(e))

4.2.3 install Verilator from Archive():

This function installs Verilator from the archive file ”verilator.7z”, stored in the
”/app/assets/packages/” directory (Inside sandboxed filesystem). The output di-
rectory is set as the current working directory using Python’s os.getcwd() function,
and the source file is set to ”output_dir/verilator/bin/verilator”.

The destination directory is set to ”/usr/bin/” which exists in the User’s filesys-
tem. The py7zr.SevenZipFile module extracts the archive file using the extractall()
function.

If the archive extraction is successful, the subprocess.check_call(...) function
copies the source_file to the destination_dir. If that fails, a warning is issued,
and the error message is added to the Install_Output plain text field in the GUI.

def intall_Verilator_from_Archive(self):

file_name = "/app/assets/packages/verilator.7z"

output_dir = os.getcwd()

18

source_file = f"{output_dir}/verilator/bin/verilator"

destination_dir = "/usr/bin/"

with py7zr.SevenZipFile(file_name, mode='r') as z:

z.extractall(path=output_dir)

try:

subprocess.check_call(['flatpak-spawn', '--host', "pkexec", "cp",

source_file, destination_dir])↪→

QtWidgets.QMessageBox.information(self, 'Success', 'Verilator

installed successfully from Archive')↪→

self.Install_Output.appendPlainText('[Success]: verilator installed

successfully from Archive')↪→

except subprocess.CalledProcessError as e:

QMessageBox.warning(self,"ERROR", str(e))

self.Install_Output.appendPlainText("[ERROR!]: ")

self.Install_Output.appendPlainText(str(e))

Used to show updates for install_Verilator_SRC

def update_output(self, text):

self.Install_Output.appendPlainText(text)

4.2.4 install Verilator SRC():

This function starts a QThread subprocess (multi-threaded execution) to run the
installation script for verilator. The ”Install_verilator.sh” bash script executes
with the necessary arguments required to install the compiled binary in the user file
system. It will be reviewed in the later sections of the report.

def install_Verilator_SRC(self):

try:

self.Install_Output.clear()

self.Install_Output.clear()

self.install_thread.start()

except Exception as e:

self.Install_Output.appendPlainText("[ERROR!]: ")

self.Install_Output.appendPlainText(str(e))

QtWidgets.QMessageBox.information(self,"Error", str(e))

print("[ERROR!]: ",e)

19

4.2.5 QThread classes:

This code defines two QThread classes install_verilator and InstallThread_SRC
required for the installation of Verilator.

install_verilator extends QThread and defines three methods - __init__(),
start() and run(). __init__() initializes the command required for Verilator in-
stallation, start() starts the thread execution and run() performs the actual instal-
lation by running the specified command.

InstallThread_SRC also extends QThread and defines only the run() method. It
initializes the command required for Verilator installation and executes it using sub-
process.Popen(). It reads the command output until there is no more output left to
read. If the installation succeeds, [Info] is emitted via output_signal and printed
to the console. Else, [ERROR] is emitted via output_signal and printed to the
console.

class install_verilator(QThread):

P_progress = pyqtSignal(str)

def __init__(self, command, parent=None):

QThread.__init__(self, parent)

self.command = command

def start(self):

QThread.start(self)

def run(self):

try:

p = subprocess.run(str(self.command),shell=True,capture_output=True)

status = p.stdout.decode()

if p:

print(status)

self.P_progress.emit(status)

except Exception as e:

self.Install_Output.appendPlainText("[ERROR!]: ")

self.Install_Output.appendPlainText(str(e))

QMessageBox.warning(None,"Invalid Install Commands!","Error in

install_verilator")↪→

class InstallThread_SRC(QThread):

output_signal = pyqtSignal(str)

def __init__(self):

super().__init__()

def run(self):

command = "/app/assets/scripts/Install_verilator.sh"

20

process = subprocess.Popen(["bash", command], stdout=subprocess.PIPE,

stderr=subprocess.STDOUT)↪→

while True:

output = process.stdout.readline()

if output == b'' and process.poll() is not None:

break

if output:

self.output_signal.emit(str(output.strip())[2:-1])

print(output.strip()[2:-1])

rc = process.poll()

if rc == 0:

self.output_signal.emit("[Info] Installation succeeded!")

print("Installation succeeded!")

else:

self.output_signal.emit("[ERROR] Installation failed!")

print("Installation failed!")

4.2.6 Main Function:

The main function checks whether the current file is being run as the main pro-
gram. If it is, then it creates a QApplication instance, initializes an instance of
AppWindow, shows the AppWindow and starts the application event loop by call-
ing ”app.exec_()” which will wait for events to occur.

if __name__ == '__main__':

app = QtWidgets.QApplication(sys.argv)

ex = AppWindow()

ex.show()

sys.exit(app.exec_())

4.3 Install Script: Install verilator.sh

The install script clones the Verilator repository from Github, switches to the spec-
ified version, partially builds it using autoconf in the flatpak file system and installs
it using make to the user file system. It asks for the root password to execute some
commands with elevated privileges.[8] The install_verilator.sh script does the
following:

• Clones the Verilator repository from https://github.com/verilator/verilator

• Changes directory to verilator/

• Checks out version 4.106

21

• Builds Verilator using autoconf and configure

• Asks for the root password to install make, make install and finally displays
the version of Verilator installed.

• Cleans up by removing the cloned directory using flatpak-spawn and rm -
rf./verilator

#!/bin/bash

Clone Verilator repository

echo '# Please wait... cloning https://github.com/verilator/verilator'

git clone http://git.veripool.org/git/verilator

echo '# repo cloned...'

echo "===\n"

echo '# changing dir to verilator/'

cd ./verilator

echo '# current working directory is: '

pwd

echo "===\n"

Switch to version 4.106

git checkout v4.106

Build Verilator

autoconf

echo '# please wait... This may take some time'

echo "===\n"

./configure --prefix=/usr --libdir=/usr/lib64

echo '# current working directory is (supposed to be verilator): '

pwd

echo "==========================="

echo "Please enter root password:"

flatpak-spawn --host sudo -S make

echo 'Installing make...'

echo "==========================="

echo "Please enter root password:"

flatpak-spawn --host sudo -S make install

22

flatpak-spawn --host verilator --version

echo "===\n"

echo "Cleaning up..."

flatpak-spawn --host rm -rf ./verilator

4.4 Testing script: test

This script is used to verify if the nececarry build tools are available in the runtime
of the Flatpak application.

#!/bin/sh

echo "This is a test script"

echo "=="

git --version

echo "=="

make --version

echo "=="

autoconf --verison

echo "=="

23

Chapter 5

Results

5.1 GUI & Launching procedure

The application can be launched via the terminal using the command:

flatpak run org.flatpak.FOSSEE_Inst_test

Figure 5.1: GUI of the Application

24

5.2 Installing Python Dependencies for eSim:

Figure 5.2: Installing Python Packages using pip(3)

5.3 Installing Verilator from Archived package(Pre-

built):

Figure 5.3: Verilator install; Archived package

25

5.4 Installing Verilator from Source:

Figure 5.4: Installing Verilator from Source

For more information, please refer to the following GitHub Repository:

https://github.com/suchinton/eSim/tree/installers

26

https://github.com/suchinton/eSim/tree/installers

Chapter 6

Workflow

To start building and installing the package, we need to first install flatpak, the
KDE runtime and the PyQt5 Base App required for running and packing our Qt5
App.

NOTE: Equivalent commands can be used to install these packages, refer to

https://flatpak.org/setup/↪→

Install flatpak/ flatpak-builder on Ubuntu (or Ubuntu-based distros)

$ sudo apt install flatpak flatpak-builder -y

for installing the KDE SDK and Runtime

$ flatpak install org.kde.Sdk//5.15-22.08

for installing the Base App

$ flatpak install com.riverbankcomputing.PyQt.BaseApp//5.15-22.08

6.1 build new flatpak.sh

Relevant commands can be found by running the build_new_flatpak.sh script
found in the scripts/ directory.

#!/bin/sh

echo "Reference Commands:"

echo "==="

echo "To build, run command:"

echo " $ flatpak-builder --force-clean build-dir

org.flatpak.FOSSEE_Inst_test.yml"↪→

echo "==="

echo "To install the app, run command:"

27

echo " $ flatpak-builder --user --install --force-clean build-dir

org.flatpak.FOSSEE_Inst_test.ym"↪→

echo "==="

echo "To run application, run command:"

echo ' $ flatpak run org.flatpak.FOSSEE_Inst_test to run app'

echo "==="

echo "To resolve new pip dependencies, run command:"

echo ' $ python3 flatpak-pip-generator

--requirements-file='$HOME/Repos/Test/req' --output pypi-dependencies --yaml'↪→

echo "==="

Note: Build tools are required on the host machine as well to complete the instal-
lation of packages in the correct directories.

6.2 flapak-pip-generator

This Python script, readily made available by the Flatpak Community[1], helps gen-
erate Flatpak manifests for Python packages. It script helps automate the process
of generating Flatpak manifests for Python packages by fetching the required source
packages, extracting metadata, and generating the necessary dependency informa-
tion. Here is a brief overview of the script’s purpose and functionality:

• It imports necessary modules and sets up command-line argument parsing
using the argparse module.

• The script reads the requirements file or the list of packages specified in the
arguments.

• It determines the output file name based on the options and packages speci-
fied. The script downloads the required source packages using pip download
command and saves them to a temporary directory.

• The script generates the dependencies for each package, including recursively
downloading the packages to list their dependencies.

• It generates the Flatpak manifest data in JSON or YAML format, including
information about the packages, their sources, and dependencies.

28

Chapter 7

Conclusion and Future Scope

7.1 Conclusion

We were able to successfully implement a fully responsive, proof-of-concept appli-
cation, which can resolve the various dependencies of eSim and make it a Disto-
Agnostic tool. We were also able to successfully utilize the required resources from
the user space while keeping the demo application and its runtime dependencies
sandboxed.

7.2 Future Work

• Runtime dependencies like build-essentials, git, bison, etc can be added as
separate modules in the Flatpak Manifes to reduce the overall package size
and reduce its redundant libraries and binaries which are not never utilized.

• Only the GUI components could be packaged in the Flatpak package, making
additional dependencies optional (or) bundled in the runtime during the build
process of the application.

• Resources that need to compile on the user system can take up a lot of time
to build, therefore packages required by eSim could be self-hosted and pulled
during runtime, for improved installation times and overall safety of the ap-
plication.

• Lastly the Application could be hosted on Flathub, which is a centralized
repository for hosting and distributing Linux applications. Hosting the appli-
cation on such a platform provides easy access, installation, and updates for
users on various Linux distributions.

29

Bibliography

[1] Flatpak Official Documentation. 2022.
URL: https://docs.flatpak.org/en/latest/

[2] Github Official Website
URL: https://github.com/FOSSEE/eSim/

[3] Wikipedia Official Website. 2023.
URL: https://en.wikipedia.org/wiki/Flatpak

[4] eSim Official website. 2023.
URL: https://esim.fossee.in/

[5] Python Official Website. 2023.
URL: https://www.python.org/

[6] Linux Official Website. 2023.
URL: https://www.linux.org/

[7] Riverbank Computing Official Website. 2023.
URL: https://riverbankcomputing.com/software/pyqt/

[8] Veripool, Verilator Official website. 2023.
URL: https://www.veripool.org/verilator/

30

https://docs.flatpak.org/en/latest/
https://github.com/FOSSEE/eSim/
https://en.wikipedia.org/wiki/Flatpak
https://esim.fossee.in/
https://www.python.org/
https://www.linux.org/
https://riverbankcomputing.com/software/pyqt/
https://www.veripool.org/verilator/

	Introduction
	eSim
	Flatpak

	Task Chosen: Tool Manager and Packaging
	Methodology
	Implementation
	Defining the Flatpak Manifest
	run.sh
	org.flatpak.FOSSEE_Inst_test.yml
	python3-py7zr.json
	git.json

	Main Program: FOSSEE_Inst_test.py
	class AppWindow(...):
	install_Pip_package():
	install_Verilator_from_Archive():
	install_Verilator_SRC():
	QThread classes:
	Main Function:

	Install Script: Install_verilator.sh
	Testing script: test

	Results
	GUI & Launching procedure
	Installing Python Dependencies for eSim:
	Installing Verilator from Archived package(Pre-built):
	Installing Verilator from Source:

	Workflow
	build_new_flatpak.sh
	flapak-pip-generator

	Conclusion and Future Scope
	Conclusion
	Future Work

	Bibliography

