
Summer Fellowship Report

On

Mixed Signal/Digital Simulation in eSim

Submitted by

Roshan Binu Paul
B.Tech(Electronics and Communication)

Muthoot Institute Of Technology and Science Kochi

Bhargav Dhoke
B.Tech(Electronics and Telecommunication)

SGGSIE&T Nanded

Abhinav Tripathi
B.Tech(Electronics Engineering)

RGIPT Amethi

Under the guidance of

Prof.Kannan M. Moudgalya

Chemical Engineering Department

IIT Bombay

September 22, 2023

Acknowledgment

We would like to express our gratefulness and sincere gratitude to the FOSSEE team
for providing us such a wonderful opportunity to work for the welfare of humankind
by contributing in the development of this open source software eSim.

First and foremost, we would like to express our gratefulness to Prof. Kannan
M. Moudgalya for his valuable and constructive guidance throughout this FOSSEE
fellowship program.

We would like to extend our heartful thanks to the whole eSim team for guiding us
and providing us all the reources needed to complete this fellowship work. Special
thanks to Mrs. Usha Viswanathan and Mrs. Vineeta Parmar for their extremely
valuable guidance throughout this whole journey. Furthermore we would like to
acknowledge and express our gratitude to our mentors Mr. Sumanto Kar and Mr.
Rahul Paknikar for their invaluable support, their warm cooperation and willingness
to share their knowledge and experiences with us made our journey truly enriching.
Moreover, we would never forget our fellow friends for helping us to make this fel-
lowship journey interesting and knowledgeable. It was a great experience working
with them under the guidance of above mentioned people.

Lastly, we would like thank all the individual who directly or indirectly helped
us in completing our fellowship. We would like to carry forward the lessons learned
in this fellowship journey to make meaningful contribution in the betterment of this
world.

1

Contents

1 Introduction 5
1.1 eSim . 5
1.2 NGHDL . 5
1.3 Icarus-Verilog . 5
1.4 Makerchip-NgVeri . 5

2 Problem Statement 7
2.1 Approach . 7

3 8bit-MIPS Processor 8
3.1 Processor Architecture . 8
3.2 Topmodule . 9
3.3 Simulation of Processor in eSim . 10

3.3.1 Outputs of Processor . 11

4 32bit-RISC-V Processor 16
4.1 Architecture . 16
4.2 Simulation in Icarus-Verilog . 17

4.2.1 Processor Testbench . 17
4.2.2 Output . 18
4.2.3 Register file Testbench . 19
4.2.4 Output . 21

4.3 Simulation in eSim . 22
4.3.1 Output . 23

5 8bit-Microcomputer 24
5.1 Simulation in Icarus-Verilog . 24

5.1.1 RAM file . 24
5.1.2 Output . 25

5.2 Simulation in eSim . 26
5.2.1 Output for opCode=5 . 27
5.2.2 Output for opCode=21 . 28

6 8bit-RISC Processor 29
6.1 Simulation in Icarus-Verilog . 29

6.1.1 Testbench . 29
6.1.2 Hex file . 31
6.1.3 Output . 31

6.2 Simulation in eSim . 32
6.2.1 Output . 33

2

7 Digital Circuits Simulation 34
7.1 16bit-Sklansky-Adder . 34

7.1.1 Simulation in Icarus-Verilog 34
7.1.2 Simulation in eSim . 36

7.2 GCD Calculator . 37
7.2.1 Simulation in Icarus-Verilog 37
7.2.2 Simulation in eSim . 39

7.3 Booth Multiplier . 40
7.3.1 Simulation in eSim . 40

7.4 Johnson Ring Counter . 41
7.4.1 Simulation in Icarus-Verilog 41
7.4.2 Simulation in eSim . 43

7.5 Mux 8:1 . 44
7.5.1 Simulation in Icarus-Verilog 44
7.5.2 Simulation in eSim . 46

7.6 Multiplication by Repeated Addition 47
7.6.1 Simulation in Icarus-Verilog 47
7.6.2 Simulation in eSim . 49

7.7 Demux 1:8 . 50
7.7.1 Simulation in Icarus-Verilog 50
7.7.2 Simulation in eSim . 52

7.8 2:1 Multiplexer . 54
7.8.1 Simulation in ModelSIM . 54
7.8.2 Simulation in eSim . 56

7.9 4-Bit ALU . 58
7.9.1 Simulation in ModelSIM . 58
7.9.2 Simulation in eSim . 59

8 RISC V -Processor 62
8.1 Design of RISC V . 62

8.1.1 Arithmetic Logic Unit (ALU) 62
8.1.2 Control Unit . 64
8.1.3 Designing Microarchitecture 65

8.2 Simulation of RISC V . 66
8.2.1 Schematic . 66
8.2.2 Analysis . 66
8.2.3 Simulation . 67

9 UART TX 68
9.0.1 Schematic . 68
9.0.2 Simulation . 69

10 Kogge Stone adder 70
10.0.1 Schematic . 70
10.0.2 Simulation . 71

11 4*4 Array Multiplier 72
11.0.1 Schematic . 72
11.0.2 Simulation . 73

3

12 Clock Divider 74
12.0.1 Schematic . 74
12.0.2 Simulation . 74

13 16 Bit Processor 76
13.0.1 Schematic . 76
13.0.2 Simulation . 77

14 CD4585 4-Bit Magnitude Comparator 78
14.0.1 Pin Diagram . 78
14.0.2 Schematic . 78
14.0.3 Simulation . 79

15 4-Bit ALU 81
15.0.1 Schematic . 81
15.0.2 Simulation . 81

16 IN74HCT21 Dual 4 Input AND Gate 86
16.0.1 Pin Diagram . 86
16.0.2 Schematic . 86
16.0.3 Simulation . 87

17 Circuits Contribution 88
17.0.1 Roshan Binu Paul . 88
17.0.2 Bhargav Dhoke . 88
17.0.3 Abhinav Tripathi . 88

Bibliography 89

4

Chapter 1

Introduction

1.1 eSim

FOSSEE (Free/Libre and Open Source Software for Education) is a project part of
the National Mission on Education through Information and Communication Tech-
nology (ICT), Ministry of Human Resource Development (MHRD), Government of
India. FOSSEE has developed various open source tools and promotes the use of
these tools in improving the quality of education and helping every individual avail
these sources free of cost. The softwares is being developed in such a way that it
can stay relevant with respect to the commercial softwares.

1.2 NGHDL

NGHDL is a mixed mode circuit simulator developed by FOSSEE, using NgSpice
and GHDL. The NGHDL feature makes it easier to create user-defined models for
eSims simulation of mixed-signal circuits. In NGHDL, the analogue and digital
components communicate through sockets and NgSpice is used to simulate the ana-
logue components and GHDL to simulate the digital components. This feature was
added to eSim so that a user who is familiar with designing circuits in Verilog can
do so with eSim. In order to write Verilog code for a digital model and install it as
a model in Ngspice, NGHDL oers an interface.

1.3 Icarus-Verilog

Icarus Verilog is an implementation of the Verilog hardware description language
compiler that generates netlists in the desired format (EDIF). It supports the 1995,
2001 and 2005 versions of the standard, portions of SystemVerilog, and some exten-
sions.Icarus Verilog is available for Linux, FreeBSD, OpenSolaris, AIX, Microsoft
Windows, and Mac OS X. Released under the GNU General Public License, Icarus
Verilog is free software. As of release 0.9, Icarus is composed of a Verilog compiler
(including a Verilog preprocessor) with support for plug-in backends, and a virtual
machine that simulates the design.

1.4 Makerchip-NgVeri

Makerchip is a browser-based IDE (Integrated Development Environment) that al-
lows users to simulate Verilog, System Verilog, and TL-Verilog files. It is developed

5

using Verilator, which converts Verilog files into C++ objects. Before using NgVeri
in eSim, the design can be simulated in Makerchip with random inputs to ensure
that it produces the desired and consistent results. Once the design is successfully
simulated, it can be used in mixed-signal designs. These models can be used in
digital/mixed signal simulations.

6

Chapter 2

Problem Statement

Implementing open source microcontrollers/processors using NGHDL present in
eSim so that the user can simulate these processors in eSim by changing the in-
struction sets which can be changed from file or by providing instruction through
the input pins in KiCad.

2.1 Approach

The general approach which I used to implement the problem statement is first
searching from an open source processor on GitHub or Opencores which have any
open source licensing such as MIT license. Then the implementation process is as
follows:

• The verilog code, each file was tested in Icarus-Verilog and then fed to Ngveri
to see if it converts correctly without throwing any error.

• Then that individual file is simulated and the Ngspice waveform is generated
to check the desired waveform.

• After all the components are simulated the final cputop file is simulated in
makerchip and a module is created to link the input instruction with that of
the processor top file. Then the simulations and conversion takes place by
adding the other files as dependencies in ngveri.

• The final object is simulated in Ngspice to check the final result of the processor
instruction set.

7

Chapter 3

8bit-MIPS Processor

It is the 8 bit MIPS processor based on the HARVARD architecture. The blocks that
make up the processor are described mainly structurally, sometimes being described
behaviorally or dataflow. For each major block, the architecture will be presented
using schemes, the meaning of each port will also be described.

3.1 Processor Architecture

Figure 3.1: Architecture

8

3.2 Topmodule

Topmodule consists of various input and output pins.

• addressMI[7:0] = output pin that provides the address of the next instruc-
tion.

• instrucion[15:0] = input pin that receives the machine code of the current
instruction.

• addressMD[7:0] = output pin that provides the required address of Data
Memory Block to perfom read/write operation.

• dataIN[7:0] = input pin that receives the data read from Data Memory Block
as a result of using LW instruction.

• dataOUT[7:0] = output pin that provides the data to be written to Data
Memory Block as a result of using SW instruction.

• wMD = output pin that provides the signal that controls the write operation
in Data Memory Block.

• co = output pin that provides a signal that indicates an overflow in the rep-
resentation of the result of an operation between unsigned integers.

• ov = output pin that provides a signal that indicates an overflow in the rep-
resentation of the result of an operation between signed integers.

• coMI = output pin that provides a signal that indicates an overflow of the
addressing capacity of Instruction Memory Block.

• z = output pin that provides a signal indicating a result equal to 0 at the
output of Arithmetic-Logic Unit (ALU).

• testCtrlSg[13:0] = output pin that provides the control word of the current
instruction to monitor the signal sent by the cu to DU.

• clk = input pin that receives the clock signal, the active front is the positive
one.

• rst = input pin that receives the asynchronous initialization signal, which is
active high.

9

Figure 3.2: Topmodule

3.3 Simulation of Processor in eSim

Figure 3.3: 8bit-MIPS

10

3.3.1 Outputs of Processor

Figure 3.4: Adress of next instruction

11

Figure 3.5: Required address of Data Memory Block to perform read/write operation

12

Figure 3.6: Signal sent by control unit to data unit to monitor current instruction

13

Figure 3.7: Data to be written in memory block

14

Figure 3.8: Ngspice terminal

15

Chapter 4

32bit-RISC-V Processor

RISC-V is a new instruction set architecture (ISA) that was originally designed to
support computer architecture research and education. A completely open ISA that
is freely available to academia and industry. It is the open source processor so that
anyone can access it.

4.1 Architecture

Figure 4.1: Architecture

16

4.2 Simulation in Icarus-Verilog

4.2.1 Processor Testbench

‘include "PROCESSOR.v"

module stimulus ();

reg clock;

reg reset;

wire zero;

// Instantiating the processor!!!

PROCESSOR test_processor(clock,reset,zero);

initial begin

$dumpfile("output_wave.vcd");

$dumpvars(0,stimulus);

end

initial begin

reset = 1;

#50 reset = 0;

end

initial begin

clock = 0;

forever #20 clock = ~clock;

end

initial

#300 £finish;

endmodule

17

4.2.2 Output

The processor is performing read and write operation. Processor have two 32bit
register to read data and two 5bit register to write data. It takes two 32bit(Decimal)
value from reg memory then write it to 5bit readregnum. As you can see in below
output that the values 8 and 9 is being read by two 32bit readdata register and
next it is writing this data in readregnum register which is 5bit(Hex). This whole
process does not required any signal. This operation is independent of clock and
reset signal.

Figure 4.2: GTKwave

18

4.2.3 Register file Testbench

‘include "REG_FILE.v"

module stimulus ();

reg [4:0] read_reg_num1;

reg [4:0] read_reg_num2;

reg [4:0] write_reg;

reg [31:0] write_data;

wire [31:0] read_data1;

wire [31:0] read_data2;

reg regwrite;

reg clock;

reg reset;

// Instantiating register file module

REG_FILE REG_FILE_module(

read_reg_num1,

read_reg_num2,

write_reg,

write_data,

read_data1,

read_data2,

regwrite,

clock,

reset);

// Setting up output waveform

initial begin

$dumpfile("output_wave.vcd");

$dumpvars(0, stimulus);

end

// Initializing the registers

initial begin

reset = 1;

#10 reset = 0;

end

// Writing values to different registers

initial begin

regwrite = 0;

#10

regwrite = 1; write_data = 20; write_reg = 0;

#10

regwrite = 1; write_data = 30; write_reg = 1;

#10

regwrite = 1; write_data = 30; write_reg = 1;

#10;

19

end

// Reading values of different registers

initial begin

#10 read_reg_num1 = 0; read_reg_num2 = 0;

#10 read_reg_num1 = 0; read_reg_num2 = 1;

#10 read_reg_num1 = 0; read_reg_num2 = 1;

#10 read_reg_num1 = 1; read_reg_num2 = 2;

end

// Setting up clock

initial begin

clock = 0;

forever #10 clock = ~clock;

end

initial begin

#200 £finish;

end

endmodule

A register file can read two registers and write in to one register. The 32bit-
RISC-V register file contains total of 32 registers each of size 32-bit. Hence 5-bits
are used to specify the register numbers that are to be read or written. Register
Write: Register writes are controlled by a control signal RegWrite. Additionally
the register file has a clock signal. The write should happen if RegWrite signal is
made 1 and if there is positive edge of clock. As we can see in the below output
that clk is 1 and regwrite is also 1. So it will write data in write reg[4:0]=01 from
readregnum2[4:0]=01.

20

4.2.4 Output

Figure 4.3: Register file Output

21

4.3 Simulation in eSim

Figure 4.4: 32bit-RISC-V

22

4.3.1 Output

Figure 4.5: Zero signal indicating output

23

Chapter 5

8bit-Microcomputer

This computer is based on the Von Neumann architechture. The von Neumann
architecture is a computer design where program instructions and data are stored in
the same memory. It consists of a CPU that executes instructions, a memory that
holds instructions and data, and I/O devices for input and output. Instructions are
fetched, decoded, and executed sequentially. The architecture has a bottleneck in
data transfer between the CPU and memory. Despite limitations, it is widely used
and forms the basis of most modern computers.

5.1 Simulation in Icarus-Verilog

5.1.1 RAM file

‘timescale 1ns/1ps

module RAM(input clk, input [3:0] address, input write_enable, input read_enable,

inout [7:0] data);↪→

reg [7:0] Memory[15:0];

reg [7:0] buffer;

initial begin

Memory[0] <= 8’b0001_1010;

Memory[1] <= 8’b0010_1011;

Memory[2] <= 8’b0100_0101;

Memory[3] <= 8’b0011_1100;

Memory[4] <= 8’b0010_1101;

Memory[5] <= 8’b1110_0000;

Memory[6] <= 8’b0001_1110;

Memory[7] <= 8’b0010_1111;

Memory[8] <= 8’b1110_0000;

Memory[9] <= 8’b1111_0000;

Memory[10] <= 8’b0000_0011;

Memory[11] <= 8’b0000_0010;

Memory[12] <= 8’b0000_0001;

Memory[13] <= 8’b0000_0101;

Memory[14] <= 8’b0000_1010;

Memory[15] <= 8’b0000_1011;

end

24

always @(posedge clk)

begin

if(write_enable & ~read_enable)

begin

Memory[address] <= data;

end

else

begin

buffer <= Memory[address];

end

end

assign data = (read_enable & ~write_enable) ? buffer : 8’bzzzzzzzz;

endmodule

5.1.2 Output

Figure 5.1: For opCode=5

25

Figure 5.2: For opCode=21

5.2 Simulation in eSim

Top module is created using Makerchip and Ngveri. In top module at input there
is 8bit opCode and one clock signal. At output we have two LED 7bit each, we will
verify the output on LED. opCode is fed by 8bit counter in order to get different
value for opCode. We are primarily looking for opCode 5 and 21. So we can verify
them with output obtain in Icarus-Verilog. The outputs we obtained on eSim are
in decimal value and in Icarus-Verilog it is hex value which is same.

Figure 5.3: 8bit-Microcomputer model

26

5.2.1 Output for opCode=5

Figure 5.4: NgSpice

Figure 5.5: Waveform

27

5.2.2 Output for opCode=21

Figure 5.6: NgSpice

Figure 5.7: Waveform

28

Chapter 6

8bit-RISC Processor

Figure 6.1: Block Diagram

6.1 Simulation in Icarus-Verilog

6.1.1 Testbench

‘timescale 1ps / 1ps

‘include "core.v"

module core_tb_00 ;

reg rst, clk;

reg we;

reg [4:0] address;

reg [7:0] di;

wire [7:0] dout;

wire write_r, read_r, PC_en, ac_ena, ram_ena, rom_ena, ram_write, ram_read,

rom_read, ad_sel;↪→

wire [1:0] fetch;

wire [7:0] data;

wire [7:0] addr;

wire [7:0] accum_out;

wire [7:0] alu_out;

wire [7:0] ir_ad;

wire [7:0] pc_ad;

29

wire [4:0] reg_ad;

wire [2:0] ins;

core DUT(clk, rst, write_r, read_r, PC_en, ac_ena, ram_ena, rom_ena,

ram_write, ram_read, rom_read, ad_sel, fetch, data, addr, accum_out,

alu_out, ir_ad, pc_ad, reg_ad, ins, address, di, dout, we);

↪→

↪→

initial

begin

^^I clk = 1’b0 ;

^^I # 150 ;

// 50 ps, single loop till start period.

repeat(99)

begin

^^I clk = 1’b1 ;

^^I #50 clk = 1’b0 ;

^^I #50 ;

// 9950 ps, repeat pattern in loop.

end

^^I clk = 1’b1 ;

^^I # 50 ;

// dumped values till 10 ns

end

// "Constant Pattern"

// Start Time = 0 ps, End Time = 10 ns, Period = 0 ps

initial

begin

^^I rst = 1’b0 ;

^^I # 100;

^^Irst=1’b1;

^^I # 9000 ;

// dumped values till 10 ns

end

initial begin

we=1;

address=0;

di=0;

#100 we=0;

#100 address=5’d1;

#110 address=5’d1;

#120 address=5’d2;

#130 address=5’d3;

#140 address=5’d4;

#150 address=5’d25;

end

initial

begin

30

$dumpfile("8bit.vcd");

$dumpvars(0, core_tb_00);

#2000;

$finish;

end

always #5 clk=~clk;

endmodule

6.1.2 Hex file

@000

A

@001

B C D E F

10 11 12 13 14

@0b

15 16 17 18 19

1A 1B 1C 1D 1E

@015

1F 20 21 22 23

6.1.3 Output

Figure 6.2: Waveform

31

6.2 Simulation in eSim

Figure 6.3: 8bit-RISC Processor

32

6.2.1 Output

Figure 6.4: Reading Number 10

33

Chapter 7

Digital Circuits Simulation

7.1 16bit-Sklansky-Adder

7.1.1 Simulation in Icarus-Verilog

Testbench

‘include "Sklansky.v"

module top;

wire [15:0] Sum;

wire cout;

reg [15:0] A;

reg [15:0] B;

reg cin;

sklansky adder(cin,A,B,Sum,cout);

initial

begin

cin = 1’b0;

#0 A=50; B=50;

#4 A=47; B=47;

#8 A=46; B=46;

#12 A=49; B=49;

end

initial

begin

$monitor ($time, " Input: A = %d B = %d \n\t\t Output: A+B = %d

",A,B,Sum);↪→

$dumpfile("Sklansky.vcd");

$dumpvars;

end

endmodule

34

Figure 7.1: Icarus terminal

Figure 7.2: GTKwave

35

7.1.2 Simulation in eSim

Figure 7.3: Schematic of Sklansky Adder

Figure 7.4: NgSpice

36

Figure 7.5: Waveform

7.2 GCD Calculator

7.2.1 Simulation in Icarus-Verilog

Testbench

‘include "gcd_datapath.v"

‘include "controller.v"

module test;

reg [15:0] data_in;

reg clk, start;

wire done;

reg [15:0] A, B;

gcd_datapath DP (gt, lt, eq, ldA, ldB, sel1, sel2, sel_in, data_in, clk);

controller CON (ldA, ldB, sel1, sel2, sel_in, done, clk, lt, gt, eq, start);

initial

begin

clk = 1’b0;

#3 start = 1’b1;

#1000 £finish;

37

end

always #5 clk = ~clk;

initial

begin

#12 data_in = 182;

#10 data_in = 195;

end

initial

begin

$monitor ($time, " %d %b", DP.Aout, done);

$dumpfile ("gcd.vcd"); $dumpvars (0, test);

end

endmodule

Figure 7.6: Icarus terminal

Figure 7.7: GTKwave

38

7.2.2 Simulation in eSim

Figure 7.8: Schematic of GCD Calculator

Figure 7.9: NgSpice

39

7.3 Booth Multiplier

7.3.1 Simulation in eSim

Figure 7.10: Schematic of Booth Multiplier

Figure 7.11: NgSpice

40

Figure 7.12: Waveform

7.4 Johnson Ring Counter

7.4.1 Simulation in Icarus-Verilog

Testbench

‘include "johnson.v"

module tb();

reg clk,rst;

wire[3:0]count;

johnson DUT(clk, rst, count);

always #5 clk=!clk;

initial

begin

clk=0;

rst=1;

@(negedge clk);

rst=0;

end

initial

41

begin

$dumpfile("dump.vcd");

$dumpvars();

repeat(20)

@(negedge clk);

$finish();

end

endmodule

Figure 7.13: GTKwave

42

7.4.2 Simulation in eSim

Figure 7.14: Schematic of Johnson Ring Counter

Figure 7.15: Waveform

43

7.5 Mux 8:1

7.5.1 Simulation in Icarus-Verilog

Testbench

‘timescale 1s/100ms

‘include "MUX8to1.v"

module MUX8to1_tb();

^^Ireg s0;

^^Ireg s1;

^^Ireg s2;

^^Ireg a;

^^Ireg b;

^^Ireg c;

^^Ireg d;

^^Ireg e;

^^Ireg f;

^^Ireg g;

^^Ireg h;

^^Iwire y;

^^IMUX8to1 myMUX(s0, s1, s2, a, b, c, d, e, f, g, h, y);

^^Iinitial

^^Ibegin

^^Ia = 1;

^^Ib = 0;

^^Ic = 1;

^^Id = 0;

^^Ie = 1;

^^If = 0;

^^Ig = 1;

^^Ih = 0;

^^I$monitor("s0 = %b, s1 = %b, s2 = %b, y = %b", s0, s1, s2, y);

^^I$dumpfile ("MUX8to1.vcd");

^^I$dumpvars (0, MUX8to1_tb);

^^Is0 = 0; s1 = 0; s2 = 0; #1;

^^Is0 = 0; s1 = 0; s2 = 1; #1;

^^Is0 = 0; s1 = 1; s2 = 0; #1;

^^Is0 = 0; s1 = 1; s2 = 1; #1;

^^Is0 = 1; s1 = 0; s2 = 0; #1;

^^Is0 = 1; s1 = 0; s2 = 1; #1;

^^Is0 = 1; s1 = 1; s2 = 0; #1;

^^Is0 = 1; s1 = 1; s2 = 1; #1;

^^I$finish;

^^Iend

endmodule

44

Figure 7.16: Icarus terminal

Figure 7.17: GTKwave

45

7.5.2 Simulation in eSim

Figure 7.18: Schematic of MUX8to1

Figure 7.19: NgSpice

46

7.6 Multiplication by Repeated Addition

7.6.1 Simulation in Icarus-Verilog

Testbench

‘include "MUL_datapath.v"

‘include "controller.v"

module MUL_test;

reg [15:0] data_in;

reg clk, start;

wire done;

reg [15:0] A, P, B;

MUL_datapath DP (eqz, LdA, LdB, LdP, clrP, decB, data_in, clk);

controller CON (LdA, LdB, LdP, clrP, decB, done, clk, eqz, start);

initial

begin

clk = 1’b0;

#3 start = 1’b1;

#500 £finish;

end

always #5 clk = ~clk;

initial

begin

#17 data_in = 17;

#10 data_in = 10;

end

initial

begin

$monitor ($time, " %d %b", DP.Y, done);

$dumpfile ("mul.vcd");

$dumpvars (0, MUL_test);

end

endmodule

47

Figure 7.20: Icarus terminal

Figure 7.21: GTKwave

48

7.6.2 Simulation in eSim

Figure 7.22: Schematic of Multiplication by Repeated Addition

Figure 7.23: NgSpice

49

7.7 Demux 1:8

7.7.1 Simulation in Icarus-Verilog

Testbench

‘include "demux_8to1.v"

module demux_8to1_tb;

// Inputs

reg [2:0] select;

reg data;

// ys

wire [7:0] y;

// Instantiate the demux_8to1 module

demux_8to1 dut (

.select(select),

.data(data),

.y(y)

);

// Clock generation

reg clk;

always #5 clk = ~clk;

// Testbench stimulus

initial begin

$dumpfile("demux_8to1_tb.vcd"); // Specify the VCD file

$dumpvars(0, demux_8to1_tb); // Dump all variables

clk = 0;

select = 0;

data = 0;

// Test Case 1

select = 3’b000; // Select the first y line

data = 1; // Set data input to 1

#10; // Wait for some time

$display("y: %b", y); // Display the y value

// Expected y: 00000001

// Test Case 2

select = 3’b001; // Select the second y line

data = 1; // Set data input to 1

#10; // Wait for some time

$display("y: %b", y); // Display the y value

// Expected y: 00000010

50

// Test Case 3

select = 3’b010; // Select the third y line

data = 0; // Set data input to 0

#10; // Wait for some time

$display("y: %b", y); // Display the y value

// Expected y: 00000100

// Test Case 4

select = 3’b011; // Select the fourth y line

data = 1; // Set data input to 1

#10; // Wait for some time

$display("y: %b", y); // Display the y value

// Expected y: 00001000

// Test Case 5

select = 3’b100; // Select the fifth y line

data = 0; // Set data input to 0

#10; // Wait for some time

$display("y: %b", y); // Display the y value

// Expected y: 00010000

// Test Case 6

select = 3’b101; // Select the sixth y line

data = 0; // Set data input to 0

#10; // Wait for some time

$display("y: %b", y); // Display the y value

// Expected y: 00100000

// Test Case 7

select = 3’b110; // Select the seventh y line

data = 1; // Set data input to 1

#10; // Wait for some time

$display("y: %b", y); // Display the y value

// Expected y: 01000000

// Test Case 8

select = 3’b111; // Select the eighth y line

data = 0; // Set data input to 0

#10; // Wait for some time

$display("y: %b", y); // Display the y value

// Expected y: 10000000

#100 £finish; // End the simulation

end

endmodule

51

Figure 7.24: Icarus terminal

Figure 7.25: GTKwave

7.7.2 Simulation in eSim

Figure 7.26: Schematic of DEMUX1to8

52

Figure 7.27: NgSpice

Figure 7.28: Waveform

53

7.8 2:1 Multiplexer

7.8.1 Simulation in ModelSIM

Verilog Code

module mux_1bit (

input a,

input b,

input x,

output y);

wire not_x;

wire bit1;

wire bit2;

not not1 (not_x,x);

and and1 (bit1,a,not_x);

and and2 (bit2,b,x);

or or1 (y,bit1,bit2);

endmodule

Testbench

module tb_mux ();

reg a;

reg b;

reg x;

wire y;

mux_1bit MUX1(

.a(a),

.b(b),

.x(x),

.y(y)

);

initial begin

#1; a=1;b=0;x=1;

#1; a=0;b=1;x=0;

#1; a=0;b=1;x=1;

#1; a=0;b=0;x=1;

#1; a=1;b=1;x=1;

#1; a=0;b=1;x=0;

#5; £stop;

end

endmodule

54

Waveform

Figure 7.29: ModelSIM Waveform

55

7.8.2 Simulation in eSim

Test Circuit Schematics

Figure 7.30: MUX Test Circuit

NgSpice Terminal

Figure 7.31: NgSpice

56

NgSpice Plots

Figure 7.32: Waveform

57

7.9 4-Bit ALU

7.9.1 Simulation in ModelSIM

Verilog Code

module ALU_4bit(

input [3:0] A,

input [3:0] B,

input [3:0] opcode,

output [3:0] out,

output zero

);

reg [4:0] result;

assign out = result;

always @(*)

begin

case (opcode)

4’b0000 : result = (A + B);

4’b0001 : result = (A - B);

4’b0010 : result = (A & B);

4’b0011 : result = (A | B);

4’b0100 : result = (A ^ B);

4’b0101 : result = (~A);

4’b0110 : result = (~B);

4’b0111 : result = (A >> 1);

4’b1000 : result = (A << 1);

4’b1001 : result = (B >> 1);

4’b1010 : result = (B << 1);

default : result = 4’b0000;

endcase

end

assign zero = (result == 4’b0000);

endmodule

58

7.9.2 Simulation in eSim

Test Circuit Schematics

Figure 7.33: ALU Test Circuit

NgSpice Terminal

Figure 7.34: NgSpice

59

NgSpice Plots

Figure 7.35: ALU Input A[3:0]

Figure 7.36: ALU Input B[3:0]

60

Figure 7.37: ALU OpCode

Figure 7.38: ALU Output

61

Chapter 8

RISC V -Processor

Simulation of RISC V single cycle processor of 32bit which is designed in Ver-
ilog. RISC-V uses 32-bit instructions. RISC-V consists of defining the following
instruction formats: R-type, I-type, S-Type, B-Type, U-type, and J-type. R-type
instructions operate on three registers. I-type, S-type and B-type instructions oper-
ate on two registers and a 12-bit immediate. U-type and J-type (jump) instructions
operate on one 20-bit immediate.[2]

8.1 Design of RISC V

8.1.1 Arithmetic Logic Unit (ALU)

Design an ALU that can perform a subset of the ALU operations of a full Processor
ALU.

Figure 8.1: Block Diagram of simple ALU and instructions
[2]

62

The ALU will generate a 32-bit output that we will call Result and an additional
1-bit flag Zero that will be set to logic-1 if all the bits of Result are 0. The different
operations will be selected by a 3-bit control signal called ALUControl according to
the table.

Figure 8.2: Block Diagram of ALU implemented
[2]

We have two types of instructions. The three instructions add, sub, and slt are
arithmetic operations, whereas the two remaining and, or are logical operations.
Therefore, we have two separate groups of operations. Also, the above diagram
shows the completed alu with carry, overflow, negative and zero flags.

63

8.1.2 Control Unit

The control unit computes the control signals based on the opcode and funct fields
of the instruction, Instr[31:25], Instr[14:12] and Instr[6:0]. Most of the control in-
formation comes from the opcode, but for further operations function fields are
used.[2]

Figure 8.3: Block Diagram of control unit implemented
[2]

Figure 8.4: Table of main decoder implemented
[2]

Figure 8.5: Table of alu decoder implemented
[2]

64

8.1.3 Designing Microarchitecture

Figure 8.6: Datapath for the load instruction
[2]

Figure 8.7: Datapath for Store Word Instruction
[2]

Figure 8.8: Datapath for R-Type Instruction
[2]

65

8.2 Simulation of RISC V

8.2.1 Schematic

The RISC V Single Cycle Top module is first simulated in Makerchip and after
adding other dependency files the model is created using NgVeri and implemented
in eSim. The inputs for the model are clk and rst. We are using adc and dac to
convert the analog and digital signals. Also, plot V1 is used to plot the signals. The
output of the model is the Result wire from the mux.

Figure 8.9: Schematic of the RISC V Processor in eSim

8.2.2 Analysis

Figure 8.10: Transient analysis

Figure 8.11: Source details used

66

8.2.3 Simulation

We also have to add an instruction file to simulate the model. Here we are using
0062E3B3 Instruction which refers to or operation of 5 and 4 which gives the answers
as 5.

Figure 8.12: Simulation of RISC V Processor in eSim

67

Chapter 9

UART TX

A universal asynchronous receiver-transmitter (UART) is a computer hardware de-
vice for asynchronous serial communication in which the data format and transmis-
sion speeds are configurable. It sends data bits one by one, from the least significant
to the most significant, framed by start and stop bits so that precise timing is
handled by the communication channel.[3]

Figure 9.1: Block diagram for a UART
[3]

Transmission operation is simpler as the timing does not have to be determined
from the line state, nor is it bound to any fixed timing intervals. As soon as the
sending system deposits a character in the shift register (after completion of the
previous character), the UART generates a start bit, shifts the required number of
data bits out to the line, generates and sends the parity bit (if used), and sends the
stop bits. Since transmission of a single or multiple characters may take a long time
relative to CPU speeds, a UART maintains a flag showing busy status so that the
host system knows if there is at least one character in the transmit buffer or shift
register.[3]

9.0.1 Schematic

The uart-tx model is simulated in Makerchip-NgVeri and the model is created. The
model is imported to the schematic and adc and dac are used to convert the analog
and digital signals. It has inputs such as clk, rst, enable and data line. While the
output includes data line and busy line.[4]

68

Figure 9.2: Schematic of uart-tx model implemented

9.0.2 Simulation

Transient analysis is used here (.tran 0.1e-00 160e-00 0e-00) and sources are varied
for the successful simulation and analysis of the model. The simulation results are
shown below.

Figure 9.3: Simulation of uart-tx model implemented

69

Chapter 10

Kogge Stone adder

In computing, the KoggeStone adder (KSA or KS) is a parallel prefix form carry
look-ahead adder.

Figure 10.1: : carry generator of a 4-bit KoggeStone adder with zero carry-in,
Radix-2, valency-2

[5]

Each vertical stage produces a ”propagate” and a ”generate” bit, as shown. The
culminating generate bits (the carries) are produced in the last stage (vertically),
and these bits are XOR’d with the initial propagate after the input (the red boxes)
to produce the sum bits. E.g., the first (least-significant) sum bit is calculated by
XORing the propagate in the farthest-right red box (a ”1”) with the carry-in (a
”0”), producing a ”1”. The second bit is calculated by XORing the propagate in
second box from the right (a ”0”) with C0 (a ”0”), producing a ”0”.[5]

10.0.1 Schematic

The kogge stone module is first simulated in Makerchip and after adding other
dependency files the model is created using NgVeri and implemented in eSim. The
inputs for the model are 8bit numbers a and b . We are using adc and dac to convert
the analog and digital signals. Also, plot V1 is used to plot the signals. The output
of the model contains sum of 8bits and a carry port.[6]

70

Figure 10.2: Kogge Stone Adder schematic in eSim

10.0.2 Simulation

Transient analysis is used here (.tran 0.1e-00 160e-00 0e-00) and sources are varied
for the successful simulation and analysis of the model. The simulation results are
shown below.

Figure 10.3: Kogge Stone Adder simulation in eSim

71

Chapter 11

4*4 Array Multiplier

An array multiplier is a digital combinational circuit used for multiplying two binary
numbers by employing an array of full adders and half adders. This array is used
for the nearly simultaneous addition of the various product terms involved. To form
the various product terms, an array of AND gates is used before the Adder array.
For implementation of array multiplier with a combinational circuit, consider the
multiplication of two 2-bit numbers as shown in figure. The multiplicand bits are
b1 and b0, the multiplier bits are a1 and a0, and the product is c3c2c1c0.[7]

Figure 11.1: : 2bit array multiplication
[7]

11.0.1 Schematic

The array multiplier Verilog code is simulated and created the model using Makerchip-
NgVeri . The inputs for the model are 4bit numbers a and b . We are using adc
and dac to convert the analog and digital signals. Also, plot V1 is used to plot the
signals. The output of the model is product of 8bits. [8]

72

Figure 11.2: Schematic of array multiplier

11.0.2 Simulation

Transient analysis is used here (.tran 0.1e-00 160e-00 0e-00) and sources are varied
for the successful simulation and analysis of the model. The simulation results are
shown below.

Figure 11.3: Simulation of array multiplier

73

Chapter 12

Clock Divider

A frequency divider, also called a clock divider or scaler or prescaler, is a circuit
that takes an input signal of a frequency, fin, and generates an output signal of a
frequency:

fout = fin/n

where n is an integer. Phase-locked loop frequency synthesizers
make use of frequency dividers to generate a frequency that is a mul-
tiple of a reference frequency. Frequency dividers can be implemented
for both analog and digital applications. [9]

12.0.1 Schematic

The clock divider model is simulated in Makerchip-NgVeri and the
model is created. The model is imported to the schematic and adc
and dac are used to convert the analog and digital signals. It has
inputs such as clk and rst. While the output is the divided clock.[10]

Figure 12.1: Schematic of clock -divider model implemented

12.0.2 Simulation

Transient analysis is used here (.tran 0.1e-00 160e-00 0e-00) and sources
are varied for the successful simulation and analysis of the model. The
simulation results are shown below.

74

Figure 12.2: Simulation of clock-divider model implemented

75

Chapter 13

16 Bit Processor

Calcu-16 has eight general purpose registers named r0-r7. Each regis-
ter is 16-bits wide. There are two other registers, the IR (Instruction
Register 26-bit) and the PC (Program Counter 16-bit).

Register Format

0:3 4:6 7:9 10:12

op-code registers unused

0000 000 000 000 0000000000000

| | |

r1 r2 r3

Immediate/Memory Format

0:3 4:6 7:9 10:25

op-code registers immediate/addr

0000 000 000 0000000000000000

| |

r1 r2

13.0.1 Schematic

The processor model is simulated in Makerchip-NgVeri and the model
is created. The model is imported to the schematic and adc and dac
are used to convert the analog and digital signals. It has inputs is clk.
While the output includes.[11]

76

Figure 13.1: Schematic of 16bit processor model implemented

13.0.2 Simulation

Transient analysis is used here (.tran 0.1e-00 160e-00 0e-00) and sources
are varied for the successful simulationnd analysis of the model. The
bin file has to be added for simulation .

The code and result are shown below :

00100001110000000000000001 addi r0, r7, 1 - Load 1 into r0.

00100011110000000000000001 addi r1, r7, 1 - Load 1 into r1.

00100101111111111111111111 addi r2, r7, 65535 - Load 65535 into r2.

00010010000010000000000000 add r1, r0, r1 - Add r0 to r1.

01000010100000000000000100 jeq r1, r2, 4 - Hang if r1 == r2.

00110000000000000000000011 jmp 3 - Jump to address 3.

Figure 13.2: Simulation of 16bit processor model implemented

77

Chapter 14

CD4585 4-Bit Magnitude
Comparator

CD4585BMS is a 4-bit magnitude comparator designed for use in com-
puter and logic applications that require the comparison of two 4-bit
words. This logic circuit determines whether one 4-bit word (Binary
or BCD) is less than, equal to or greater than a second 4-bit word.

14.0.1 Pin Diagram

Figure 14.1: Pin Diagram of CD4585

14.0.2 Schematic

The processor model is simulated in Makerchip-NgVeri and the model
is created. The model is imported to the schematic and adc and dac
are used to convert the analog and digital signals.

78

Figure 14.2: Test Circuit for CD4585

14.0.3 Simulation

Input and Output Waveforms are given below

The code is shown below :

module CD4585 (

input [3:0] A,

input [3:0] B,

output reg eq,

output reg gt,

output reg lt

);

always @(*) begin

eq = (A == B);

gt = (A > B);

lt = (A < B);

end

endmodule

79

Figure 14.3: Input Waveform

Figure 14.4: Input Waveform

80

Chapter 15

4-Bit ALU

This ALU takes 4 bit input and processes the input bits dependin-
gupon the OPCODE.

15.0.1 Schematic

The ALU model is simulated in Makerchip-NgVeri and the model is
created. The model is imported to the schematic and adc and dac are
used to convert the analog and digital signals.

Figure 15.1: ALU Test Circuit

15.0.2 Simulation

We have run this ALU for addition, the OpCode, inputs and output
waveforms are given below:

81

The code is shown below :

module ALU_4bit(

input [3:0] A,

input [3:0] B,

input [3:0] opcode,

output [3:0] out,

output zero

);

reg [4:0] result;

assign out = result;

always @(*)

begin

case (opcode)

4’b0000 : result = (A + B);

4’b0001 : result = (A - B);

4’b0010 : result = (A & B);

4’b0011 : result = (A | B);

4’b0100 : result = (A ^ B);

4’b0101 : result = (~A);

4’b0110 : result = (~B);

4’b0111 : result = (A >> 1);

4’b1000 : result = (A << 1);

4’b1001 : result = (B >> 1);

4’b1010 : result = (B << 1);

default : result = 4’b0000;

endcase

end

assign zero = (result == 4’b0000);

endmodule

82

Figure 15.2: Input Waveform A

Figure 15.3: Input Waveform B

83

Figure 15.4: Waveform OpCode

Figure 15.5: Output Waveform

84

Figure 15.6: ZeroFlag Waveform

Figure 15.7: NgSpice Output

85

Chapter 16

IN74HCT21 Dual 4 Input AND
Gate

The IN74HCT21 is high-speed Si-gate CMOS device and is pin com-
patible with low power Schottky TTL (LSTTL) . The device provide
the Dual 4-input AND function.

16.0.1 Pin Diagram

Figure 16.1: Pin Diagram of 74HCT21

16.0.2 Schematic

The processor model is simulated in Makerchip-NgVeri and the model
is created. The model is imported to the schematic and adc and dac
are used to convert the analog and digital signals.

86

Figure 16.2: Test Circuit for 74HCT21

16.0.3 Simulation

Input and Output Waveforms are given below

Figure 16.3: Input and Output Waveform

87

Chapter 17

Circuits Contribution

17.0.1 Roshan Binu Paul

1. Kogge Stone Adder
2. UART TX
3. 4*4 Array Multiplier
4. RISC V Processor
5. Clock Divider

17.0.2 Bhargav Dhoke

1. 8-Bit MIPS Processor
2. 32-Bit RISC V Processor
3. 8bit-Microcomputer
4. 16bit-Sklansky-Adder
5. GCD Calculator
6. Booth Multiplier
7. Johnson Ring Counter
8. Mux 8:1
9. Multiplication by repeated addition
10. Demux 1:8

17.0.3 Abhinav Tripathi

1. 2:1 Multiplexer
2. 4-Bit ALU
3. IN74HCT21 Dual 4 Input AND gates
4. 16 Bit Processor

88

Bibliography

[1] FOSSEE Official Website. 2020.
URL: https://fossee.in/about

[2] RISC V Single Cycle Core.
URL:https://github.com/merldsu/RISCV_Single_Cycle_Core

[3] Wikipedia Official Website.
URL:https://en.wikipedia.org/wiki/Universal_
asynchronous_receiver-transmitter

[4] UART.
URL:https://github.com/ben-marshall/uart/blob/master/
rtl/uart_tx.v

[5] Wikipedia Official Website.
URL:https://en.wikipedia.org/wiki/Kogge%E2%80%93Stone_
adder

[6] Kogge Stone Adder.
URL:https://github.com/mongrelgem/Verilog-Adders/tree/
master/Kogge-Stone%20Adder

[7] Geeksforgeeks Official Website.
URL:https://www.geeksforgeeks.org/
array-multiplier-in-digital-logic/

[8] Array Multiplier.
URL:https://github.com/sudhamshu091/
32-Verilog-Mini-Projects/blob/main/Array%20Multiplier/

89

https://fossee.in/about
https://github.com/merldsu/RISCV_Single_Cycle_Core
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
https://github.com/ben-marshall/uart/blob/master/rtl/uart_tx.v
https://github.com/ben-marshall/uart/blob/master/rtl/uart_tx.v
https://en.wikipedia.org/wiki/Kogge%E2%80%93Stone_adder
https://en.wikipedia.org/wiki/Kogge%E2%80%93Stone_adder
https://github.com/mongrelgem/Verilog-Adders/tree/master/Kogge- Stone%20Adder
https://github.com/mongrelgem/Verilog-Adders/tree/master/Kogge- Stone%20Adder
https://www.geeksforgeeks.org/array-multiplier-in-digital-logic/
https://www.geeksforgeeks.org/array-multiplier-in-digital-logic/
https://github.com/sudhamshu091/32-Verilog-Mini-Projects/blob/main/Array%20Multiplier/array_multiplier.v
https://github.com/sudhamshu091/32-Verilog-Mini-Projects/blob/main/Array%20Multiplier/array_multiplier.v
https://github.com/sudhamshu091/32-Verilog-Mini-Projects/blob/main/Array%20Multiplier/array_multiplier.v

array_multiplier.v

[9] Wikipedia Official Website.https://en.wikipedia.org/wiki/
Frequency_divider

[10] Clock Divider.
URL:https://github.com/snbk001/
Verilog-Design-Examples/blob/main/Clock%20Divider/

clkdivider.v

[11] 16 Bit Processor.
URL:https://github.com/joe-legg/Calcu-16/tree/master

[12] eSim Official website. 2020.
URL: https://esim.fossee.in/

[13] 8-bit-MIPS-Processor
URL:https://github.com/GabrielGiurgica/
8-bit-MIPS-Processor/tree/main

[14] 32bit-RISC-V
URL:https://github.com/ash-olakangal/RISC-V-Processor/
tree/main

[15] 8bit-Microcomputer
URL:https://github.com/TheSUPERCD/8bit_MicroComputer_
Verilog/tree/master

[16] Icarus-Verilog
URL:https://sourceforge.net/projects/iverilog/

[17] How to install iverilog and run
URL:https://iverilog.fandom.com/wiki/Installation_
Guide

90

https://github.com/sudhamshu091/32-Verilog-Mini-Projects/blob/main/Array%20Multiplier/array_multiplier.v
https://en.wikipedia.org/wiki/Frequency_divider
https://en.wikipedia.org/wiki/Frequency_divider
https://github.com/snbk001/Verilog-Design-Examples/blob/main/Clock%20Divider/clkdivider.v
https://github.com/snbk001/Verilog-Design-Examples/blob/main/Clock%20Divider/clkdivider.v
https://github.com/snbk001/Verilog-Design-Examples/blob/main/Clock%20Divider/clkdivider.v
https://github.com/joe-legg/Calcu-16/tree/master
https://esim.fossee.in/
https://github.com/GabrielGiurgica/8-bit-MIPS-Processor/tree/main
https://github.com/GabrielGiurgica/8-bit-MIPS-Processor/tree/main
https://github.com/ash-olakangal/RISC-V-Processor/tree/main
https://github.com/ash-olakangal/RISC-V-Processor/tree/main
https://github.com/TheSUPERCD/8bit_MicroComputer_Verilog/tree/master
https://github.com/TheSUPERCD/8bit_MicroComputer_Verilog/tree/master
https://sourceforge.net/projects/iverilog/
https://iverilog.fandom.com/wiki/Installation_Guide
https://iverilog.fandom.com/wiki/Installation_Guide

	Introduction
	eSim
	NGHDL
	Icarus-Verilog
	Makerchip-NgVeri

	Problem Statement
	Approach

	8bit-MIPS Processor
	Processor Architecture
	Topmodule
	Simulation of Processor in eSim
	Outputs of Processor

	32bit-RISC-V Processor
	Architecture
	Simulation in Icarus-Verilog
	Processor Testbench
	Output
	Register file Testbench
	Output

	Simulation in eSim
	Output

	8bit-Microcomputer
	Simulation in Icarus-Verilog
	RAM file
	Output

	Simulation in eSim
	Output for opCode=5
	Output for opCode=21

	8bit-RISC Processor
	Simulation in Icarus-Verilog
	Testbench
	Hex file
	Output

	Simulation in eSim
	Output

	Digital Circuits Simulation
	16bit-Sklansky-Adder
	Simulation in Icarus-Verilog
	Simulation in eSim

	GCD Calculator
	Simulation in Icarus-Verilog
	Simulation in eSim

	Booth Multiplier
	Simulation in eSim

	Johnson Ring Counter
	Simulation in Icarus-Verilog
	Simulation in eSim

	Mux 8:1
	Simulation in Icarus-Verilog
	Simulation in eSim

	Multiplication by Repeated Addition
	Simulation in Icarus-Verilog
	Simulation in eSim

	Demux 1:8
	Simulation in Icarus-Verilog
	Simulation in eSim

	2:1 Multiplexer
	Simulation in ModelSIM
	Simulation in eSim

	4-Bit ALU
	Simulation in ModelSIM
	Simulation in eSim

	RISC V -Processor
	Design of RISC V
	Arithmetic Logic Unit (ALU)
	Control Unit
	Designing Microarchitecture

	Simulation of RISC V
	Schematic
	Analysis
	Simulation

	UART TX
	Schematic
	Simulation

	Kogge Stone adder
	Schematic
	Simulation

	4*4 Array Multiplier
	Schematic
	Simulation

	Clock Divider
	Schematic
	Simulation

	16 Bit Processor
	Schematic
	Simulation

	CD4585 4-Bit Magnitude Comparator
	Pin Diagram
	Schematic
	Simulation

	4-Bit ALU
	Schematic
	Simulation

	IN74HCT21 Dual 4 Input AND Gate
	Pin Diagram
	Schematic
	Simulation

	Circuits Contribution
	Roshan Binu Paul
	Bhargav Dhoke
	Abhinav Tripathi

	Bibliography

