

Spoken Tutorial Internship 2023 REPORT

On

Django Framework

Submitted by

Rohini Rana

B.E Computer Engineering

St. John College of Engineering & Management

Mumbai University, Palghar

Under the guidance of

Prof. Kannan M. Moudgalya

Chemical Engineering Department

IIT Bombay

Mentor

Mr. Sunil Shetye

Ms. Ankita Singhal

December 01, 2023

Ⅰ

Acknowledgment

Under the mentor Mr. Sunil Shetye & Ms. Ankita Singhal

I would like to sincerely express my profound gratitude to all those individuals

who played an instrumental role in ensuring the successful completion of my

Internship at Spoken Tutorial, IIT Bombay. It is with immense appreciation that

I take this opportunity to acknowledge their invaluable support and guidance.

First and foremost, I would like to extend my heartfelt thanks to Mr.Sunil

Shetye and Ms. Ankita Singhal for their exceptional mentorship throughout my

internship. Their patience, expertise, and dedication have been instrumental in

shaping my growth and development during this period. I am truly grateful for

their unwavering guidance and support.

I am truly honoured to have been selected as an intern at IIT Bombay, and I

sincerely appreciate the trust and confidence that the institution has placed in

me. I am committed to upholding the principles and values of IIT Bombay and

had tried my best to build a positive impact during my time as an intern.

II

Table of contents

1. Introduction 01

2. What is Django 02

2.1 Goal of Django 02

2.2 Model-View-Controller (MVC) 02

2.3 Model-View-Template (MVT) 03

3. Google Sheet Api Service 04

3.1 The Google Sheets API 04

3.2 Gspread 04

4. API(Application Programming Interface) 05

Crud Operations 05

4.1 With Restframework 06

4.2 Without Restframework 07

5. CRUD based API Views 08

5.1 Function based API view 08

5.2 Class Based APIView 09

6. What is view set and what is model view set 10

6.1 ViewSet 10

6.2 ModelViewSet 10

7. Django_filters 11

7.1 SearchFilter 11

7.2 OrderingFilter 11

III

8. Pagination 12

8.1 Page Number 12

8.2 Items Per Page 12

8.3 Previous and Next Buttons 12

9. Regex 13

10. ORM 14

10.1 Objective 14

10.2 Definition 14

10.3 Key Concepts 14

10.4 Usage 14

10.5 Benefits 14

10.6 Example 15

10.7 Outcome 15

11. AWK 16

11.1 Pattern Matching 16

11.2 Data Extraction and Reporting 16

11.3 Text Transformation 16

11.4 Built-in Functions 16

11.5 Input 17

11.6 Output 17

12. Validation Error 18

12.1 Objective 18

12.2 Approach 18

12.3 Outcome 18

13. Conclusion 19

Ⅳ

Chapter 1
Introduction

In our project, we worked extensively on the backend using Django.

We created models and views for students and teachers, tackled data

serialization with serializers, and explored various view sets and API

views following RESTful principles.

Beyond Django, we seamlessly integrated our app with the Google

Console Developer, designing forms for job descriptions. Our journey

included delving into Object-Relational Mapping (ORM) for database

interactions.

We also deepened our understanding of Django filters and explored

AWK for added versatility. In a nutshell, our exploration covered

Django development essentials, from models and views to serializers,

API views, and external service integration. Our grasp of ORM,

Django filters, and AWK highlights our commitment to mastering

web development intricacies.

1

Chapter 2
What is Django ?

Django is a high-level web framework written in Python that encourages rapid

development and clean, pragmatic design. It follows the Model-View-Controller

(MVC) architectural pattern, although in Django, it's often referred to as the

Model-View-Template (MVT) pattern.

2.1 GOAL of Django:

Django's primary goal is to make it easier for developers to build web

applications quickly and efficiently by providing a robust set of tools and

conventions. It follows the "Don't Repeat Yourself" (DRY) and "Convention

over Configuration" principles, reducing the amount of code you need to write

for common use cases.

Django is open source and has a large and active community. It's widely used

for building a variety of web applications, from small projects to large, complex

systems.

2.2 Model-View-Controller (MVC):

Model: Represents the data and business logic of the application. It manages

the data, logic, and rules of the application.

View: Presents the data to the user and handles the user interface. It is

responsible for displaying the data received from the controller.

Controller: Manages user input and controls the flow of data between the

Model and the View. It processes user actions and updates the Model and View

accordingly.In MVC, the Model and View are separate entities, and the

Controller acts as an intermediary between them, handling user input and

updating the Model and View as needed.

2

2.3 Model-View-Template (MVT) - Django's variant of MVC:

Model: Represents the data structure and business logic. It defines how data is

stored, retrieved, and processed.

View: Handles the presentation logic and interacts with the Model to get the

necessary data. It decides what data to display and delegates the rendering to the

Template.

Template: Defines how the data received from the View should be presented. It

focuses on the structure and appearance of the final output.

Models: Define your data models using Python classes. These classes define the

structure of your database tables and include fields with types such as

CharField, IntegerField, DateField, etc.

Views: Views handle the logic of your application. They receive requests,

process the data as necessary, and return responses. Views can be simple

functions or more complex classes.

Templates: Templates are used to define the structure of HTML pages, and they

allow you to embed Python-like code using Django's template language.

Templates help you separate the presentation logic from the business logic.

URLs: Django uses a URL conf (URL configuration) to map URLs to views.

This is done through regular expressions, making it easy to define URL patterns

and direct them to the appropriate view.

Forms: Django provides a powerful form handling system that simplifies the

process of collecting and validating user input. Forms can be used to handle

HTML forms on the client side and manage data on the server side.

Admin Site: Django includes a built-in admin interface that allows you to

manage your application's data through a web-based interface. It's a quick way

to perform CRUD (Create, Read, Update, Delete) operations on your models.

3

Chapter 3
Google sheet API Service:

Task: Take data from the JRS google form and then store data in the spoken

tutorial database and extract according to need

Process to achieve it :

To achieve this task I used the google sheet api and gspread.

3.1 The Google Sheets API:

It is a RESTful API provided by Google to interact with Google Sheets

programmatically. It allows you to read and write data to sheets, create and

manage sheets, and perform other operations..

Authentication: You need to set up API credentials, obtain an API key or

OAuth 2.0 credentials, and authenticate your requests.

Usage: You can make HTTP requests to the API endpoint, and the data is

usually exchanged in JSON format.

Google Sheet API Documentation:

https://developers.google.com/sheets/api/guides/concepts

3.2 Gspread:-

gspread is a Python library that simplifies the interaction with Google Sheets. It

provides a high-level interface for working with Google Sheets and is built on

top of the Google Sheets API.

Authentication: Similar to the Google Sheets API, you need to set up credentials

for your project. gspread supports both OAuth 2.0 and service account

authentication.

Usage: With gspread, you can access and manipulate Google Sheets using

Python code, making it easier to work with Sheets without dealing directly with

HTTP requests.

GitHub Repository: https://github.com/burnash/gspread

Gspread Documentation :https://docs.gspread.org/en/latest/user-guide.html

4

https://developers.google.com/sheets/api/guides/concepts
https://github.com/burnash/gspread
https://docs.gspread.org/en/latest/user-guide.html

Chapter 4
Api :

Crud operations in Django:

--With restframework

--Without restframework

Task: create api in django for company registeration form

Process:

For creating API we followed crud operation

CRUD operations are fundamental when working with databases and data

storage systems, and they are commonly implemented in web applications. One

popular framework for building web APIs in Python is Django, and Django

REST Framework (DRF) is an extension to Django that makes it easier to build

RESTful APIs.

CRUD stands for Create, Read, Update, and Delete. It represents the basic

operations that can be performed on data. These operations are fundamental in

database management systems and are applicable to various types of data

storage, including databases, spreadsheets, and more. Here's a brief explanation

of each CRUD operation:

Create (C):

Definition: Creating new records or entries in a database or data storage system.

Example: Inserting a new row of data in a database table or adding a new sheet

to a Google Sheets document.

Read (R):

Definition: Retrieving or reading existing data from a database or data storage

system.

5

Example: Querying a database to fetch information from specific rows or

reading values from cells in a spreadsheet.

Update (U):

Definition: Modifying or updating existing data in a database or data storage

system.

Example: Updating the content of a specific row or cell with new information.

Delete (D):

Definition: Removing or deleting existing data from a database or data storage

system.Example: Deleting a record from a database table or removing a sheet

from a spreadsheet document.

6

Serializer

In Django REST Framework, serializers are responsible for converting complex

data such as querysets and model instances to native Python datatypes (called

serialization) that can then be easily rendered into JSON, XML or other content

types which is understandable by Front End.Serializers are also responsible for

deserialization which means it allows parsed data to be converted back into

complex types, after first validating the incoming data.

A serializer class is very similar to a Django Form and ModelForm class, and

includes similar validation flags on the various fields, such as required,

max_length and default. DRF provides a Serializer class which gives you a

powerful, generic way to control the output of your responses, as well as a

ModelSerializer class which provides a useful shortcut for creating serializers

that deal with model instances and querysets.

7

Chapter 5

CRUD based API Views

i) Function based API view

a) Decorator

ii) Classed based API View

a) API View

b) Generic API View

5.1 Function Based api view

This wrapper provide a few bits of functionality such as making sure you

receive Request instances in your view, and adding context to Responsę objects

so that content negotiation can be performed

The wrapper also provide behaviour such as returning 405 Method Not Allowed

responses when appropriate, and handling any ParseError exceptions that occur

when accessing request.data with malformed input.

By default only GET methods will be accepted. Other methods will respond

with "405 Method Not Allowed".

(@api view()

@api view(['GET', 'POST', 'PUT', 'DELETE'])

def function name(request):

Similarly we applied Funciton based API View for the student, job, domain and

discipline.

5.2 Class Based APIView

REST framework provides an APIView class, which subclasses Django's View

class. APIView classes are different from regular View classes in the following

ways:

8

Requests passed to the handler methods will be REST framework's Request

instances, not Django's HttpRequest instances.

Handler methods may return REST framework's Response, instead of Django's

HttpResponse. The view will manage content negotiation and setting the correct

renderer on the response.

Any APIException exceptions will be caught and mediated into appropriate

responses.

Incoming requests will be authenticated and appropriate permission and/or

throttle checks will be run before dispatching the request to the handler method

Similarly we applied Class based API View for the student, job, domain and

discipline.

9

Chapter 6
What is view set and what is model view set

 i. ViewSet:

A ViewSet in DRF is an abstraction that combines the logic for handling HTTP

methods with the data retrieval and manipulation. It is similar to Django's class-

based views but is tailored for API development. A ViewSet can handle various

actions such as listing, creating, retrieving, updating, and deleting instances of a

model.

ii. ModelViewSet:

A ModelViewSet is a specific type of ViewSet provided by DRF that is

designed to work with Django models. It automatically generates CRUD

(Create, Read, Update, Delete) operations based on the model and is a

convenient way to create a fully functional API for a Django model.

10

Chapter 7
Django_filters :

Django Filters is a powerful application for filtering the results of a Django

QuerySet based on user input. It provides a convenient way to allow users to

dynamically filter data in a Django application, typically in the context of a web

interface. Django Filters works well with Django models and integrates

seamlessly with Django views and templates.

In Django REST Framework (DRF), the SearchFilter and OrderingFilter are two

commonly used filters that help developers implement search functionality and

control the ordering of query results in API views.

7.1 SearchFilter

The SearchFilter is used for searching and filtering query results based on a

search term provided by the user. It performs a case-insensitive search on the

specified fields of the model.

7.2 OrderingFilter

The OrderingFilter is used to control the ordering of query results based on one

or more fields. It allows users to specify the order in which the results should be

returned.

 Similarly we applied Django filters for the company, student, job, domain and

discipline.

11

Chapter 8
Pagination:

In Django, pagination is a mechanism that allows you to divide a large set of

query results into smaller, more manageable subsets or pages. This is

particularly useful when you have a large dataset to display, such as a list of

blog posts or search results, and you want to display only a limited number of

items on each page.

Pagination typically involves the following components:

 8.1 Page Number: This indicates which page of results you are currently

viewing. Users can navigate between pages using page numbers.

 8.2 Items Per Page: This defines how many items should be displayed on each

page. For example, you might choose to display 10 blog posts per page.

8.3 Previous and Next Buttons: These buttons allow users to navigate to the

previous or next page.

12

Chapter 9

Regex

Task: Extracting Minimum and maximum salary from the company google

form

Process: We used regex to extract text separately

Regex, stands for Regular Expression, is a powerful tool for pattern matching

and text manipulation. It allows you to define a pattern (a sequence of

characters) and search for or manipulate text that matches that pattern. Regular

expressions are widely used in programming, text editors, and various other

applications where you need to work with text data efficiently.

13

Chapter 10
ORM:

Object-Relational Mapping (ORM) part:

10.1 Objective:

Achieve communication between a Django web application and a relational

database without using SQL queries directly.

10.2 Definition:

ORM is a technique that maps database entities to Python objects and vice

versa. In Django, it allows you to interact with the database using Python code

and classes.

10.3 Key Concepts:

Models: Python classes representing database tables.

Fields: Attributes of models representing database columns.

QuerySet: Abstraction for database queries, allowing interaction with the

database using Python.

10.4 Usage:

Models: Define models by creating Python classes that subclass

django.db.models.Model.

Fields: Define attributes in models to represent database columns, specifying

data types.

QuerySet: Use it to perform CRUD operations on the database using Python

code rather than SQL queries.

10.5 Benefits:

Abstraction: Developers work with Python objects, abstracting away the

underlying database structure.

Portability: Easily switch between different database backends without

changing code.

14

10.6 Example:

Define a model with fields (e.g., CharField, IntegerField) to represent a table.

Use the model to create, read, update, and delete records in the database without

writing SQL queries.

10.7 Outcome:

Developers can interact with the database using Python code, making it more

convenient and abstracting away the complexities of SQL queries.

15

Chapter 11
AWK

Task: Make an output file(using AWK) which has 2 columns: Line number & to

email so basically in the mail log file it contain many data but we just want the

emails and the line number

AWK is a powerful and versatile programming language and command-line

utility for pattern scanning and text processing. It is mainly used for processing

and analyzing text files, particularly in the context of Unix and Unix-like

operating systems.

11.1 Pattern Matching: awk is designed for processing text files line by line,

applying patterns to identify and process specific lines or fields.

11.2 Data Extraction and Reporting: It is commonly used for extracting

specific columns or fields from structured text data and generating reports based

on patterns or conditions.

11.3 Text Transformation: awk allows you to perform various text

transformations, such as changing the format of data, replacing text, or

reordering fields.

Variables and Control Structures: awk includes variables, loops, and conditional

statements, making it a more expressive language compared to simple text

processing tools.

11.4 Built-in Functions: awk provides a variety of built-in functions for string

manipulation, arithmetic operations, and other common task.

\

16

11.5 INPUT:

.

11.6 OUTPUT:

17

Chapter 12
Validation Error:

12.1 Objective

 Ensure that when a user registers a company, whether using the full form or

short form, there are no duplicates in the database.

12.2 Approach

 Check if the entered company name (full form or short form) already exists in

the database. If it does, raise a validation error to prevent duplicate entries.

12.3 Outcome

 Users cannot register a company with a name that is too similar to an existing

one, avoiding duplicates in the database.

18

Chapter 13
 Conclusion

This internship has been a transformative journey that has empowered me with

invaluable insights, skills, and experiences that will resonate throughout my

personal and professional life. The opportunities to apply theoretical knowledge

in a practical setting, to contribute to meaningful projects, and to work

alongside exceptional individuals have been truly life-changing.

I extend my heartfelt appreciation to everyone involved in making this

internship a remarkable and influential chapter of my academic and professional

trajectory. Your unwavering support, belief in my abilities, and the wealth of

opportunities and knowledge I have gained through this internship at Spoken

Tutorial Team, IIT Bombay, will forever hold a special place in my heart.

19

Reference

• Github Link :

https://github.com/Spoken-tutorial/Employer-

Recommendation-System.git

• Django Documentation:

https://docs.djangoproject.com/en/4.2/

• Youtube Link:

https://youtube.com/playlist?list=PLbGui_ZyuhijTKyrlu-

0g5GcP9nUp_HlN&si=_a3YyNcoG88rciL9

• REST Framework Link:

https://blog.logrocket.com/django-rest-framework-

create-api/

• AWK Link:

https://www.gnu.org/s/gawk/manual/gawk.html

20

https://github.com/Spoken-tutorial/Employer-Recommendation-System.git
https://github.com/Spoken-tutorial/Employer-Recommendation-System.git
https://docs.djangoproject.com/en/4.2/
https://youtube.com/playlist?list=PLbGui_ZYuhijTKyrlu-0g5GcP9nUp_HlN&si=_a3YyNcoG88rciL9
https://youtube.com/playlist?list=PLbGui_ZYuhijTKyrlu-0g5GcP9nUp_HlN&si=_a3YyNcoG88rciL9
https://blog.logrocket.com/django-rest-framework-create-api/
https://blog.logrocket.com/django-rest-framework-create-api/
https://www.gnu.org/s/gawk/manual/gawk.html

