

Semester Long Internship Report

On

Implementing Splines and Usage Tutorial System

for OpenFOAM GUI

Submitted by

Patel Aarsh Miteshkumar
Vellore Institute of Technology, Chennai

Under the guidance of

Mr. Rajdeep Adak
OpenFOAM FOSSEE GUI Developer

&

Prof. Janani Srree Murallidharan
Mechanical Engineering Department

IIT Bombay

i

Contents

List of Figures .. 2

Abstract ... 1

FOSSEE’s OpenFOAM GUI Project ... 1

Introduction.. 2

Implementing OpenFOAM Splines in Blender... 3

Design Considerations: ___ 3

Underlying dependencies ___ 3

Spline Manipulation Tool (architecture) ____________________________________ 4

Spline Manipulation Tool (Panel layout) ____________________________________ 5

Operation Flowchart ..10

Installation Instructions ..10

Validation Cases ..11

Tutorial System (Blender-PyQt) ...13

Design Considerations ___13

Underlying dependencies: ___13

Tutorial System (Design) ___13

Tutorial System (Blender - view)__14

Tutorial View (PyQt window) __15

Operation Flowchart ..18

Installation Instructions ..19

References ..20

ii

List of Figures

Figure 1 Spline Tool MVC Architecture .. 4

Figure 2 Spline Panel View... 5

Figure 3 Collection Property Pseudocode .. 6

Figure 4 Adding / Removing Spline Pseudo .. 6

Figure 5 Adding Interpolation Point Pseudocode ... 7

Figure 6 Removing interpolation point pseudocode.. 8

Figure 7 Draw Handler Pseudocode .. 8

Figure 8 Spline Manipulation Tool Layout .. 9

Figure 9 Flowchart of Operation (Spline-Manipulation tool) ...10

Figure 10 Scipy Installation in Blender ...11

Figure 11 Spline Validation Case-I: Interpolation Point ..11

Figure 12 Spline Validation Case-II: Multiple Interpolation points12

Figure 13 Validation Case-III: Multiple Splines ..12

Figure 14 Class Diagram (Tutorial System) ..14

Figure 15 Tutorial System Blender Panel..14

Figure 16 Tutorial PyQT Window ..15

Figure 17 Modal class Pseudocode ...16

Figure 18 Graphical operator pseudocode ...16

Figure 19 YAML file controller pseudocode...17

Figure 20 PYQT view pseudocode ...17

Figure 21 YAML file schema...18

Figure 22 Flowchart of operation (Tutorial System) ..18

1

Abstract

This paper describes the software development process of an OpenFOAM spline interpolation

tool in Blender [5] and a teaching system in PyQt5. OpenFOAM, a popular open-source

computational fluid dynamics (CFD) program, uses splines as one of the curve definition

methods. However, for users without prior expertise or specialized knowledge, building and

manipulating splines in OpenFOAM might be difficult.

To overcome this issue, we created a Blender-addon that facilitates spline construction for

OpenFOAM. Users can create, edit, and change splines with the simple controls and tools. It

provides options for defining handles, control points, and spline interpolation techniques. The

panel improves productivity by streamlining the process.

Additionally, we used PyQt5 to integrate a tutorial system into Blender to aid in the learning

process for OpenFOAM’s spline construction. Users get the ability to efficiently design

complex shapes, which alleviates the learning curve and enhances productivity. It is possible

to effortlessly install the addon and the tutorial system into Blender.

FOSSEE’s OpenFOAM GUI Project

The OpenFOAM GUI project at FOSSEE aims to develop tools to conveniently generate

OpenFOAM cases. Presently, Venturial [1], an addon in Blender provides interactive mesh

handling tools that minimises the effort to generate blockmesh dictionaries. This document

presents the work done to develop some of Venturial’s features that extend its capabilities to

address more complex geometries. Venturial is inspired from reynolds-blender [3] (Surti et al.,

2017), and has been in development since 2021, when the groundwork for using Blender’s UI

for generating blockmesh dictionaries commenced (R. Adak & K. Kumar Thakur, OpenFOAM

GUI development using Python on Blender - Fossee 2021) [2]. Since then Venturial has acquired

several features that make the workflow of writing mesh dictionaries more productive.

Venturial is being developed further to provide a comprehensive interface to address the task

of meshing, solving and post-processing within the same interface.

2

Introduction

Splines are widely used in a variety of industries, including computational fluid dynamics

(CFD), animation, and computer graphics. OpenFOAM has become a well-known open-source

software program for simulating fluid flows in the field of CFD. Splines play a significant role

in OpenFOAM's ability to precisely specify complex geometries and boundary conditions.

Spline creation and manipulation in OpenFOAM can be complicated and time-consuming,

which can be difficult for users with little background in or skill with spline manipulation.

To address these challenges and provide a user-friendly solution, we present a Blender panel

for efficient spline creation in OpenFOAM, by a tutorial system developed using PyQt5.

Blender, a popular 3D computer graphics software, serves as the platform for seamlessly

integrating spline creation tools and facilitating an intuitive user experience [6]. Leveraging the

power of PyQt5, a Python library for developing graphical user interfaces, a comprehensive

tutorial system that guides users through the intricacies of spline manipulation.

Complementing the spline creation panel, we introduce a tutorial system built using PyQt5 that

seamlessly integrates into Blender. This tutorial system serves as a valuable learning resource,

catering to users with varying expertise in spline manipulation for OpenFOAM. It offers step-

by-step instructions to guide users through the intricacies of spline creation techniques. The

tutorial system follows a structured learning path, starting with fundamental concepts and

gradually progressing towards advanced workflows, empowering users to gain proficiency at

their own pace.

By simplifying the spline creation process, reducing the learning curve, and enhancing user

productivity, this solution enables users to generate complex geometries accurately and

efficiently. Moreover, the seamless integration of the panel and tutorial system within Blender

ensures accessibility and ease of adoption for a broad range of users in the CFD community.

3

Implementing OpenFOAM Splines in Blender

The Spline manipulation tool allows the users to create and manipulate the spline using

Blender’s interface. With comprehensive geometry manipulation capabilities and visualization

features, users can overcome the lack of a GUI for spline operations in OpenFOAM. This

method facilitates a user-friendly and streamlined workflow, allowing users to interactively

manipulate spline-based geometries, while seamlessly integrating their work with the

OpenFOAM simulation process.

Design Considerations:

1) Usage Convenience: A user-friendly interface that allows users to easily interact with

the spline creation tool. It organizes controls and functions logically, providing clear labels and

tooltips that guide users through the spline creation process.

2) Real-time Feedback: It offers immediate visual feedback during spline creation, such

as updating the spline curve in real-time as control points are adjusted. This allows users to

observe the effects of their actions instantly and make necessary adjustments.

3) Visual Clarity: The UI elements and controls are visually distinct and easy to locate.

Appropriate iconography and colour schemes are used to enhance the clarity and legibility of

the spline creation tool.

4) Customizability: Options are provided for users to customize the appearance of the

spline curves, control points, and other visual elements. This allows the users to tailor the visual

representation to their specific preferences and requirements.

5) Compatibility: The spline-generation algorithm utilized is different than that of

OpenFOAM. Consequently, the users may observe a slight deviation in spline during the

simulation compared to the one they created using the GUI. This can be rectified in the future

iterations by utilizing the same algorithm as that of the OpenFOAM.

Underlying dependencies

The GPU and BGL libraries found in the Blender API are being utilized to fix this problem.[4]

The GPU module speeds up rendering and computations in Blender by utilizing the graphics

4

processing unit's (GPU) capabilities. This module includes practical texture mapping tools like

texture mixing and texture filtering, all of which improve the aesthetic appeal of Blender-

rendered scenes. The BGL module of the Blender API acts as a low-level interface, providing

access to OpenGL resources[7] and functions created especially for Blender graphics

development. Custom rendering and visualization techniques in Blender can be built by using

this module's functions for drawing geometry, lines, points, and textures.

Spline Manipulation Tool (architecture)

A MVC (Model View Controller) has been implemented using Blender API to decouple user-

interface as “View”, temporary data as “Model” and application logic as “Controller”. A Spline

model belonging to a hexahedral block is defined using a collection of splines each having their

own set of interpolation points. The controller maintains a coherence with the Blender Panel

and the 3D viewport. The interaction between Model and View is not completely separated but

minimised as much as possible.

Figure 1 Spline Tool MVC Architecture

5

Spline Manipulation Tool (Panel layout)

Figure 2 Spline Panel View

In the View part of the MVC, a class called “PT_List” that represents a panel within the Blender

user interface is created. Its primary functionality involves displaying and manipulating a

collection of spline objects along with their associated vertex collections. The “draw” method

is responsible for defining the layout of the panel and rendering the user interface elements.

Upon execution, it retrieves the necessary data from the “context” and “scene” variables of the

Blender API. The “layout” variable is employed to arrange the UI components within the panel.

To create the layout, a split layout is employed using the “layout.split()” function[4]. On the left

side of the split, a list template for the spline collection is presented. The type of list to be

displayed is specified as “CUSTOM_UL_Main”, a custom-defined list type for all the splines.

The active item in the list is determined based on the scene's spline index, which can be set

using the “active_dataptr” variable, which forms the “Model” part of the MVC.

If there are splines in the collection and a spline is selected, an additional list template on the

right side of the split is displayed. This new list represents the collection of interpolation points

associated with the selected spline. Similar to the spline list, the vertex list is defined using

“CUSTOM_UL_Sub” as a custom-defined list type for all the interpolation points in the current

spline.

6

Figure 3 Collection Property Pseudocode

Figure 4 Adding / Removing Spline Pseudo

7

Figure 5 Adding Interpolation Point Pseudocode

8

 Get index of current spline.

 If element in current spline is 0 then get all the selected edges location and put in spline

collection

 If element present in current spline, then add a new interpolation point in collection

property and re-calculate location of each interpolation point.

Figure 6 Removing interpolation point pseudocode

 Get the index of current spline and the last vertex of current spline.

 Remove the last vertex from spline collection property.

 If spline has no interpolation points left delete the spline as well.

Figure 7 Draw Handler Pseudocode

Buttons are incorporated for adding and removing splines and vertices. These buttons are

associated with their specific operators. Furthermore, if there are splines in the collection,

properties of the selected spline, such as color and size, are displayed within the panel using

9

the “active_dataptr” variable. For the “Controller” part, whenever the spline is modified by the

user, an update function is called via the Blender API. This update function uses the modified

values of the interpolation points and CubicSpline interpolation of Scipy is used to generate

the spline. The equation governing cubic spline is given below [9].

[8]

S(x) = {
C1(x), x0 ≤ x ≤ x1

Ci(x), xi−1 ≤ x ≤ xi

Cn(x), xn−1 ≤ x ≤ xn

where Ci is a cubic function that has generalized form

Ci(x) = ai + bix + cix
2 + dix

3

The Catmull-Rom spline algorithm used by OpenFOAM for interpolation could not be

implemented. However, the current implementation of CubicSpline yields comparable results.

The equation governing Catmull-rom spline is described below.

p(s) = [1 u u2 u3] [

0 1 0 0
−τ 0 τ 0
2τ τ − 3 3 − 2τ −τ
−τ 2 − τ τ −2τ

] [pi−2 pi−1 pi pi+1]

The "tension" parameter τ controls how aggressively the spline curves at the interpolation

points in Catmull-Rom spline where P i are the interpolation points. [10]

After the interpolation points are calculated, the BGL module in Blender can be used to display

the spline in the 3D viewport using the “draw_handle_add” function call. The final output

would be as described below.

Figure 8 Spline Manipulation Tool Layout

file:///C:/Users/indra/Downloads/SciPy.org%23_%5b5%5d_SciPy._

10

Operation Flowchart

Figure 9 Flowchart of Operation (Spline-Manipulation tool)

Installation Instructions

1. Blender (Version 3.4 or above)

2. SciPy (Version 1.9 or above)

3. Open “Scripting Panel” in the Header section.

4. Press “+ New” Button.

5. Write the following commands in the text editor and press the play button

import subprocess

import sys

blender_exec = sys.executable

subprocess.check_call([blender_exec, "-m", "pip", "install","scipy>=1.9"])

11

Figure 10 Scipy Installation in Blender

Validation Cases

The scipy spline interpolation method produces a set of estimated points that closely resemble

to that of Catmull-Rom splines, however, there are visible areas where the splines fail to

reproduce the geometry in Paraview. In test, with large number of interpolation points, such

inaccuracies are not noticeable (as shown in Figure 12), however, for small number of

interpolation points there are identifiable changes in curvature. A possible solution to this

problem would be to replicate the same Catmull-Rom spline interpolation method in Python,

however, there may be variations in spline implementation with other OpenFOAM versions.

That said, the scipy interpolation method is replaceable in case a better, already available,

interpolation method is found, or until Catmull-Rom splines can be accurately written for

Python. Another possible option would be creating a wrapper around OpenFOAM’s source

Catmull-Rom splines. The output from this wrapper can be interpreted into points for BGL to

generate a curve from infinitesimally small lines. The data within the spline manipulation panel

UI isn’t writable. The interpolation points usually require to be eyeballed to place them

correctly. Estimators or convenience tools that enable snapping to pre-defined surfaces, edges

or corners could also be implemented to aid in accurately modifying the spline. Nonetheless,

the interpolation point coordinates can be controlled either via the panel or Blender’s inherent

transformation tools.

Figure 11 Spline Validation Case-I: Interpolation Point

12

Figure 12 Spline Validation Case-II: Multiple Interpolation points

Figure 13 Validation Case-III: Multiple Splines

13

Tutorial System (Blender-PyQt)

A Tutorial Viewer using the Model View Controller (MVC) design pattern is to be developed

for Blender. By integrating this functionality, users' productivity will be enhanced, as they will

no longer need to spend excessive time searching for GUI functionalities, resulting in a

streamlined learning and workflow experience.

Design Considerations

1. Better learning experience : This instructional system offers structured assistance and

explanations, which improves learning for beginners and aids in their better comprehension of difficult

ideas. A tutorial system enables users to learn new skills fast and master numerous tools, techniques,

and workflows by providing step-by-step explanations and interactive demos.

2. Integration with new OpenFOAM versions: As OpenFOAM continues to evolve and release

new versions, the tutorial system can adapt and integrate with these updates, ensuring users have access

to the latest features and capabilities.

Underlying dependencies:

PyQt5 is a Python package that provides Qt framework interfaces. It is used in the

development of the novel Blender GUI plugin for OpenFOAM. This enables the construction

of graphical user interfaces (GUIs). During the implementation of the PyQt5 component, the

primary objective was to ensure that the GUI window was integrated without interrupting

Blender's main loop.

"Modal operators" are employed to accomplish this. Modal operators are designed to operate

independently of the primary Blender loop. When a modal operator is activated, Blender waits

for user input and allows for scene updation, perform calculations, or modify objects based on

that input. Thus, by utilizing modal operators, the PyQt5 window can appear and interact with

users without disrupting the central operations of Blender.[11]

Tutorial System (Design)

The tutorial system also follows the Model-View-Controller design pattern, however, there is

complete seperation between model and view. The controller allows both reading and writing

of Models represented within the view. Models can be modified graphically but when written

into memory, are routed via the controller.

14

Figure 14 Class Diagram (Tutorial System)

Tutorial System (Blender - view)

A panel class in Blender API is implemented whose primary functionality involves displaying

a list of all the available tutorials in the tutorials folder. To make UI more intuitive and easier

to use, only 5 recent tutorials are shown and for rest a button with a pop-up operator is

implemented that displays a list of remaining tutorials.

Figure 15 Tutorial System Blender Panel

15

When the "Open" operator is executed, it invokes the "screen.custom_window" function, which

inherits the "Main window" class of PyQt5, which itself is a "modal Operator". As a result, the

PyQt5 [6] window opens asynchronously. Within PyQt5, two classes, namely

"DraggableImage" and "TextBox," are implemented to serve as the foundation for the tutorial

system. The tutorial creator has the ability to drag images to their desired positions in the

vertical axis and adjust their sizes based on user specifications.

The “DraggableImage” class extends the “QtWidgets.QLabel” to create draggable image

widgets in Qt. “drag” method is created inside this class that is utilized to drag images in the

vertical plane using a mouse. Context menus for actions like resizing, deleting, and alignment

are also provided.

The “Qtext” class is a custom widget that extends “QtWidgets.QTextEdit” in Qt. It allows users

to input and manipulate text. The widget provides a context menu with options like deleting

and changing the font. It also allows users to select a font using a font dialog.

Tutorial View (PyQt window)

Figure 16 Tutorial PyQT Window

16

The tutorials are maintained using the YAML file format. The "ml-text" and "img" keys in the

YAML dictionary are used to store text and images, respectively. The value for "ml-text"

defines the tutorials' text content, while the value for "img" specifies the image's relative

location in the tutorial folder.

A tutorial protection system has been developed utilizing the SHA256 algorithm that prevents

users from modifying the tutorials. The SHA256 algorithm is utilized for cryptographic

purposes. [12] In this algorithm, a message or data input is transformed into a fixed-size output,

referred to as a hash value, which is 256 bits in length which is then stored instead of the

original password.

Figure 17 Modal class Pseudocode

 In init function create a new variable of type “window manager”

 In execute function Create a new instance of QAppplication and set the stylesheet.

 Create a new Qt event loop

 Add the window to the window manager.

Figure 18 Graphical operator pseudocode

17

 If left mouse button is pressed get the index of the object.

 And pop the object from the list and apply hover effect.

 When the left mouse button is released get the index of the object below the mouse

cursor.

 Insert the popped object after the index of the object below the mouse cursor.

Figure 19 YAML file controller pseudocode

 Loop through each object in the view and get the class of object.

 If class is text_box then in YAML file save key as ml-text and value as the text.

 If class is draggable_img then in YAML file save key as img and value as the image

location.

Figure 20 PYQT view pseudocode

18

Figure 21 YAML file schema

Operation Flowchart

Figure 22 Flowchart of operation (Tutorial System)

19

Installation Instructions

1. Blender (Version 3.4 or above)

2. PyQT5 (Version 5.15 or above)

3. Open “Scripting Panel” in the Header section.

4. Press “+ New” Button.

5. Write the following commands in the text editor and press the play button

import subprocess

import sys

blender_exec = sys.executable

subprocess.check_call([blender_exec, "-m", "pip", "install","PyQT5>=5.15"])

20

References

[1] R. Adak, J. S. Murallidharan, and P. Ramachandran, “Fossee/Venturial: Venturial is a
GUI for openfoam.,” GitHub, https://github.com/FOSSEE/venturial (accessed Jul. 4, 2023).

[2] R. Adak and K. K. Thakur, “OpenFOAM GUI development using Python on Blender -

Fossee,” https://fossee.in/semester-internship/2021, https://static.fossee.in/fossee/internship-
reports/Python-Blender/Rajdeep_Adak.pdf (accessed Jul. 4, 2023).

[3] D. Surti, P. Ramachandran, and G. Shivasubramanian , “Dmsurti/reynolds-blender: A

reference implementation using Blender to demonstrate integration of Reynolds with a 3D
GUI interface.,” GitHub, https://github.com/dmsurti/reynolds-blender (accessed Jul. 4, 2023).

[4] Blender, “Blender 3.5 Python API Documentation — Blender Python API,”

docs.blender.org, 2023. https://docs.blender.org/api/current/index.html

[5] Blender, “Blender 3.5 Reference Manual — Blender Manual,” Blender.org, 2023.
https://docs.blender.org/manual/en/latest/

[6] Qt Group, “PySide2.QtWidgets — Qt for Python,” doc.qt.io, 2020.
https://doc.qt.io/qtforpython-5/PySide2/QtWidgets/index.html

[7] J. Rodríguez, “docs.gl,” docs.gl, 2012. https://docs.gl/

[8] SciPy. “SciPy.org — SciPy.org.” Scipy.org, 2020, scipy.org/

[9] Ohio University, “Polynomial and Spline Interpolation,”
http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/lecture19.pdf

[10] Christopher Twigg, “Catmull-Rom Spline,” Mar. 11, 2003.

https://www.cs.cmu.edu/~fp/courses/graphics/asst5/catmullRom.pdf

[11] Blender, “Blender wiki” Blender.org, 2023.
https://wiki.blender.org/wiki/Source/Interface/Operators#Modal_Operators

[12] Dang, Q. H. (2015). Secure Hash Standard. CSRC. https://doi.org/10.6028/nist.fips.180-
4

https://github.com/FOSSEE/venturial
https://static.fossee.in/fossee/internship-reports/Python-Blender/Rajdeep_Adak.pdf
https://static.fossee.in/fossee/internship-reports/Python-Blender/Rajdeep_Adak.pdf
https://github.com/dmsurti/reynolds-blender
https://docs.blender.org/api/current/index.html
https://docs.blender.org/manual/en/latest/
https://doc.qt.io/qtforpython-5/PySide2/QtWidgets/index.html
https://docs.gl/
file:///C:/Users/indra/Downloads/scipy.org
http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/lecture19.pdf
https://www.cs.cmu.edu/~fp/courses/graphics/asst5/catmullRom.pdf
https://wiki.blender.org/wiki/Source/Interface/Operators%23Modal_Operators
https://doi.org/10.6028/nist.fips.180-4
https://doi.org/10.6028/nist.fips.180-4

