
Semester Long Internship Report

On

Embedding Ngspice UI in eSim and testing out ATTINY
Microcontrollers

Submitted by

Pranav P
MCA

College of Engineering Trivandrum

Under the guidance of

Prof.Kannan M. Moudgalya

Chemical Engineering Department

IIT Bombay

August 15, 2023

Acknowledgement

I wish to express my heartfelt gratitude and appreciation to the entire FOSSEE team
for having me as a part of their Semester Long Internship program they offered. The
experience and knowledge that I have gained during this internship period is hard
to express in words. I have gained tremendous insights about various programming
concepts and have met very talented and hard working people as a part of this in-
ternship.

I would like express my heartfelt appreciation to my mentors Sumanto Kar sir and
Rahul Paknikar sir who have helped me throughout this internship with great pa-
tience and diligence. From them I have gained greater insight about eSim and also
on how to write better and effective code. Working under them communicating
various ideas about the project have helped me gain better grasp at communicating
abstract concepts. They have instilled knowledge and confidence throughout this
endeavor.

I am very grateful to the whole eSim community for providing me the help needed
throughout this internship phase. My opportunity to be at IIT Bombay even for
a brief amount of time and the opportunity to meet with several new highly moti-
vated interns is considered as a blessing. I am very much confident that the skills
that I have gained through this internship will continue to benefit me throughout
my career. Once again, I thank the entire FOSSEE team for the unforgettable
opportunity.

1

Contents

1 Introduction 3

2 Suppressing plots and sending Ngspice to background 5
2.1 Suppressing plots . 5
2.2 Other possible ways . 5
2.3 Sending Ngspice to the background 6

3 Fixing the eSim freezes during simulation problem 7
3.1 The requirement for the polling and its problem 7
3.2 QTimer - the ineffecient way of doing it 7
3.3 Signals and slots . 8

4 UI to monitor simulations 15
4.1 How output is taken from the process 15
4.2 Code for building the UI . 15
4.3 Components in the simulation monitor 19
4.4 Some additional UI changes . 20
4.5 An additional point for Windows users 20

5 Verification of ATtiny 85 microcontroller 21
5.1 Recompiling NGHDL . 21
5.2 Testing the microcontroller . 22
5.3 Problem faced with Windows . 23

6 Verifying circuits 24
6.1 Initial set of circuits . 24
6.2 Arduino on cloud circuits . 25

7 Conclusion and Future Scope 27

Bibliography 28

2

Chapter 1

Introduction

The FOSSEE (Free/Libre and Open Source Software for Education) project en-
courages the adoption of FLOSS technologies to improve educational quality in our
country. It attempts to lessen educational institutions’ reliance on proprietary soft-
ware. It promotes the adoption of FLOSS tools through a variety of initiatives in
order to guarantee that commercial software is replaced with equal FLOSS tools.
It also creates new FLOSS tools and upgrades old ones to satisfy the needs of aca-
demics and research.[1]

The FOSSEE project is part of the National Mission on Education through
Information and Communication Technology (ICT), Ministry of Human Resource
Development (MHRD), Government of India.

Ngspice[2] is a circuit simulator for mixed-level/mixed-signal circuits. It is built
using three open source software packages: Spice3f5, Cider1b1, and Xspice. It’s
the open source replacement for these venerable programmes. Many changes, bug
corrections, and enhancements have been made to the code, resulting in a robust
and functional simulator. eSim also uses Ngspice to workout its simulations.

While running simulations on Ngspice, the output graphs associated with the sim-
ulation would be displayed by the Ngspice software by default in pop-up windows
like in Figure 1.1 even when eSim had its own plotter. So, one of my task was to
suppress those plots made by Ngspice. Another task assigned to me was to add
some multithreading so that eSim would not freeze during simulation (which used
to do). And also I replaced the usage of a seperate terminal emulator to run Ngspice
by directly running it in the background and designed some UI to monitor its status
from within eSim.

3

Figure 1.1: pop-up windows from Ngspice on left and eSim’s built-in plotter on right

4

Chapter 2

Suppressing plots and sending
Ngspice to background

Some of the major problems that eSim had in association with Ngspice were the
pop-up of the plots after the completion of the simulation and the requirement of
an external console (XTerm was used previously) to run Ngspice. While these were
easy problems to fix, a thorough look at the Ngspice documentation, the existing
eSim code and PyQt documentation was required to fix these problems.

2.1 Suppressing plots

One of the things discovered from the documentation of Ngspice was that the default
execution of Ngspice was in interactive mode. Ngspice may run in either interactive
or batch mode, with interactive being the default. This is a particularly helpful
option since it allows you to quickly modify the kind and parameters of an analysis,
allowing for faster convergence to a workable simulation.[3]

What struck me was the idea of batch mode. In batch mode the graphics plot
output of Ngspice get’s suppressed automatically with a warning message. So, sim-
ply using batch mode instead of using the interactive mode was sufficient to deal
with that problem. To run in batch mode only the ‘-b’ flag had to be added with
the Ngspice call.

The argument list is to be changed as follows

self.args = ['-b', '-r', netlist.replace(".cir.out", ".raw"), netlist]

2.2 Other possible ways

Another way in which this could have been done is by recompiling Ngspice using
the —without-x flag. With this flag the plot command is disabled. This idea was
omitted with thought in mind that the user of eSim might want to use Ngspice
separately as well (That is not as a part of eSim). But in case of future needs this
is a possible solution to lean into.

5

2.3 Sending Ngspice to the background

QProcess[4] was the answer for sending Ngspice right into the background. The
Xterm was being launched in a QProcess itself. So, removing the arguments of
Xterm with that of the Ngspice and replacing the Xterm command with the Ngspice
command in the QProcess.start call sent Ngspice to the background.

Given below is a part of the code from NgspiceWidget.py which does the Ngspice
calling.

self.args = ['-b', '-r', netlist.replace(".cir.out", ".raw"), netlist]

self.process = QtCore.QProcess(self)

self.process.setWorkingDirectory(self.projDir)

self.process.setProcessChannelMode(QtCore.QProcess.MergedChannels)

self.process.readyRead.connect(self.readyReadAll)

self.process.finished.connect(

lambda exitCode, exitStatus:

self.finishSimulation(exitCode, exitStatus, simEndSignal, False)

)

self.process.errorOccurred.connect(

lambda: self.finishSimulation(None, None, simEndSignal, True))

self.process.start('ngspice', self.args)

6

Chapter 3

Fixing the eSim freezes during
simulation problem

One of the most interesting problems that was to be tackled was the problem that
eSim’s UI would freeze during simulations. As soon as one would press the simu-
lation button the eSim window will freeze and is not usable until the simulation is
completed. Looking deep into the eSim codebase the problem was figured out to be
an undesired result of some polling.

3.1 The requirement for the polling and its prob-

lem

When Ngspice runs a simulation, as soon as the simulation is completed, it would
record its simulation values into two text files called plot data I.txt and plot data v.txt.
So, how eSim used to detect the completion of a simulation was by repetitively check-
ing whether those files were created. So, a polling method was implemented to do
this.

Moreover, the sleep function from the time library was used for this process. PyQt
graphical user interface (GUI) applications have a main thread of execution that
runs the event loop and GUI. When started the time.sleep function on this thread,
theGUI will be frozen until the task completes. The user will be unable to interact
with the program during this period.

3.2 QTimer - the ineffecient way of doing it

The first idea I got while skimming through the PyQt documentation was one which
dealt with the use of QTimer[5]. The QTimer class provides repetitive timers that
works with a different thread. This means a separate thread will be doing the polling
process. The main thread will be free for the proper execution of the even loop and
the user will not experience any issues with the UI.

7

Even though this approach does work, polling is a very inefficient way of dealing
with the problem. Apart from that, checking the created/updated time of the text
files dealing with the plots does not seem to be a wise way of checking whether the
problem has finished its execution.

3.3 Signals and slots

Signals are notifications that widgets generate when anything happens. That any-
thing might be anything from pushing a button to modifying the wording of an
input box or the text of the window. Signal receivers are referred to as slots in Qt.
Any function (or method) in your program may be utilised as a slot in Python by
simply attaching the signal to it. If the signal delivers data, the receiving function
will also receive it. Many Qt widgets also have their own built-in slots, allowing you
to connect Qt widgets directly.

Signals and slots[6] are a suitable alternative for our problem as the QProcess which
runs the Ngspice process can send signals when its execution is finished and can
indicate whether the process finished its execution successfully or some error had
been occurred with the help of the exit code and exit status that the process returns
along with the signal. This fixed the problem of polling and checking a file to see
whether the simulation in finished.

The following code shows how all of the three problems discussed so far was fixed.

Part added in frontEnd/Application.py

class Application(QtWidgets.QMainWindow):

"""This class initializes all objects used in this file."""

global project_name

simulationEndSignal = QtCore.pyqtSignal(QtCore.QProcess.ExitStatus, int)

def __init__(self, *args):

"""Initialize main Application window."""

def __init__(self, *args):

Flag for mode of operation. Default is set to offline mode.

self.online_flag = False

Set slot for simulation end signal to plot simulation data

self.simulationEndSignal.connect(self.plotSimulationData)

Creating require Object

self.obj_workspace = Workspace.Workspace()

self.obj_Mainview = MainView()

def help_project(self):

print("Current Project is : ", self.obj_appconfig.current_project)

8

self.obj_Mainview.obj_dockarea.usermanual()

@QtCore.pyqtSlot(QtCore.QProcess.ExitStatus, int)

def plotSimulationData(self, exitCode, exitStatus):

"""Enables interaction for new simulation and

displays the plotter dock where graphs can be plotted.

"""

self.ngspice.setEnabled(True)

self.conversion.setEnabled(True)

self.closeproj.setEnabled(True)

self.wrkspce.setEnabled(True)

if exitStatus == QtCore.QProcess.NormalExit and exitCode == 0:

try:

self.obj_Mainview.obj_dockarea.plottingEditor()

except Exception as e:

self.msg = QtWidgets.QErrorMessage()

self.msg.setModal(True)

self.msg.setWindowTitle("Error Message")

self.msg.showMessage(

'Data could not be plotted. Please try again.'

)

self.msg.exec_()

print("Exception Message:", str(e), traceback.format_exc())

self.obj_appconfig.print_error('Exception Message : '

+ str(e))

def open_ngspice(self):

"""This Function execute ngspice on current project."""

projDir = self.obj_appconfig.current_project["ProjectName"]

if projDir is not None:

projName = os.path.basename(projDir)

ngspiceNetlist = os.path.join(projDir, projName + ".cir.out")

if not os.path.isfile(ngspiceNetlist):

print(

"Netlist file (*.cir.out) not found."

)

self.msg = QtWidgets.QErrorMessage()

self.msg.setModal(True)

self.msg.setWindowTitle("Error Message")

self.msg.showMessage(

'Netlist (*.cir.out) not found.'

)

self.msg.exec_()

9

return

self.obj_Mainview.obj_dockarea.ngspiceEditor(

projName, ngspiceNetlist, self.simulationEndSignal)

self.ngspice.setEnabled(False)

self.conversion.setEnabled(False)

self.closeproj.setEnabled(False)

self.wrkspce.setEnabled(False)

else:

self.msg = QtWidgets.QErrorMessage()

ngspiceSimulation/NgspiceWidget.py

import os

from PyQt5 import QtWidgets, QtCore

from configuration.Appconfig import Appconfig

from frontEnd import TerminalUi

This Class creates NgSpice Window

class NgspiceWidget(QtWidgets.QWidget):

def __init__(self, netlist, simEndSignal):

"""

- Creates constructor for NgspiceWidget class.

- Creates NgspiceWindow and runs the process

- Calls the logs the ngspice process, returns

it's simulation status and calls the plotter

- Checks whether it is Linux and runs gaw

:param netlist: The file .cir.out file that

contains the instructions.

:type netlist: str

:param simEndSignal: A signal that will be emitted to Application class

for enabling simulation interaction and plotting data if the

simulation is successful

:type simEndSignal: PyQt Signal

"""

QtWidgets.QWidget.__init__(self)

self.obj_appconfig = Appconfig()

self.projDir = self.obj_appconfig.current_project["ProjectName"]

self.args = ['-b', '-r', netlist.replace(".cir.out", ".raw"), netlist]

print("Argument to ngspice: ", self.args)

10

self.process = QtCore.QProcess(self)

self.terminalUi = TerminalUi.TerminalUi(self.process, self.args)

self.layout = QtWidgets.QVBoxLayout(self)

self.layout.addWidget(self.terminalUi)

self.process.setWorkingDirectory(self.projDir)

self.process.setProcessChannelMode(QtCore.QProcess.MergedChannels)

self.process.readyRead.connect(self.readyReadAll)

self.process.finished.connect(

lambda exitCode, exitStatus:

self.finishSimulation(exitCode, exitStatus, simEndSignal, False)

)

self.process.errorOccurred.connect(

lambda: self.finishSimulation(None, None, simEndSignal, True))

self.process.start('ngspice', self.args)

self.obj_appconfig.process_obj.append(self.process)

print(self.obj_appconfig.proc_dict)

(

self.obj_appconfig.proc_dict

[self.obj_appconfig.current_project['ProjectName']].append(

self.process.pid())

)

if os.name != "nt": # Linux OS

self.gawProcess = QtCore.QProcess(self)

self.gawCommand = "gaw " + netlist.replace(".cir.out", ".raw")

self.gawProcess.start('sh', ['-c', self.gawCommand])

print(self.gawCommand)

@QtCore.pyqtSlot()

def readyReadAll(self):

"""Outputs the ngspice process standard output and standard error

to :class:`TerminalUi.TerminalUi` console

"""

self.terminalUi.simulationConsole.insertPlainText(

str(self.process.readAllStandardOutput().data(), encoding='utf-8')

)

stderror = str(self.process.readAllStandardError().data(),

encoding='utf-8')

Suppressing the Ngspice PrinterOnly error that batch mode throws

stderror = '\n'.join([errLine for errLine in stderror.split('\n')

if ('PrinterOnly' not in errLine and

'viewport for graphics' not in errLine)])

11

self.terminalUi.simulationConsole.insertPlainText(stderror)

def finishSimulation(self, exitCode, exitStatus,

simEndSignal, hasErrorOccurred):

"""This function is intended to run when the Ngspice

simulation finishes. It singals to the function that generates

the plots and also writes in the appropriate status of the

simulation (Whether it was a success or not).

:param exitCode: The exit code signal of the QProcess

that runs ngspice

:type exitCode: int

:param exitStatus: The exit status signal of the

qprocess that runs ngspice

:type exitStatus: class:`QtCore.QProcess.ExitStatus`

:param simEndSignal: A signal passed from constructor

for enabling simulation interaction and plotting data if the

simulation is successful

:type simEndSignal: PyQt Signal

"""

Canceling simulation triggers both finished and

errorOccurred signals...need to skip finished signal in this case.

if not hasErrorOccurred and self.terminalUi.simulationCancelled:

return

Stop progressbar from running after simulation is completed

self.terminalUi.progressBar.setMaximum(100)

self.terminalUi.progressBar.setProperty("value", 100)

self.terminalUi.cancelSimulationButton.setEnabled(False)

self.terminalUi.redoSimulationButton.setEnabled(True)

if exitCode is None:

exitCode = self.process.exitCode()

errorType = self.process.error()

if errorType < 3: # 0, 1, 2 ==> failed to start, crashed, timedout

exitStatus = QtCore.QProcess.CrashExit

elif exitStatus is None:

exitStatus = self.process.exitStatus()

if self.terminalUi.simulationCancelled:

msg = QtWidgets.QMessageBox()

msg.setModal(True)

msg.setIcon(QtWidgets.QMessageBox.Warning)

12

msg.setWindowTitle("Warning Message")

msg.setText("Simulation was cancelled.")

msg.setStandardButtons(QtWidgets.QMessageBox.Ok)

msg.exec()

elif exitStatus == QtCore.QProcess.NormalExit and exitCode == 0 \

and errorType == QtCore.QProcess.UnknownError:

Redo-simulation does not set correct exit status and code.

So, need to check the error type ==>

UnknownError along with NormalExit seems successful simulation

successFormat = '\

{} \

'

self.terminalUi.simulationConsole.append(

successFormat.format("Simulation Completed Successfully!"))

else:

failedFormat = ' \

{} \

'

self.terminalUi.simulationConsole.append(

failedFormat.format("Simulation Failed!"))

errMsg = 'Simulation '

if errorType == QtCore.QProcess.FailedToStart:

errMsg += 'failed to start. ' + \

'Ensure that eSim is installed correctly.'

elif errorType == QtCore.QProcess.Crashed:

errMsg += 'crashed. Try again later.'

elif errorType == QtCore.QProcess.Timedout:

errMsg += ' has timed out. Try to reduce the ' + \

' simulation time or the simulation step interval.'

else:

errMsg += ' could not complete. Try again later.'

msg = QtWidgets.QErrorMessage()

msg.setModal(True)

msg.setWindowTitle("Error Message")

msg.showMessage(errMsg)

msg.exec()

self.terminalUi.simulationConsole.verticalScrollBar().setValue(

self.terminalUi.simulationConsole.verticalScrollBar().maximum()

)

13

simEndSignal.emit(exitStatus, exitCode)

During simulation, in the UI, some buttons like open schematic, convert KiCad
to Ngspice, Simulate etc. are disabled to ensure lesser faults during the simulation.
This also is present in the above given codes.

14

Chapter 4

UI to monitor simulations

Now since we have removed the role of the xterm to run our ngspice there should
be a way to display the messages sent by Ngspice to the user. For that purpose and
to control some aspects of the Ngspice simulation a UI was written.

4.1 How output is taken from the process

The following line of code can be used to obtain a string containing what the Ngspice
process returns to the standard input.

str(self.process.readAllStandardOutput().data(), encoding='utf-8')

The following line of code can be used to obtain a string containing what the Ngspice
process returns to the standard error.

str(self.process.readAllStandardError().data(), encoding='utf-8')

Now these strings can be piped to our custom UI where these information can be
displayed.

4.2 Code for building the UI

frontEnd/TerminalUi.py

from PyQt5 import QtCore, QtGui, QtWidgets, uic

import os

class TerminalUi(QtWidgets.QMainWindow):

"""This is a class that represents the GUI required to provide

details regarding the ngspice simulation. This GUI consists of

a progress bar, a console window which displays the log of the

simulation and button required for re-simulation and cancellation

of the simulation"""

def __init__(self, qProcess, args):

15

"""The constructor of the TerminalUi class

param: qProcess: a PyQt QProcess that runs ngspice

type: qProcess: :class:`QtCore.QProcess`

param: args: arguments to be passed on to the ngspice call

type: args: list

"""

super(TerminalUi, self).__init__()

Other variables

self.darkColor = True

self.qProcess = qProcess

self.args = args

self.iconDir = "../../images"

Load the ui file

uic.loadUi("TerminalUi.ui", self)

Define Our Widgets

self.progressBar = self.findChild(

QtWidgets.QProgressBar,

"progressBar"

)

self.simulationConsole = self.findChild(

QtWidgets.QTextEdit,

"simulationConsole"

)

self.lightDarkModeButton = self.findChild(

QtWidgets.QPushButton,

"lightDarkModeButton"

)

self.cancelSimulationButton = self.findChild(

QtWidgets.QPushButton,

"cancelSimulationButton"

)

self.cancelSimulationButton.setEnabled(True)

self.redoSimulationButton = self.findChild(

QtWidgets.QPushButton,

"redoSimulationButton"

)

self.redoSimulationButton.setEnabled(False)

Add functionalities to Widgets

self.lightDarkModeButton.setIcon(

QtGui.QIcon(

16

os.path.join(

self.iconDir,

'light_mode.png'

)

)

)

self.lightDarkModeButton.clicked.connect(self.changeColor)

self.cancelSimulationButton.clicked.connect(self.cancelSimulation)

self.redoSimulationButton.clicked.connect(self.redoSimulation)

self.simulationCancelled = False

self.show()

def cancelSimulation(self):

"""This function cancels the ongoing ngspice simulation.

"""

self.cancelSimulationButton.setEnabled(False)

self.redoSimulationButton.setEnabled(True)

if (self.qProcess.state() == QtCore.QProcess.NotRunning):

return

self.simulationCancelled = True

self.qProcess.kill()

To show progressBar completed

self.progressBar.setMaximum(100)

self.progressBar.setProperty("value", 100)

cancelFormat = '{}'

self.simulationConsole.append(

cancelFormat.format("Simulation Cancelled!"))

self.simulationConsole.verticalScrollBar().setValue(

self.simulationConsole.verticalScrollBar().maximum()

)

def redoSimulation(self):

"""This function reruns the ngspice simulation

"""

self.cancelSimulationButton.setEnabled(True)

self.redoSimulationButton.setEnabled(False)

if (self.qProcess.state() != QtCore.QProcess.NotRunning):

return

To make the progressbar running

17

self.progressBar.setMaximum(0)

self.progressBar.setProperty("value", -1)

self.simulationConsole.setText("")

self.simulationCancelled = False

self.qProcess.start('ngspice', self.args)

def changeColor(self):

"""Toggles the :class:`Ui_Form` console between dark mode

and light mode

"""

if self.darkColor is True:

self.simulationConsole.setStyleSheet("QTextEdit {\n \

background-color: white;\n \

color: black;\n \

}")

self.lightDarkModeButton.setIcon(

QtGui.QIcon(

os.path.join(

self.iconDir,

"dark_mode.png"

)

)

)

self.darkColor = False

else:

self.simulationConsole.setStyleSheet("QTextEdit {\n \

background-color: rgb(36, 31, 49);\n \

color: white;\n \

}")

self.lightDarkModeButton.setIcon(

QtGui.QIcon(

os.path.join(

self.iconDir,

"light_mode.png"

)

)

)

self.darkColor = True

18

4.3 Components in the simulation monitor

The UI contains primary a console to display the messages sent by the Ngspice
process during its execution. There is a progress bar showing whether the execution
is being held or if it Is finished. Then there is a Resimulate button which when
pressed would re-run the simulation. Cancel Simulation button is to be toggled
during the simulation process if one wants to stop the simulation in between. Then
there is a button to toggle between light and dark mode which changes the colour
of the console accordingly.

Figure 4.1: The designed UI to monitor Ngspice simulation

Figure 4.2: The designed UI to monitor Ngspice simulation

19

4.4 Some additional UI changes

As a part of making each and every tab in the docker clearer a new naming conven-
tion was also brought.

Figure 4.3: The designed UI to monitor Ngspice simulation

4.5 An additional point for Windows users

Note: In the Windows operating system, for the console in the GUI to display the
output properly, one must recompile Ngspice with the –without-x flag.

20

Chapter 5

Verification of ATtiny 85
microcontroller

There were some extra tasks which I was assigned with. One of them was to verify
the ‘Implementation of GUI Interface and Simulation of Multiple Instance of Attiny
Microcontrollers‘[7] which was a work done by a former FOSSEE intern named
Vatsal Patel. What was to be done here was to recompile nghdl with an Attiny
microcontroller support. The one I chose was the Attiny 85 Microcontroller. After
the compilation I had to draw a circuit with the Attiny microcontroller instance in
it and then feed in the .hex file generated using the source code related with the
concerned project and running the simulation once after the conversion from KiCad
to Ngspice.

5.1 Recompiling NGHDL

The appropriate files required for the recompilation was provided by Rahul Sir. The
following files were to be placed at the given locations

1. attiny 85 nghdl.zip =⇒ /nghdl-simulator/src/xspice/icm/ghdl/ (NGHDL
files)

2. modpath.lst =⇒ /nghdl-simulator/src/xspice/icm/ghdl/ (NGHDL file)

3. eSim Nghdl.lib =⇒ /usr/share/kicad/library/ (schematic symbol)

4. attiny 85 nghdl.xml =⇒ eSim-2.3/library/modelParamXML/Nghdl/ (re-
quired for passing params)

After placing the above files, you need to update the paths in all the files /nghdl-
simulator/src/xspice/icm/ghdl/attiny 85 nghdl according to your machine. Finally,
go to /nghdl-simulator/release/src/xspice/icm/, open a terminal and run: make
&& make install to install the microcontroller.

21

5.2 Testing the microcontroller

I was provided with a test circuit for testing. The .hex file was also provided and I
too generated one using the Arduino IDE. The results are shown below

Figure 5.1: Multiplexer using Attiny 85

Figure 5.2: Multiplexer using Attiny 85

22

Figure 5.3: Multiplexer circuit with Attiny 85

5.3 Problem faced with Windows

With Windows, I was unable to successfully compile the microcontroller. Even after
editing a lot of the makedefs and finally being able to compile it, the Attiny 85
instance was not being identified by NGHDL.

Figure 5.4: Error in Windows

23

Chapter 6

Verifying circuits

6.1 Initial set of circuits

During the beginning of the internship, I was asked to verify whether a list of cir-
cuits listed out by K.J.Somaiya College of Engineering , Vidyavihar, were able to be
simulated using eSim. Most of the circuits listed by them were already present in
the Completed Circuit Simulations in the eSim website[8]. I almost verified around
20 circuits.

Figure 6.1: Series Clipper

24

Figure 6.2: BJT based Differential Amplifier

6.2 Arduino on cloud circuits

Another small task assigned during the time I was at IIT Bombay along with the
Summer fellows was to verify a series of circuits which is to be built with the arduino
UNO using the cloud platform developed by the Arduino on Cloud team. The
feedback that we provided were used by the Arduino on Cloud team to fix further
bugs and to prepare documentations.

Figure 6.3: LCD displaying scrolling text

25

Figure 6.4: Streetlight that switches on and off based on sunlight

26

Chapter 7

Conclusion and Future Scope

I was fortunate enough to finish the issues related to Ngspice simulations. I tested
the simulations with multiple circuits with multiple parameters making sure that
things would not break apart. The lack of knowledge of using a debugger caught
me here because I had to test out all of those caes manually. It would have been a
whole lot easier with the testing part if I was comfortable with automated testing.
Though my task with the microcontroller verification was not completed successfully.

Also, there are some areas where improvements can be made. One such area
is the documentations section. A lot of the code present in the eSim code base is
not written in a manner that is compatible with the Sphinx docstrings[9]. Another
one is the fact that we cannot run multiple Ngspice simulations at the same time.
For the time being I have blocked such actions because of potential crashes. But if
someone could come up with a good idea to run multiple simulations at the same
time then that would be a great addition. Another thing that has to be done is to
package the Windows version of eSim with an Ngspice compiled with the –without-x
flag.

27

Bibliography

[1] FOSSEE official website
URL: https://fossee.in/about

[2] Ngspice official website
URL: https://ngspice.sourceforge.io

[3] NGSpice: Interactive Quick Reference
URL:https://tomwwolf.wordpress.com/modeling-simulation/
ngspice-interactive-reference/

[4] QProcess reference
URL: https://doc.qt.io/qtforpython-5/PySide2/QtCore/QProcess.html

[5] QTimer reference
URL: https://doc.qt.io/qtforpython-5/PySide2/QtCore/QTimer.html

[6] Slots & Signals reference
URL:https://www.pythonguis.com/tutorials/
pyqt-signals-slots-events

[7] Implementation of GUI Interface and Simulation of Multiple Instance for Attiny
Microcontroller
URL: https://static.fossee.in/fossee/FOSSEE-Summer-Fellowship2022/
eSim/FSF_2022_VATSAL.pdf

[8] Completed Circuit Simulations
URL:https://esim.fossee.in/circuit-simulation-project/
completed-circuits

[9] Sphinx docstring documentation
URL:https://sphinx-rtd-tutorial.readthedocs.io/en/latest/
docstrings.html

28

https://fossee.in/about
https://ngspice.sourceforge.io
https://tomwwolf.wordpress.com/modeling-simulation/ngspice-interactive-reference/
https://tomwwolf.wordpress.com/modeling-simulation/ngspice-interactive-reference/
https://doc.qt.io/qtforpython-5/PySide2/QtCore/QProcess.html
https://doc.qt.io/qtforpython-5/PySide2/QtCore/QTimer.html
https://www.pythonguis.com/tutorials/pyqt-signals-slots-events
https://www.pythonguis.com/tutorials/pyqt-signals-slots-events
https://static.fossee.in/fossee/FOSSEE-Summer-Fellowship2022/eSim/FSF_2022_VATSAL.pdf
https://static.fossee.in/fossee/FOSSEE-Summer-Fellowship2022/eSim/FSF_2022_VATSAL.pdf
https://esim.fossee.in/circuit-simulation-project/completed-circuits
https://esim.fossee.in/circuit-simulation-project/completed-circuits
https://sphinx-rtd-tutorial.readthedocs.io/en/latest/docstrings.html
https://sphinx-rtd-tutorial.readthedocs.io/en/latest/docstrings.html

	Introduction
	Suppressing plots and sending Ngspice to background
	Suppressing plots
	Other possible ways
	Sending Ngspice to the background

	Fixing the eSim freezes during simulation problem
	The requirement for the polling and its problem
	QTimer - the ineffecient way of doing it
	Signals and slots

	UI to monitor simulations
	How output is taken from the process
	Code for building the UI
	Components in the simulation monitor
	Some additional UI changes
	An additional point for Windows users

	Verification of ATtiny 85 microcontroller
	Recompiling NGHDL
	Testing the microcontroller
	Problem faced with Windows

	Verifying circuits
	Initial set of circuits
	Arduino on cloud circuits

	Conclusion and Future Scope
	Bibliography

